Формула как найти r
Перейти к содержимому

Формула как найти r

Все формулы для радиуса описанной окружности

Найти радиус описанной окружности треугольника по сторонам

радиус описанной окружности треугольника

a, b, c blue— стороны треугольника

s12 black— полупериметр

s (abc)2

O black— центр окружности

Формула радиуса описанной окружности треугольника ( R ) :

Формула радиуса описанной окружности треугольника

Найти радиус описанной окружности равностороннего треугольника по стороне или высоте

радиус описанной окружности равностороннего треугольника

сторона— сторона треугольника

высота— высота

радиус— радиус описанной окружности

Формула радиуса описанной окружности равностороннего треугольника через его сторону:

Формула радиуса описанной окружности равностороннего треугольника через сторону

Формула радиуса описанной окружности равностороннего треугольника через высоту:

Формула радиуса описанной окружности равностороннего треугольника через высоту

Найти радиус описанной окружности равнобедренного треугольника по сторонам

Зная стороны равнобедренного треугольника, можно по формуле, найти, радиус описанной окружности около этого треугольника.

радиус описанной окружности равнобедренного треугольника

a , b — стороны треугольника

Формула радиуса описанной окружности равнобедренного треугольника(R):

Формула радиуса описанной окружности равнобедренного треугольника

Найти радиус описанной окружности прямоугольного треугольника по катетам

Радиус описанной окружности прямоугольного треугольника равен половине его гипотенузы.

радиус описанной окружности прямоугольного треугольника

a , b — катеты прямоугольного треугольника

c — гипотенуза

Формула радиуса описанной окружности прямоугольного треугольника (R):

Формула радиуса описанной окружности прямоугольного треугольника

Радиус описанной окружности трапеции по сторонам и диагонали

Радиус описанной окружности трапеции

a — боковые стороны трапеции

c — нижнее основание

b — верхнее основание

d — диагональ

p — полупериметр треугольника DBC

p = ( a + d + c )/2

Формула радиуса описанной окружности равнобокой трапеции, (R)

Формула радиуса описанной окружности равнобокой трапеции

Найти радиус описанной окружности около квадрата

Радиус описанной окружности квадрата равен половине его диагонали

радиус описанной окружности около квадрата

a — сторона квадрата

d — диагональ

Формула радиуса описанной окружности квадрата (R):

Формула радиуса описанной окружности квадрата

Радиус описанной окружности прямоугольника по сторонам

Радиус описанной окружности прямоугольника равен половине его диагонали

Радиус описанной окружности прямоугольника

a , b — стороны прямоугольника

d — диагональ

Формула радиуса описанной окружности прямоугольника (R):

Формула радиуса описанной окружности прямоугольника

Радиус описанной окружности правильного многоугольника

Радиус описанной окружности правильного многоугольника

a — сторона многоугольника

N — количество сторон многоугольника

Формула радиуса описанной окружности правильного многоугольника, ( R ):

Формула радиуса описанной окружности правильного многоугольника

Радиус описанной окружности правильного шестиугольника

a — сторона шестиугольника

d — диагональ шестиугольника

Радиус описанной окружности правильного шестиугольника (R):

Как найти радиус круга

Как найти радиус круга

В жизни достаточно часто приходится пользоваться школьными знаниями геометрии. Эти знания могут пригодиться в строительстве и дизайне, в частности, ландшафтном. В определенных ситуациях необходимо знать радиус круга. Как его найти? Есть несколько способов.

Круг и окружность

В геометрии есть 2 фигуры, которые, вроде бы очень похожи, но при этом отличаются. И отличия заключаются не только во внешнем виде, но и в формулах вычисления отдельных элементов данных фигур.

Окружность

По своей сути окружность — это всего лишь линия, а точнее, кривая линия, начало и конец которой совпадают (замкнутая линия).

Все точки этой кривой удалены на равное расстояние от центра. Этот центр находится в той же плоскости, что и кривая. Внутри окружности ничего нет. То есть имеется центр и имеется линия, проведенная вокруг этого центра на определенном расстоянии.

Как найти радиус круга

Круг — это практически та же самая окружность, проведенная на определенном расстоянии от центра, но область между линией и центром заполнена множеством точек, которые находятся на расстоянии от центра, не большем, чем радиус этого круга.

Как найти радиус круга

Вычисление радиуса

Радиус можно посчитать разными способами.

Если известен диаметр

Этот способ самый простой. Диаметр равен двум радиусам. Поэтому радиус будет высчитываться по формуле r=d/2.

Если известна длина окружности круга

Также несложно будет узнать радиус, если известна длина окружности круга. Формула для расчета длины окружности C=2πr, в которой C является длиной окружности, π=3,14, а r — это как раз искомый радиус.

Преобразовав данную формулу, получим: r=C/2π. Вообще, число «Пи» в формуле — это постоянное значение, округленное до 3,14. На самом деле «Пи» выглядит так:

Как найти радиус круга

Означает данное значение отношение длины окружности к диаметру той же окружности.

Если известна площадь круга

Формула площади круга выглядит так: A= π(r²). Эту формулу можно преобразовать в формулу радиуса:

Как найти радиус круга

В ней A — это площадь круга, число «Пи» мы уже знаем, оно равно округленно 3,14, а r — это и есть искомое значение радиуса.

Как найти радиус круга, все школьники учат на геометрии. Взрослые, конечно, со временем забывают эти формулы. Но, прочитав данную статью, радиус круга может найти каждый: и взрослый, и ребенок.

Радиус круга онлайн

Если всё же возникли сложности и высчитать радиус круга по формулам не получается, то можно воспользоваться онлайн-калькуляторами и узнать нужное значение с помощью них.

Для вычисления радиуса нужно только ввести известное значение длины окружности или площади круга в пустую ячейку и нажать кнопку «вычислить».

Нахождение радиуса круга: формула и примеры

В данной публикации мы рассмотрим, как можно вычислить радиус круга (окружности) и разберем примеры решения задач для закрепления материала.

  • Формулы вычисления радиуса круга
    • 1. Через длину окружности/периметр круга
    • 2. Через площадь круга

    Формулы вычисления радиуса круга

    Радиус круга

    1. Через длину окружности/периметр круга

    Радиус круга/окружности рассчитывается по формуле:

    Формула радиуса круга через его периметр

    C – это длина окружности/периметр круга; равняется удвоенному произведению числа π на его радиус:

    C = 2 π R

    π – число, приближенное значение которого равно 3,14.

    2. Через площадь круга

    Радиус круга/окружности вычисляется таким образом:

    Формула радиуса круга через его площадь

    S – это площадь круга; равна числу π , умноженному на квадрат его радиуса:

    S = π R 2

    Примеры задач

    Задание 1
    Длина окружности равняется 87,92 см. Найдите ее радиус.

    Решение:
    Используем первую формулу (через периметр):
    Вычисление радиуса круга через его периметр

    Задание 2
    Найдите радиус круга, если его площадь составляет 254,34 см 2 .

    Решение:
    Воспользуемся формулой, выраженной через площадь фигуры:
    Вычисление радиуса круга через его площадь

    Как найти радиус окружности

    Как найти радиус окружности

    Решить задачу можно по-разному: посчитать на калькуляторе, взять алгоритм из похожей задачки, списать у одноклассника. Самый эффективный и радостный — запомнить формулу и прийти к ответу самому. В этой статье расскажем про способы поиска радиуса окружности.

    · Обновлено 13 июля 2022

    Основные понятия

    Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

    Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

    Круг — часть плоскости, которая лежит внутри окружности. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

    Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

    Возможно тебе интересно узнать — как найти длину окружности?

    Демо урок по математике

    Формула радиуса окружности

    Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.

    Если известна площадь круга

    , где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

    Если известна длина

    , где C — длина окружности.

    формула радиуса окружности, если известна длина

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

    Если известен диаметр окружности

    Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

    Если известна диагональ вписанного прямоугольника

    R = d : 2, где d — диагональ прямоугольника.

    Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:

    , где a, b — стороны вписанного прямоугольника.

    Если известна сторона описанного квадрата

    , где a — сторона квадрата.

    Сторона описанного квадрата равна диаметру окружности.

    Бесплатные занятия по английскому с носителем

    Если известны стороны и площадь вписанного треугольника

    , где a, b, с — стороны треугольника, S — площадь треугольника.

    Если известна площадь и полупериметр описанного треугольника

    , где S — площадь треугольника, p — полупериметр треугольника.

    Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.

    Если известна площадь сектора и его центральный угол

    , где S — площадь сектора круга, α — центральный угол.

    Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.

    Если известна сторона вписанного правильного многоугольника

    , где a — сторона правильного многоугольника, N — количество сторон.

    В правильном многоугольнике все стороны равны.

    Скачать онлайн таблицу

    У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *