Что такое графит
Перейти к содержимому

Что такое графит

Графит

Феррит (твердый раствор внедрения C в α-железе с объемно-центрированной кубической решеткой)
Аустенит (твердый раствор внедрения C в γ-железе с гранецентрированной кубической решеткой)
Цементит (карбид железа; Fe3C метастабильная высокоуглеродистая фаза)
Графит стабильная высокоуглеродистая фаза

Ледебурит (эвтектическая смесь кристаллов цементита и аустенита, превращающегося при охлаждении в перлит)
Мартенсит (сильно пересыщенный твердый раствор углерода в α-железе с объемно-центрированной терагональной решеткой)
Перлит (эвтектоидная смесь, состоящая из тонких чередующихся пластинок феррита и цементита)
Сорбит (дисперсный перлит)
Троостит (высокодисперсный перлит)
Бейнит (устар: игольчатый троостит) — ультрадисперсная смесь кристаллов низкоуглеродистого мартенсита и карбидов железа

Белый чугун (хрупкий, содержит ледебурит и не содержит графит)
Серый чугун (графит в форме пластин)
Ковкий чугун (графит в хлопьях)
Высокопрочный чугун (графит в форме сфероидов)
Половинчатый чугун (содержит и графит, и ледебурит)

Графи́т (от др.-греч. γράφω — пишу) — минерал из класса самородных элементов, одна из аллотропных модификаций углерода. Структура слоистая. Слои кристаллической решётки могут по-разному располагаться относительно друг друга, образуя целый ряд политипов, с симметрией от гексагональной сингонии (дигексагонально-дипирамидальный), до тригональной (дитригонально-скаленоэдрический). Слои слабоволнистые, почти плоские, состоят из шестиугольных слоёв атомов углерода. Кристаллы пластинчатые, чешуйчатые. Образует листоватые и округлые радиально-лучистые агрегаты, реже — агрегаты концентрически-зонального строения. У крупнокристаллических выделений часто треугольная штриховка на плоскостях (0001).

Содержание

Свойства

Хорошо проводит электрический ток. В отличие от алмаза обладает низкой твёрдостью (1—2 по шкале Мооса). Плотность 2,08—2,23 г/см³. Цвет тёмно-серый, блеск металлический. Неплавкий, устойчив при нагревании в отсутствие воздуха. В кислотах не растворяется. Жирный (скользкий) на ощупь. Природный графит содержит 10—12 % примесей глин и окислов железа. При трении расслаивается на отдельные чешуйки (это свойство используется в карандашах).

Теплопроводность графита от 278,4 до 2435 Вт/(м*К), зависит от марки графита, от направления относительно базисных плоскостей и от температуры [1] .

Электрическая проводимость монокристаллов графита анизотропна, в направлении, параллельном базисной плоскости, близка к металлической, в перпендикулярном — в сотни раз меньше. Минимальное значение проводимости наблюдается в интервале 300-1300 К, причем положение минимума смещается в область низких температур для совершенных кристаллических структур. Наивысшую электрическую проводимость имеет рекристаллизованный графит.

Коэффициент теплового расширения графита до 700 К отрицателен в направлении базисных плоскостей (графит сжимается при нагревании), его абсолютное значение с повышением температуры уменьшается. Выше 700 К коэффициент теплового расширения становится положительным. В направлении, перпендикулярном базисным плоскостям, коэффициент теплового расширения положителен, практически не зависит от температуры и более чем в 20 раз выше среднего абсолютного значения для базисных плоскостей.

Монокристаллы графита диамагнитны, магнитная восприимчивость незначительна в базисной плоскости и велика в ортогональных базисным плоскостях. Коэффициента Холла меняется с положительного на отрицательный при 2400 К.

Химические свойства

Со многими веществами (щелочными металлами, солями) образует соединения включения.

Реагирует при высокой температуре с воздухом, сгорая до углекислого газа. Фторированием в контролируемых условиях можно получить (CF)x.

Структура

Каждый атом углерода ковалентно связан с тремя другими окружающими его атомами углерода.

Различают две модификации графита: α-графит (гексагональный P63/mmc) и β-графит (ромбоэдрический R(-3)m). Различаются упаковкой слоёв. У α-графита половина атомов каждого слоя располагается над и под центрами шестиугольника (укладка …АВАВАВА…), а у β-графита каждый четвёртый слой повторяет первый. Ромбоэдрический графит удобно представлять в гексагональных осях, чтобы показать его слоистую структуру.

β-графит в чистом виде не наблюдается, так как является метастабильной фазой. Однако, в природных графитах содержание ромбоэдрической фазы может достигать 30 %. При температуре 2500-3300 К ромбоэдрический графит полностью переходит в гексагональный.

Условия нахождения в природе

Сопутствующие минералы: пирит, гранаты, шпинель. Образуется при высокой температуре в вулканических и магматических горных породах, в пегматитах и скарнах. Встречается в кварцевых жилах с вольфрамитом и др. минералами в среднетемпературных гидротермальных полиметаллических месторождениях. Широко распространён в метаморфических породах — кристаллических сланцах, гнейсах, мраморах. Крупные залежи образуются в результате пиролиза каменного угля под воздействием траппов на каменноугольные отложения (Тунгусский бассейн). Акцессорный минерал метеоритов. С помощью ионной масс-спектрометрии российским учёным удалось обнаружить в составе графита золото, серебро и платиноиды (платина, палладий, иридий, осмий и проч.) в форме металлоорганических нанокластеров.

Искусственный синтез

Искусственный графит получают разными способами:

  • Ачесоновский графит: нагреванием смеси кокса и пека до 2800 °C;.
  • Рекристаллизованный графит: термомеханической обработкой смеси, содержащей кокс, пек, природный графит и карбидообразующие элементы.
  • Пирографит: пиролизом из газообразных углеводородов при температуре 1400—1500 °C в вакууме с последующим нагреванием образовавшегося пироуглерода до температуры 2500—3000 °C при давлении 50 МПа (образовавшийся продукт — пирографит; в электротехнической промышленности применяется наименование «электрографит»).
  • Доменный графит: выделяется при медленном охлаждении больших масс чугуна.
  • Карбидный графит: образуется при термическом разложении карбидов.

Переработка

Переработкой графита получают различные марки графита и изделия из них.

Товарные сорта графита получают обогащением графитовых руд. В зависимости от степени очистки графитовые концентраты классифицируют на промышленные марки по областям применения, каждая из которых выдвигает специфические требования к физико-химическим и технологическим свойствам графитов.

В свете последних открытий российских учёных появилась перспектива получения из графитовых руд золота и платиноидов.

Переработка графита в терморасширенный графит

На первом этапе исходный кристаллический графит окисляют. Окисление сводится к внедрению молекул и ионов серной или азотной кислоты в присутствии окислителя (перекись водорода, перманганат калия и др.) между слоями кристаллической решетки графита. Окисленный графит отмывают и сушат. Затем окисленный графит подвергают термообработке до Т=1000 °C со скоростью 400-600 °C/с. Благодаря чрезвычайно высокой скорости нагрева происходит резкое выделение газообразных продуктов разложения внедренной серной кислоты из кристаллической решетки графита. В результате межслойное расстояние увеличивается примерно в 300 раз, а число маленьких частиц графита и объём пробы увеличивается в 60-400 раз. В полученном материале остается некоторое количество оксидов серы или азота в зависимости от применяемой технологии. Далее полученный терморасширенный графит прокатывают, иногда армируют, добавляют присадки и прессуют для получения изделий.

Переработка графита для получения различных марок искусственного графита

Для производства искусственного графита используют в основном нефтяной кокс как наполнитель и каменноугольный пек как связующее. Для конструкционных марок графита в качестве добавок к наполнителю применяют природный графит и сажу. Взамен каменноугольного пека как связующего или пропитывающего вещества используют некоторые синтетические смолы, например, фурановые или фенольные.

Производство искусственного графита складывается из следующих основных технологических этапов:

  • подготовки кокса к производству (предварительного дробления, прокаливания, размола и рассева кокса по фракциям);
  • подготовки связующего;
  • приготовления углеродной массы (дозировки и смешивания кокса со связующим);
  • формования так называемых «зелёных» (необожжённых) заготовок в глухую матрицу или через мундштук прошивного пресса;
  • обжига заготовок;
  • графитации заготовок;
  • механической обработки заготовок до размеров изделий.

Кокс дробят до величин кусков 30-40 мм, затем прокаливают в специальных прокалочных печах при 1300 °C. При прокаливании достигается термическая стабильность кокса, уменьшается содержание в нем летучих веществ, увеличиваются его плотность, электро — и теплопроводность. После прокаливания кокс размалывают до необходимой крупности. Порошки кокса дозируют и смешивают с пеком в смесильных машинах при 90-130 °C.

В смесильную машину вначале загружают сухие компоненты, а затем добавляют жидкий пек. После смешивания массу равномерно охлаждают до температуры прессования (80-100 °C). Заготовки прессуют или методом выдавливания массы через мундштук, или в пресс-форме. При прессовании холодных порошков изменяют технологию подготовки помола и смешения.

Для карбонизации связующего и скрепления отдельных зёрен в монолитный материал заготовки обжигают в многокамерных газовых печах при температуре 800—1200 °C. Продолжительность цикла обжига (нагрев и охлаждение) составляет 3-5 недель в зависимости от размера и плотности заготовок. Графитация — окончательная термическая обработка — превращает углеродный материал в графит. Графитацию проводят в печах сопротивления Ачесона или в печах прямого нагрева Кастнера при температурах 2400-3000 °C. При графитировании углеродистых нефтяных заготовок идет процесс укрупнения кристаллов углерода. Из мелкокристаллического «амфорного» углерода получается крупнокристаллический графит, атомная решетка которого ничем не отличается от атомной решетки природного графита.

Некоторые изменения технологического процесса получения искусственного графита зависят от требуемых свойств конечного материала. Так, для получения более плотного материала углеродные заготовки пропитывают (после обжига) в автоклавах один или несколько раз пеком с последующим обжигом после каждой пропитки и графитацией в конце всего технологического процесса. Для получения особо чистых материалов графитацию проводят одновременно с газовой очисткой в атмосфере хлора.

Переработка графита для получения композиционных материалов

Антифрикционные углеродные материалы изготавливают следующих марок: обожженный антифрикционный материал марки АО, графитированный антифрикционный материал марки АГ, антифрикционные материалы, пропитанные баббитом, оловом и свинцом марок АО-1500Б83, АО 1500СО5, АГ-1500Б83, АГ-1500СО5, Нигран, Химанит и графитопластовые материалы марок АФГМ, АФГ- 80ВС, 7В-2А, КВ, КМ, АМС.

Антифрикционные углеродные материалы изготавливают из непрокаленного нефтяного кокса, каменноугольного пека с добавкой природного графита. Для получения плотного непроницаемого антифрикционного материала применяют пропитку его металлами. Таким методом получают антифрикционные материалы марок АГ-1500 83, АГ-1500СО5 АМГ-600Б83, АМГ-600СО5 и им подобные. Допустимая рабочая температура на воздухе и в газовых средах, содержащих кислород для АО — 250—300 °C, для АГ — 300 °C (в восстановительных и нейтральных средах 1500 и 2500 °C соответственно). Углеродные антифрикционные материалы химически стойки во многих агрессивных газовых и жидких средах. Они стойки почти во всех кислотах (до температуры кипения кислоты), в растворах солей, во всех органических растворителях и ограниченно стойки в концентрированных растворах едких щелочей.

Графит как золотосодержащее сырьё

Содержание найденного с помощью ионной масс-спектрометрии золота до десятков раз превышает содержание, выявляемое ранее при помощи химического анализа. В изученных российскими учёными пробах графита содержание золота было до 17,8 г/т – это уровень богатых золотых приисков. О перспективности добычи золота из графитовых руд говорит то, что графитовые месторождения данного типа (позднедокембрийского-раннепалеозойского возраста, если уж совсем точно) широко распространены и в России, и в мире. Они есть в Европе, США, Австралии, Африке – в сущности, легче перечислить где их нет. При этом практически все они когда-то разрабатывались, а сегодня находятся в хорошо обжитых местах. С развитой инфраструктурой, в том числе промышленной. Что это значит? Что для запуска добычи в них золота и других благородных металлов не нужно затевать стройку на пустом месте, не нужно бороться с суровыми условиями заполярной тундры или экваториальной пустыни. Это уже облегчает, ускоряет, а главное, удешевляет производство. [1]

Применение

Использование графита основано на ряде его уникальных свойств.

  • для изготовления плавильных тиглей, футеровочных плит — применение основано на высокой температурной стойкости графита (в отсутствие кислорода), на его химической стойкости к целому ряду расплавленных металлов
    , нагревательных элементов — благодаря высокой электропроводности и химической стойкости к практически любым агрессивным водным растворам (намного выше, чем у благородных металлов).
  • Для получения химически активных металлов методом электролиза расплавленных соединений. В частности, при получении алюминия используются сразу два свойства графита:
  1. Хорошая электропроводность, и как следствие — его пригодность для изготовления электрода
  2. Газообразность продукта реакции, протекающей на электроде — это углекислый газ. Газообразность продукта означает, что он выходит из электролизёра сам, и не требует специальных мер по его удалению из зоны реакции. Это свойство существенно упрощает технологию производства алюминия.
  • твёрдых смазочных материалов, в комбинированных жидких и пастообразных смазках
  • наполнитель пластмасс
  • замедлитель нейтронов в ядерных реакторах
  • компонент состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином)
  • для получения синтетических алмазов
  • для изготовления контактных щёток и токосъёмников для разнообразных электрических машин, электротранспорта и мостовых подъёмных кранов с троллейным питанием, мощных реостатов, а также прочих устройств, где требуется надёжный подвижный электрический контакт.
  • как токопроводящий компонент высокоомных токопроводящих клеёв

Интересные факты

Графит обладает высоким диамагнетизмом [2]

Литература

  • Графит // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб. , 1890—1907.
  • Klein, Cornelis and Cornelius S. Hurlbut, Jr. (1985) Manual of Mineralogy: after Dana 20 th ed. ISBN 0-471-80580-7

Примечания

  1. Графит. Справочный материал
  2. Книга рекордов Гиннесса для химических веществ

Ссылки

      (рус.)   (рус.)   (англ.)   (англ.)   (англ.)
  • (англ.)   (англ.)   (рус.)

См. также

sp 3 : Алмаз • Лонсдейлит • sp 2 : Графит • Графен • Фуллерен • Наноконусы • Нанотрубки • Астралены • sp: Карбин • смешанные sp 3 /sp 2 : Стеклоуглерод • Нанопена • другие: Нановолокна • гипотетические: Чаоит • связанные: Сажа • Технический углерод • Уголь (Ископаемый • Древесный • Активированный)

  • Минералы по алфавиту
  • Графит
  • Простые вещества
  • Фазы железоуглеродистых сплавов

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое «Графит» в других словарях:

ГРАФИТ — (греч. graphis, graphidos, от grapbo пишу). Минерал растительного происхождения, состоящий из чистого углерода, черного или темно стального цвета, непрозрачен, марок, жирен на ощупь; употребляется на приготовление карандашей, плавильных горшков и … Словарь иностранных слов русского языка

Графит — [g r άj w (графе) пишу] м л, a C. Гекс. модиф. углерода со структурой слоистого типа. К л. шестиугольные таблички со штриховкой. Дв. скольжения. Сп. в. сов. по . Агр.: чешуйчатые, радиальнолучистые, земл.,… … Геологическая энциклопедия

ГРАФИТ — ГРАФИТ, наиболее устойчивая модификация углерода. Графит используют для изготовления деталей и аппаратуры в электротехнике, металлургии, химическом машиностроении, ракетостроении и др., в производстве огнеупорных материалов и изделий,… … Современная энциклопедия

ГРАФИТ — минерал, наиболее распространенная и устойчивая в земной коре полиморфная гексагональная модификация углерода. Структура слоистая. Темно серые до черных чешуйчатые агрегаты, конкреции, сплошные массы. Твердость 1 2; плотность ок. 2,2 г/см&sup3.… … Большой Энциклопедический словарь

графит — пирографит, плумбаго, стержень, спель, смазка, грифель Словарь русских синонимов. графит сущ., кол во синонимов: 9 • грифель (4) • … Словарь синонимов

Графит — Graphite минерал, одна из кристаллических форм углерода. В ядерных реакторах используется графит ядерной чистоты в качестве замедлителя нейтронов. Термины атомной энергетики. Концерн Росэнергоатом, 2010 … Термины атомной энергетики

Графит — (шунгит) – пигмент серовато черного цвета. Высокое содержание углерода (до 95%). Отличаются высокой химической стойкостью, достаточно высоким сопротивлением истиранию, морозостойкостью.Используют для приготовления масляных красочных веществ,… … Энциклопедия терминов, определений и пояснений строительных материалов

ГРАФИТ — ГРАФИТ, темно серая, мягкая кристаллическая форма УГЛЕРОДА, встречающаяся в природе в месторождениях с разной степенью содержания примесей. Синтетически производится путем нагревания нефтяного кокса. Используется для изготовления карандашей… … Научно-технический энциклопедический словарь

ГРАФИТ — ГРАФИТ, графита, муж. (от греч. grapho пишу). 1. Минерал черного цвета, мелкокристаллический углерод, употр. для изготовления карандашей (минер.). 2. Изготовленный из этого минерала или какого нибудь красящего материала стержень внутри карандашей … Толковый словарь Ушакова

ГРАФИТ — ГРАФИТ, а, муж. 1. Минерал тёмно серого или чёрного цвета, употр. для изготовления карандашных стержней, огнеупорных тиглей, смазочных материалов и в других технических целях. 2. Стержень внутри карандаша, грифель. | прил. графитный, ая, ое и… … Толковый словарь Ожегова

Графит

графит

Графит — минерал из класса самородных элементов, одна из аллотропных модификаций углерода. Распространенный в природе минерал. Встречается обычно в виде отдельных чешуек, пластинок и скоплений, разных по величине и содержанию графита. Различают месторождения кристаллического графита, связанного с магматическими горными породами или кристаллическими сланцами, и скрытокристаллического графита, образовавшегося при метаморфизме углей.

алмаз

СТРУКТУРА

структура графита

Гексагональная кристаллическая полиморфная (аллотропная) модификация чистого углерода, наиболее устойчивая в условиях земной коры. Слои кристаллической решетки могут по-разному располагаться относительно друг друга, образуя целый ряд политипов, с симметрией от гексагональной сингонии (дигексагонально-дипирамидальный вид симметрии), до тригональной (дитригонально-скаленоэдрический в.с.). Кристаллическая решетка графита – слоистого типа. В слоях атомы С расположены в узлах гексагональных ячеек слоя. Каждый атом С окружен тремя соседними с расстоянием 1,42Α

Различают две модификации графита: α-графит (гексагональный P63/mmc) и β-графит (ромбоэдрический R(-3)m). Различаются упаковкой слоёв. У α-графита половина атомов каждого слоя располагается над и под центрами шестиугольника (укладка …АВАВАВА…), а у β-графита каждый четвёртый слой повторяет первый. Ромбоэдрический графит удобно представлять в гексагональных осях, чтобы показать его слоистую структуру.

β-графит в чистом виде не наблюдается, так как является метастабильной фазой. Однако, в природных графитах содержание ромбоэдрической фазы может достигать 30 %. При температуре 2500-3300 К ромбоэдрический графит полностью переходит в гексагональный.

СВОЙСТВА

графит

Хорошо проводит электрический ток. В отличие от алмаза обладает низкой твёрдостью (1 по шкале Мооса). Относительно мягкий. После воздействия высоких температур становится немного твёрже, и становится очень хрупким. Плотность 2,08—2,23 г/см³. Цвет тёмно-серый, блеск металлический. Неплавкий, устойчив при нагревании в отсутствие воздуха. Жирный (скользкий) на ощупь. Природный графит содержит 10—12 % примесей глин и окислов железа. При трении расслаивается на отдельные чешуйки (это свойство используется в карандашах).

Теплопроводность графита от 278,4 до 2435 Вт/(м*К), зависит от марки графита, от направления относительно базисных плоскостей и от температуры.

Электрическая проводимость монокристаллов графита анизотропна, в направлении, параллельном базисной плоскости, близка к металлической, в перпендикулярном — в сотни раз меньше. Минимальное значение проводимости наблюдается в интервале 300—1300 К, причём положение минимума смещается в область низких температур для совершенных кристаллических структур. Наивысшую электрическую проводимость имеет рекристаллизованный графит.

Коэффициент теплового расширения графита до 700 К отрицателен в направлении базисных плоскостей (графит сжимается при нагревании), его абсолютное значение с повышением температуры уменьшается. Выше 700 К коэффициент теплового расширения становится положительным. В направлении, перпендикулярном базисным плоскостям, коэффициент теплового расширения положителен, практически не зависит от температуры и более чем в 20 раз выше среднего абсолютного значения для базисных плоскостей.

Монокристаллы графита диамагнитны, магнитная восприимчивость незначительна в базисной плоскости и велика в ортогональных базисным плоскостях. Коэффициента Холла меняется с положительного на отрицательный при 2400 К.

МОРФОЛОГИЯ

графит

Хорошо образованные кристаллы редки. Кристаллы пластинчатые, чешуйчатые, кривогранные, обычно имеют пластинчатую несовершенную форму. Чаще бывает представлен листочками без кристаллографических очертаний и их агрегатами. Образует сплошные скрытокристаллические, листоватые или округлые радиально-лучистые агрегаты, реже – сферолитовые агрегаты концентрически-зонального строения. У крупнокристаллических выделений часто наблюдается треугольная штриховка на плоскостях (0001).

ПРОИСХОЖДЕНИЕ

графит

Образуется при высокой температуре в вулканических и магматических горных породах, в пегматитах и скарнах. Встречается в кварцевых жилах с вольфрамитом и др. минералами в среднетемпературных гидротермальных полиметаллических месторождениях. Широко распространён в метаморфических породах – кристаллических сланцах, гнейсах, мраморах. Крупные залежи образуются в результате пиролиза каменного угля под воздействием траппов на каменноугольные отложения (Тунгусский бассейн). Акцессорный минерал метеоритов.
Сопутствующие минералы: кварц, пирит, гранаты, шпинель.

ПРИМЕНЕНИЕ

графит

Для изготовления плавильных тиглей, футеровочных плит — применение основано на высокой температурной стойкости графита (в отсутствие кислорода), на его химической стойкости к целому ряду расплавленных металлов.
Применяется в электродах, нагревательных элементах — благодаря высокой электропроводности и химической стойкости к практически любым агрессивным водным растворам (намного выше, чем у благородных металлов).
Для получения химически активных металлов методом электролиза расплавленных соединений, твёрдых смазочных материалов, в комбинированных жидких и пастообразных смазках, наполнитель пластмасс.

Является замедлителем нейтронов в ядерных реакторах, компонентом состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином).
Используется для получения синтетических алмазов, в качестве эталона длины нанометрового диапазона для калибровки сканеров сканирующего туннельного микроскопа и атомно-силового микроскопа, для изготовления контактных щёток и токосъёмников для разнообразных электрических машин, электротранспорта и мостовых подъёмных кранов с троллейным питанием, мощных реостатов, а также прочих устройств, где требуется надёжный подвижный электрический контакт, для изготовления тепловой защиты носовой части боеголовок баллистических ракет и возвращаемых космических аппаратов.

Графит, типы, марки, структура, свойства и применение

Графит

Графит, типы, марки, структура, свойства и применение.

Графит – это природный материал, относящийся к классу самородных элементов, аллотропная модификация углерода.

Описание графита:

Графит (в переводе с греч. – «пишу») – это природный материал, относящийся к классу самородных элементов, аллотропная модификация углерода . Химическая формула графита – C.

Наряду с графитом, алмазом существуют еще много аллотропных форм углерода. Например, графен , фуллерен , углеродные нанотрубки и т.д. Свойства данных веществ совершенно отличаются друг от друга.

Графит широко распространен в природе как минерал. Он встречается обычно в виде отдельных чешуек, пластинок и скоплений, разных по величине и содержанию.

Различают месторождения кристаллического графита, связанного с магматическими горными породами или кристаллическими сланцами, и скрытокристаллического графита, образовавшегося при метаморфизме углей .

Природный графит по своему химическому составу не отличается чистотой. В большом количестве (до 10-25%) в нем присутствует зола, состоящая из разных составляющих (Fe2O3, SiO2, Аl2O3, MgO, Р2О5, CuO, СаО и др.), газы (до 2%) и битумы, иногда вода.

Также графит получается искусственным путем различными способами. Например, нагреванием смеси кокса и пека до 2 800 °C.

Типы и марки графита:

В соответствии с ГОСТ 17022-81 «Графит. Типы, марки и общие технические требования» выделяют следующие минералогические типы графита:

Этим же ГОСТом предусмотрены следующие марки графита: ГСМ-1, ГСМ-2, ГАК-1, ГАК-2, ГАК-3, ГК-1, ГК-2, ГК-3, ГС-1, ГС-2, ГС-3, ГС-4, П, ЭУЗ-М, ЭУЗ-II, ЭУЗ-III, ЭУТ-I, ЭУТ-II, ЭУТ-III, ГТ-1, ГТ-2, ГТ-3, ГЭ-1, ГЭ-2, ГЭ-3, ГЭ-4, ГЛ-1, ГЛ-2, ГЛ-3, ЭУН, ГЛС-1, ГЛС-2, ГЛС-3, ГЛС-4.

Им соответствуют следующие виды использования (потребления) графита:

– графит специальный малозольный,

– графит кристаллический электроугольный,

– графит кристаллический литейный,

– графит скрытокристаллический электроугольный,

– графит скрытокристаллический литейный.

Структура и кристаллическая решетка графита:

Графит имеет слоистую, плоскую структуру. Отдельные слои графита называются графеном. Каждый слой кристаллической решетки графита может по-разному располагаться по отношению друг к другу, образуя политипы.

В каждом слое атомы углерода расположены в гексагональной решетке на расстоянии 0,142 Нм, а расстояние между плоскостями графена составляет 0,335 Нм.

Атомы углерода, расположенные в одной плоскости слоя, связаны между собой ковалентной связью. Углерод имеет четыре свободных электрона. Однако в ковалентной связи задействованы только три электрона из четырех, поэтому каждый атом углерода связан только с тремя атомами углерода. Четвертый электрон свободно мигрирует в плоскости, делая графит электропроводящим в направлении, параллельном плоскости. Электропроводность графита в направлении перпендикулярно плоскости слоя, наоборот, в сотни раз меньше.

Между собой слои графена в графите скреплены слабыми Вандерваальсовыми силами, которые позволяют слоям графита легко быть отделенными друг от друга.

Известны две формы графита: альфа-графит (имеет гексагональную структуру и кристаллическую решетку) и бета-графит (имеет ромбоэдрическую структуру и кристаллическую решетку). Обе формы графита имеют очень схожие физические свойства, за исключением того, что слои графена у каждой формы графита укладываются несколько по-разному.

Альфа-графит

Рис. 1. Альфа-графит

У α-графита половина атомов каждого слоя располагается над и под центрами шестиугольника, а у β-графита каждый четвёртый слой повторяет первый.

Бета-графит

Рис. 2. Бета-графит

Альфа-графит может быть преобразован в бета-форму с помощью механической обработки. Бета-форма переходит в альфа-форму при нагревании графита свыше 1300 °C.

Свойства графита:

– электрическая проводимость графита анизотропна (т.е. зависит от направления внутри самого графита). Он хорошо проводит электрический ток в направлении, параллельном базисной плоскости. В этом случае его электропроводность близка к металлической. В перпендикулярном направлении электропроводность в сотни раз меньше.

– обладает низкой твёрдостью. Твердость школе Мооса 1.

– относительно мягкий. После воздействия высоких температур становится немного более твёрдым и очень хрупким,

– плотность 2,08-2,23 г/см³,

– легко поддается механической обработке,

– цвет от железо-черного до стально-серого, блеск металлический,

– неплавкий, устойчив при нагревании в отсутствие воздуха ,

– жирный (скользкий) на ощупь, оставляет след на бумаге и пальцах,

– при трении графит расслаивается на отдельные чешуйки (это свойство используется в карандашах),

– обладает достаточно большой теплопроводностью. Теплопроводность графита анизотропна. Она составляет от 100 до 354,1 Вт/(м*К) и зависит от марки графита, от направления относительно базисных плоскостей и от температуры,

– коэффициент теплового расширения графита также анизотропен и зависит от температуры. До 700 К коэффициент теплового расширения графита отрицателен в направлении базисных плоскостей (графит сжимается при нагревании), его абсолютное значение с повышением температуры уменьшается. Выше 700 К коэффициент теплового расширения становится положительным. В направлении, перпендикулярном базисным плоскостям, коэффициент теплового расширения положителен, практически не зависит от температуры и более чем в 20 раз выше среднего абсолютного значения для базисных плоскостей,

– обладает высоким диамагнетизмом,

– химически малоактивен,

– обладает химической стойкостью. Кислотоупорен,

– при высокой температуре реагирует с кислородом, сгорая до углекислого газа,

– образует соединение включения с щелочными металлами, солями.

Физические свойства графита:

Наименование показателя: Значение:
Длина связи С–С, нм 0,142
Расстояние между слоями, нм 0,335
Плотность, г/см 2 от 2,08 до 2,23
Температура плавления, о С 3845-3890
Температура кипения, о С 4200
Теплопроводность, Вт/(м·К) от 100 до 354,1

Применение и использование графита:

Области использования и применения графита:

– для изготовления активных масс и щелочных аккумуляторов и масс для графитированных антифрикционных изделий из цветных металлов,

– для изготовления аккумуляторных изделий специального назначения,

– для изготовления масс графитированных антифрикционных изделий из цветных металлов,

– для изготовления карандашей чертежной и канцелярской групп,

– для изготовления карандашей канцелярской, школьной и копировальной групп,

– в качестве антифрикционных компонентов в твердых смазочных покрытиях при изготовлении ядерных реакторов, механизмов космических кораблей, летательных аппаратов , а также для коллоидно-графитовых препаратов,

– в качестве ингредиента электропроводящей резины , изделий порошковой металлургии, графитовых смазочных карандашей и паст, электропроводящих полимерных пленок ,

– для изготовления консистентных смазок для открытых шестерен прокатных станов, рессор автомобилей и других высоконагруженных узлов трения,

– для производства электроугольных изделий,

– для изготовления огнеупорных графитокерамических изделий,

– для производства первичных химических источников тока,

– для припыла рабочих поверхностей форм и стержней при получении отливок сложной конфигурации, требующих особо чистой поверхности,

– для припыла рабочих поверхностей форм и стержней при получении отливок средней сложности,

– для припыла при получении отливок, не требующих высокой чистоты поверхности ,

– для изготовления противопригарных покрытий при получении отливок,

– в металлургическом производстве,

– для изготовления изделий специального назначения,

© Фото https://www.pexels.com, https://pixabay.com,

какой цвет натуральный матовый серый темный белый черный графит купить фото кристаллическая решетка химическая формула спб имеет вода тип простое элемент
свойства форма марки виды строение применение графита цена модификация
графитом является
аллотропное видоизменение алмаз графита

Описание графита. Свойства графита. Применение графита

Графит – это природный элемент, легко раскалываемый минерал, одна из модификаций углерода. Графит – материал очень мягкий, легко поддающийся механической обработке, обладает металлическим блеском. Графитовая формула – С (углерод).

Описание-графита-Свойства-графита-Применение-графита-1

Электропроводность графита, фото которого можно посмотреть выше, превышает ртутную электропроводимость в 2,5 раза. Удельное сопротивление электротока с температурой в 0 градусов находится в границах 0,390-0,602 Ом, а его самое низкое значение для различных видов данного элемента одно и то же – 0,0075 Ом.

Элемент отличается повышенной теплопроводимостью, коэффициент которой в 5 раз выше, чем имеет кирпич (0,041). Графитные медные цепочки отличаются более низкой теплопроводностью. Пределы температуры плавления – 3845-3890 С, кипение начинается при 4200 С. Во время сжигания элемента выделяется 7832 ккал тепла. Графит является диамагнитным.

Его основные химические свойства – инертность по отношению к жидкостям, газам и твёрдым веществам, способность растворяться в расплавленных металлах, с точкой плавления превышающей его собственную. На высокой температуре может взаимодействовать с другими элементами.

Не эластичен, но в то же время изгибается и режется. Благодаря жирности и пластичности имеет широкое применение в промышленном производстве. Жирность также позволяет применять его как смазочный материал. Плотность графита 2,23 г/ см3.

Описание-графита-Свойства-графита-Применение-графита-2

Графит отличается слоистой структурой, имеющей свои особенности. Атомы углерода кристаллической решётки графита представляют собой сотовые ячейки: шестиугольники, расположенные рядами. В каждом ряду атомы плотно связаны друг с другом, а ряды между собой имеют слабую связь. Поэтому графит легко сломать даже если только слабо надавить.

Твёрдость по шкале Мооса приравнивается к единице, в то время как у алмаза – десять, несмотря на тот факт, что алмаз и графит – это углеродовые подвиды. Всё дело в кристаллической решётке. У алмаза один атом углерода связан с четырьмя лежащими рядом. На основе исследований учёные доказали, что кристаллическая решётка графита при температуре выше 1500 С может преобразоваться в решётку алмаза.

В процессе переработки как физические, так и химические свойства графита меняются, поэтому его классифицировали на марки, которые имеют соответствующие различия. В промышленности отдельная марка графита используется для определённого вида продукции.

Описание-графита-Свойства-графита-Применение-графита-3

Графит подразделяется на естественный (природный) и искусственный. При его производстве учитывают свойства в зависимости от назначения продукции. Естественный в свою очередь делится на графит кристаллический и скрытокристаллический, представляет собой порошок, похожий на порох.

Производители продукции из графита предъявляют свои требования к сырью в зависимости от его назначения. В соответствии с этим проведена маркировка, и сейчас вырабатываются различные марки графита, имеющие каждая свое предназначение.

Среди них электроугольная, литейная , элементная, аккумуляторная, карандашная, смазочная, а также специальная марка по производству графита для ядерных реакторов. Весь производимый графит должен соответствовать техническим требованиям в зависимости от области его применения.

Месторождения и добыча графита

Ресурсы графита во всём мире составляют примерно 600 млн т, а его ежегодная добыча свыше 600 тыс. т. Наибольшими запасами владеют Мексика, Китай, Чехия, Бразилия, Украина, Россия, Южная Корея, Канада. Образовался этот минерал метаморфизацией осадочных пород из органических соединений. Месторождения графита с давних времён представляют интерес с экономической точки зрения и оцениваются мощностью в миллионы тонн.

Описание-графита-Свойства-графита-Применение-графита-4

Разработка этих месторождений обеспечивает промышленность необходимым сырьём. Натуральный графит встречается в виде плотных кристаллических или волокнистых вкраплений в граниты , известковые породы, гнейсы , слюду . Он образует большие скопления в виде непрозрачных, серых, землистых или чешуйчатых масс. Цвет графита в пределах от серого стального до чёрного. Кусковой графит добывают подземным способом, а графитовую руду – открытым.

Применение графита

И производители, и обыватели уже давно знакомы с графитовым веществом, зарекомендовавшим себя наличием качеств, которые позволяют применять его не только для производственных процессов, но и в повседневной жизни.

Благодаря таким основным свойствам как электропроводность и огнеупорность, этот минерал нашёл широкое применение в промышленности. Металлургия использует его для изготовления тугоплавких ковшей, форм для сплавов , ёмкостей для кристаллизации. Литейное производство применяет графитовый порошок как смазку форм для литья.

Является одной из составляющих при изготовлении огнеупорного кирпича. Полировочные и шлифовальные пасты получают из графитовых смесей. Учитывая электропроводящие свойства природного элемента, он незаменим для изготовления контактов электроприборов и электродов.

Описание-графита-Свойства-графита-Применение-графита-5

Промышленность по производству графитовых карандашей, смазочных материалов и изготовления красок тоже не обходится без этого вещества. Стержни для карандашей изготавливаются из чёрного графита, хотя в природе существует серый графит со стальным блеском. Является наполнителем пластмассы, с его помощью налажено производство искусственных алмазов.

Даже атомная энергетика оценила свойства графита и взяла его на использование. Машиностроение – материал для подшипников, уплотнительных и поршневых колец . В быту также стали использовать графитовую смазку – обрабатывать автомобильные рессоры, велосипедные цепи, даже дверные петли.

Покрасочным средством, обладающим антикоррозионными качествами является краска графитовая. Она представляет собой однокомпонентную суспензию. В её состав, кроме графитового наполнителя, входят пластификатор и связующие пигменты. Применяя такую краску, защищают бетонные, стальные, деревянные, алюминиевые, чугунные изделия от коррозии.

Описание-графита-Свойства-графита-Применение-графита-6

В медицине графит зарекомендовал себя как одно из гомеопатических средств при кожных заболеваниях, являющихся следствием внутренних и трудно поддающихся терапии нарушений. Препятствует образованию спаек и рубцов после воспалений, а также влияет на обменные процессы. Заболевания, на которые благотворно воздействует графит, сложно перечислить, поэтому он входит в состав многих лекарственных препаратов.

Цена графита

Продажей графита занимаются специализированные компании, занимающиеся добычей и переработкой графита, цены на который достаточно приемлемы. Ценовая категория природного графита зависит от размеров его кристаллов и содержания углерода. Каждый сорт графита имеет свою стоимость – чем выше содержание углерода, тем лучше технические свойства, и тем он дороже.

Описание-графита-Свойства-графита-Применение-графита-7

Реализация данного минерала производится как в розницу, так и оптом. Потребитель может графит купить на выгодных для него условиях. При покупке оптом делается скидка, обеспечивается его доставка. Стоимость зависит и от региональной принадлежности. Средняя цена на графит примерно 45 руб/кг. Готовая продукция стоит дороже.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *