Что создает переменное магнитное поле
Перейти к содержимому

Что создает переменное магнитное поле

Большая Энциклопедия Нефти и Газа

Переменное магнитное поле , создаваемое электромагнитами, питаемыми переменным током промышленной частоты, применяется в электромагнитных расходомерах, предназначенных для жидкостей с ионной проводимостью.  [1]

Переменное магнитное поле вызывает появление вихревых токов Фуко в магнитопроводе, стенках канала и в жидкости. Эти токи могут оказывать влияние на показания расходомера вследствие нелинейности кривой намагничивания, фазовых сдвигов между током и магнитным потоком в магните преобразователя расхода и уменьшения разности потенциалов на электродах в результате создания токами Фуко своего магнитного поля, ослабляющего исходное магнитное поле.  [2]

Переменное магнитное поле , индуктирующее ток, само в свою очередь может создаваться переменными токами, текущими по другим проводам или в том же контуре. В этих случаях мы говорим о явлениях взаимной индукции и самоиндукции.  [3]

Переменное магнитное поле пораждает электрическое поле.  [4]

Переменное магнитное поле создается при пропускании электрического тока через обмотку индуктора. Для этого используют токи высокой ( 100 — ПО кгц) и промышленной частоты. Индукционные токи быстро отдают тепло изделию, благодаря чему этот способ по скорости нагрева и высушивания превосходит все другие.  [5]

Переменное магнитное поле неотделимо от поля электрического. Более того, мы видим, что разделение полей на электрические и магнитные носит относительный характер. С одной точки зрения в пространстве имеется одно лишь магнитное поле. С другой точки зрения наряду с магнитным полем присутствует и электрическое поле.  [6]

Переменное магнитное поле , в свою очередь, создается намагничивающими обмотками — индукторами. При приближении индуктора к поверхности изделия возникают вихревые токи в зоне металла, подвергающейся магнитному воздействию индуктора.  [7]

Переменное магнитное поле , охватывающее проводник ( рис. 2 — 1, а), обтекаемый переменным током, индуцирует в этом проводнике электродвижущую силу ( ЭДС), направленную навстречу приложенному напряжению. Центральные слои проводника пересекаются большим магнитным потоком, чем наружные. Наводимая в центральных слоях противо — ЭДС будет большей, чем в наружных слоях. Указанное физическое явление носит название поверхностного эффекта.  [8]

Переменное магнитное поле , пронизывая электропроводную жидкость, вызывает появление в последней вихревых токов Фуко.  [9]

Переменное магнитное поле является источником вихревого электрического поля, создающего момент сил, вращающих кольцо.  [10]

Переменное магнитное поле , индуктирующее ток, само в свою очередь может создаваться переменными токами, текущими по другим проводам и л и в том же контуре. В этих случаях мы говорим о явлениях взаимной индукции и самоиндукции.  [11]

Переменное магнитное поле порождает электрическое поле.  [12]

Переменное магнитное поле создает вокруг себя вихревое электрическое поде. Но электрическое и магнитное поля во многом аналогичны. Поэтому естествен вопрос: не создает ли и переменное электрическое поле магнитное поле. То, что такая связь между переменными полями должна существовать, показывает элементарный анализ процесса разряда конденсатора.  [13]

Переменное магнитное поле в любой точке пространства создает вихревое электрическое поле. Формула ( 1) выражает первое уравнение Максвелла в интегральной форме.  [14]

Переменное магнитное поле , охватывающее проводник ( рис. 3 — 1, а), обтекаемый переменным током, индуцирует в этом проводнике электродвижущую силу ( ЭДС), направленную навстречу приложенному напряжению. Центральные слои проводника пересекаются большим магнитным потоком, чем наружные. Наводимая в центральных слоях противо — ЭДС будет большей, чем в наружных слоях. Указанное физическое явление носит название поверхностного эффекта. Влияние этого явления воспринимается нами как увеличение сопротивления проводника, так как при одном и том же значении приложенного напряжения протекающий по проводнику переменный ток будет меньше, чем постоянный.  [15]

Что создает переменное магнитное поле

Выясним, при каких условиях магнитное поле в пространстве оказывается постоянйым и в каких случаях изменяется. Допустим, что магнитное поле создается постоянным магнитом, а наблюдатель находится в точке А (рис. 22.37, а), где индукция поля равна некоторому значению В. Пока магнит неподвижен, индукция В в точке А остается неизменной. Если магнит привести в движение, то индукция В начинает изменяться. Например, если приближать магнит к точке А, то индукция В в ней возрастает до какого-то нового значения В (рис. 22.37, б). Ясно, что изменение магнитного поля в точке А происходило во время движения магнита, а после остановки магнита индукция изменяться больше не будет.

Постоянным называется магнитное поле, в котором значение вектора магнитной индукции в каждой точке не изменяется со временем. Постоянное магнитное поле существует вокруг неподвижного магнита или неподвижного проводника с постоянным током.

Изменяющееся магнитное поле получается не только при движении магнита или проводника с постоянным током относительно наблюдателя. Вспомним, что индукция магнитного поля зависит силы тока в проводнике. Поэтому в пространстве, окружающем неподвижный проводник с изменяющимся током, магнитной поле также изменяется. Так, при замыкании электрической цепи ток за некоторый промежуток времени возрастает от нуля до своего наибольшего значения, достигнув которого он перестаетизменяться. При этом вместе с током изменяется и его магнитное поле. Наоборот, при размыкании цепи ток и его магнитное поле уменьшаются до нуля.

Вокруг проводника, по которому течет переменный ток, магнитное поле тоже переменно. Заметим, что вектор В в этом случае меняется не только по величине, но и по направлению.

Источники магнитного поля

Издревле человеку были известны вещества, способные притягивать железные предметы. Около древнего греческого города Магнесия подобные минералы встречались в изобилии, эти вещества получили название магниты в честь данного города. Речь идет о постоянных магнитах.

Характеристики магнитного поля

Экспериментально легко понять, что так же как электрические заряды окружены электрическим полем, так в пространстве, окружающем токи и постоянные магниты имеется силовое поле, которое названо магнитным полем.

Присутствие магнитного поля можно обнаружить по его воздействию на постоянный магнит или проводник с током.

Отличительными чертами магнитного поля являются:

  1. Магнитные поля оказывают свое воздействие только на движущиеся в нем электрические заряды. Электрическое поле оказывает силовое действие на движущиеся в нем и неподвижные заряды.
  2. Характер действия магнитного поля зависит от формы проводника с током, расположения этого проводника в магнитном поле и направления текущего в проводнике тока.
  3. Для изучения магнитного поля применяют рамку с током, обладающую малыми размерами в сравнении с расстоянием до источника магнитного поля.

Рамка с током – это замкнутый плоский контур, по которому течет ток. Ориентацию рамки с током характеризует нормаль к контуру. Положительным направлением нормали считают направление, которое связывает с током правило правого винта.

Силовое поле, которое создают постоянные магниты и постоянные токи, называют постоянным магнитным полем.

Эксперименты Эрстеда

В 1820 году Эрстед доказал, что магнитные поле, помимо магнитов могут создавать электрические токи.

История открытия магнитного поля Эрстедом не лишена интереса. Ученый на лекции проводил эксперименты, которые должны были продемонстрировать нагрев проводников, если сквозь него проходит электрический ток. Студент, присутствовавший на лекции, сказал преподавателю о том, что в то время, когда он замыкает цепь, стрелка компаса, лежащего на столе, отклоняется от положения равновесия. Эрстед с большим вниманием отнесся к этому явлению и детально его изучил. В итоге он понял, что вокруг электрических токов возникает силовое поле, которое в полной мере аналогично полям, которые создают вокруг себя постоянные магниты.

Готовые работы на аналогичную тему

Постоянный электрический ток – источник постоянного магнитного поля

На сегодняшний день достоверно установлено, что источником постоянного магнитного поля служит постоянный электрический ток.

Может возникнуть вопрос, что служит источником магнитного поля у постоянных магнитов, и нет ли противоречия со сказанным выше?

Магнитное поле постоянных магнитов тоже создают токи. Это микроскопические замкнутые молекулярные токи и собственные магнитные моменты микрочастиц.

Магнитное поле стоит исследовать в отдельности от электрического поля, в том случае, если это поле создано постоянными во времени электрическими токами.

В веществах, магнитное поле внешних электрических токов складывается с магнитными полями, которые создаются молекулярными токами.

Источники переменного магнитного поля

Переменные электрические токи порождают переменные магнитные поля. В этом случае магнитное поле невозможно рассматривать в отдельности от электрического поля. Изменяющиеся электрические токи являются источником переменного магнитного поля. Это поле в свою очередь становится источником переменного электрического поля. Вновь созданное переменное электрическое поле порождает новое переменное магнитное поле. Как результат, мы имеем электромагнитное поле, в котором электрическую и магнитную компоненты невозможно отделить друг от друга, исследование магнитного поля в таком случае становится принципиально невозможным от электрического.

Магнитным полем называют особую разновидность материи, при помощи которой реализуется силовое действие на перемещающиеся электрические заряды, находящиеся в нем, и другие тела имеющие магнитный момент. Магнитное поле – компонент электромагнитного поля.

Количественные и качественные характеристики магнитного поля

Поместим малую рамку с током в магнитное поле. Экспериментально установим, что в этом поле на рамку действует момент силы $M$, который зависит от ряда параметров, и от положения рамки в поле. Наибольшая величина момента силы ( $M_$) связана с магнитным полем, в котором она локализована и от параметров самого контура (силы тока $I$, текущего в нем, его площади ($S$ )):

$M_\sim IS=p_\left( 1 \right)$

где $p_m$ – магнитный момент контура с током. Магнитный момент — это характеристика контура с током и большого числа элементарных частиц, который определяет их поведение в магнитном поле.

Силовой характеристикой магнитного поля является вектор магнитной индукции ($\vec)$. Магнитную индукцию поля в точке можно определить как отношение наибольшего вращающего момента, который оказывает воздействие на виток с током в магнитном поле, и магнитного момента рассматриваемого витка:

Направление вектора магнитной индукции такое же, как у вектора магнитного момента ($\vec

_$) при устойчивом положении равновесия контура.

Магнитное поле можно изображать при помощи линий магнитной индукции. Касательные к линиям магнитной индукции указывают направление B ⃗. Количество силовых линий поля, которые приходятся на единичную площадь, нормальную к линиям магнитной индукции, равно модулю $\vec$. Линии магнитной индукции замкнуты (без конца и начала).

Магнитные поля являются вихревыми. Это означает, что циркуляция вектора $\vec$ вдоль любой линии магнитной индукции отлична от нуля:

$\oint dl\ne 0\left( 3 \right).> $

Величина магнитной индукции поля при одном и том же токе и прочих равных условиях в разных веществах будет различаться.

Магнитное поле можно описывать при помощи вектора напряженности ($\vec$). Если рассматриваемое вещество является однородным и магнитоизотропным, то

$\vec=\mu \mu_<0>\vec\left( 4 \right)$

где $\mu_<0>$ – магнитная постоянная; $\mu$ – магнитная проницаемость вещества.

Магнитная проницаемость (μ) показывает, во сколько раз магнитное поле макротоков H увеличивается из-за наличия микротоков вещества.

Магнитное поле

Магнитное поле — это векторное поле вблизи магнита, электрический ток или изменяющееся электрическое поле, в котором наблюдаются магнитные силы. Возникает всякий раз, когда заряд находится в движении. Чем больше заряда приводится в большее движение, тем больше увеличивается сила магнитного поля.

В чем измеряется сила

Поскольку магнитное поле является векторной величиной, для его измерения используется сила (измеряется напряжение при помощи магнитометров и других приборов) и направление (определяется с помощью компаса).

Величина индукции измеряется в Теслах (Тл, Т). В системе сантиметр-грамм-секунда измерение происходит в Гауссах (Гс, G). Напряженность определяется в Амперах на метр (А/м) и в Эрстедах (Э, Oe).

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Магнитное поле измеряется в:

  • Гаусс;
  • Тесла;
  • Амп/метр.

Гауссметры используют для измерения, к примеру, поля магнитов и соленоидов. Миллигауссметры требуются для выяснения малых постоянных магнитных полей в узких областях, переменного тока AC.

Для точного и быстрого вычисления постоянных и переменных полей нужен магниторметр. Для измерения индукции требуется тесламетр-веберметр, а чтобы измерить поля Земли, берут такой прибор как миллитесламетр.

Свойства линий магнитной индукции

Магнитные области представлены силовыми линиями, которые движутся от северного полюса магнита, возвращаясь назад к южному полюсу. Каждая линия представляет собой замкнутую непрерывную кривую.

  • они никогда не пересекутся;
  • всегда концентрируются возле полюсов, где сильное магнитное поле;
  • ищут путь наименьшего сопротивления между противоположными магнитными полюсами;
  • представляют собой непрерывные петли;
  • у всех одинаковая сила;
  • их плотность уменьшается (они расходятся), когда они переходят из области с более высокой проницаемостью в область с более низкой проницаемостью.

Линии — это инструмент, используемый для описания вида магнетизма. Сами по себе они невидимы, потому что не являются материальными объектами. Л инии нигде не начинаются и не останавливаются.

Их плотность уменьшается по мере удаления от полюсов. Например, на полюсах магнита линии смещены друг к другу или более плотные. Дальше, где поле слабое, они разветвляются, становясь менее плотными.

Источники магнитного поля

У магнетизма есть свои основные источники. Земля является самым большим из них. Магнитное поле воздействует на частицы за счет силы Лоренца. Движение электрически заряженных частиц и способствует возникновению магнетизма.

Источники магнитного поля:

  • токоведущие проводники;
  • постоянные магниты;
  • электромагниты.

Все эти материалы провоцируют магнетизм. Например, постоянные магниты, сделанные из таких материалов, как железо, испытывают сильнейшее воздействие, известное как ферромагнетизм.

Известен также диамагнетизм, который вызван орбитальным действием электронов, создающих крошечные токовые петли. Диамагнетизм демонстрирует такой компонент, как пиролитический углерод, вещество, похожее на графит и висмут.

Еще одно явление — парамагнетизм — возникает, когда материал временно становится магнитным при очень низких температурах. Другие, более сложные формы включают антиферромагнетизм, при котором магнитные поля атомов или молекул выстраиваются рядом друг с другом; и поведение спинового стекла, в котором участвуют как ферромагнитные, так и антиферромагнитные взаимодействия.

​​ Из чего состоит магнитное поле науке пока неизвестно. Но порождается оно движущимися электронами. Иными словами электрический ток создает поле , которое в свою очередь зависит от ряда факторов (заряда, скорости и ускорения частиц).

Характеристики магнитного поля:

  • заставляет стрелки компаса выстраиваться в линию в определенном направлении (например, магнетизм существует вокруг Земли);
  • вынуждает электрически заряженные частицы двигаться по круговой или винтовой траектории при определенных условиях.

Все состоит из атомов, и у каждого атома есть ядро, состоящее из нейтронов и протонов с электронами, которые вращаются вокруг него. Сила, действующая на электрические токи в проводах в магнитном поле, лежит в основе работы всех электродвигателей. Использование магнетизма при изготовлении телефонов, телевизоров и других электронных приборов осуществляется повсеместно.

Определение постоянного и переменного магнитного поля

Постоянное магнитное поле — область, где значение вектора магнитной индукции в каждой точке не изменяется со временем.

Постоянное магнитное поле представляет собой притяжение железных предметов в течение длительного периода времени. Если взять дощечку и поместить на нее постоянный магнит, он повернется в определенном направлении. Это можно использовать для ориентации в пространстве.

Когда замыкаешь электрическую цепь и по проводнику течет ток, стрелка компаса отклоняется. Таким образом, была доказана взаимосвязь между током и магнитной стрелкой (опыт Эрстеда).

Источником постоянного магнитного поля являются постоянные электрические токи. Формируется поле вокруг неподвижного магнита или неподвижного проводника с постоянным током.

Переменное поле — всегда связано с порождаемым им электрическим полем, а то в свою очередь связано с ним. Вместе они образуют электромагнитное поле.

Переменное магнитное поле — область, которая получается при движении магнита или проводника с постоянным током относительно наблюдателя.

Соответственно в пространстве, окружающем неподвижный проводник с изменяющимся током, магнитное поле по условиям тоже изменяется.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *