Автомобильный осциллограф: понятие и принципы работы
Найти неисправность стало гораздо проще. Не надо разбирать и подкидывать каждую запчасть, что удешевляет поиск неисправности и экономит время. Автомобильный осциллограф применяется для диагностики двигателя, датчиков электронной системы управления, генератора, стартера, аккумулятора. Нужен при комплексной автомобильной диагностике, дополняет проверку сканером. Позволяет делать дефектовку мотора без вскрытия.
Осциллограф – это прибор, который снимает параметры времени и амплитуды электрического сигнала. При неисправностях автомобиля, также нужны эти характеристики. То есть как изменяется сигналы датчика, катушки, форсунки по времени.
Способы проверки
Проверка микросхем — это трудный, иногда невыполнимый процесс. Все дело в сложности микросхемы, которая состоит из огромного количества различных элементов.
Есть три основных способа, как проверить микросхему, не выпаивая, мультиметром или без него:
- Внешний осмотр микросхемы. Если внимательно на нее посмотреть и изучить каждый элемент, то не исключено, что удастся найти какой-либо видимый дефект. Это может быть, например, перегоревший контакт (возможно, даже не один). Также при проведении внешнего осмотра микросхемы можно обнаружить трещину на корпусе. При таком способе проверки микросхемы нет необходимости пользоваться специальным устройством мультиметром. Если дефекты видны невооруженным глазом, можно обойтись и без приспособлений.
- Проверка микросхемы с использованием мультиметра. Если причиной выхода из строя детали стало короткое замыкание, то можно решить проблему, заменив элемент питания.
- Выявление нарушений в работе выходов. Если у микросхемы есть не один, а сразу несколько выходов, и если хотя бы один из них работает некорректно или вовсе не работает, то это отразится на работоспособности всей микросхемы.
Разумеется, самым простым способом проверки микросхемы является первый из вышеописанных: то есть осмотр детали. Для этого достаточно внимательно посмотреть сначала на одну ее сторону, а затем на другую, и попытаться заметить какие-то дефекты. Самый же сложный способ — проверка с помощью мультиметра.
Влияние разновидности микросхем
Сложность проверки во многом зависит не только от способа, но и от самих схем. Ведь эти детали электронно-вычислительных устройств хоть и имеют один и тот же принцип построения, но нередко сильно отличаются друг от друга.
Например:
- Наиболее простыми для проверки являются схемы, относящиеся к серии «КР142″. Они имеют только 3 вывода, следовательно, как только на один из входов подается какое-либо напряжение, можно использовать проверяющий прибор на выходе. Сразу же после этого можно делать выводы о работоспособности.
- Более сложными типами являются «К155″, «К176″. Чтобы их проверить, приходится применять колодку, а также источник тока с определенным показателем напряжения, который специально подбирается под микросхему. Суть проверки такая же, как и в первом варианте. Необходимо лишь на вход подать напряжение, а затем посредством мультиметра проверить показатели на выходе.
- Если же необходимо провести более сложную проверку — такую, для которой простой мультиметр уже не годится, на помощь радиоэлектронщикам приходят специальные тестеры для схем. Способ называется прозвонить микросхему мультиметром-тестером. Такие устройства можно либо изготовить самостоятельно, либо купить в готовом виде. Тестеры помогают определить, работает ли тот или иной узел схемы. Данные, получаемые при проведении проверки, как правило, выводятся на экран устройства.
Важно помнить, что подаваемое на микросхему (микроконтроллер) напряжение не должно превышать норму или, наоборот, быть меньше необходимого уровня. Предварительную проверку можно провести на специально подготовленной проверочной плате.
Нередко после тестирования микросхемы приходится удалять некоторые ее радиоэлементы. При этом каждый из узлов должен быть проверен отдельно.
Работоспособность транзисторов
Перед проверкой радиодетали мультиметром, не выпаивая, нужно обязательно определить, к каким из двух типов относится транзистор — полевым или биполярным. Если к первым, то можно применять следующий способ проверки:
- Установить прибор в режим «прозвонки», а затем использовать красный щуп, подключая его к проверяемому элементу. Другой — черный — щуп должен быть приставлен к выводу коллектора.
- Сразу после выполнения этих несложных действий на экране устройства появится число, которое будет обозначать пробивное напряжение. Аналогичный уровень можно будет увидеть и при проведении «прозвона» электрической цепи, заключенной между эмиттером и базой. Важно при этом не перепутать щупы: красный должен соприкасаться с базой, а черный — с эмиттером.
- Далее можно проверять все эти же выходы транзистора, но уже в обратном подключении: нужно будет поменять местами красный и черный щупы. Если транзистор работает хорошо, то на экране мультиметра должна быть показана цифра «1″, которая говорит о том, что сопротивление в сети является бесконечно большим.
Если транзистор является биполярным, то щупы должны меняться местами. Разумеется, цифры на экране прибора в этом случае будут обратные.
Конденсаторы, резисторы и диоды
Работоспособность конденсатора микросхемы также проверяется путем прикладывания щупов к его выходам. За очень короткий промежуток времени значение показываемого прибором сопротивления должно увеличиться от нескольких единиц до бесконечности. При изменении мест щупов должен наблюдаться тот же самый процесс.
Чтобы узнать, работает ли резистор схемы, необходимо определить его сопротивление. Значение этой характеристики должно быть больше нуля, однако не являться бесконечно большим. Если при проверке на дисплее прибора отображается не ноль и не бесконечность, значит, резистор работает корректно.
Не отличается особой сложностью и процесс проверки диодов. Сначала нужно определить сопротивление между катодом и анодом в одной последовательности, а затем, поменяв местоположение черного и красного щупов прибора, в другой. Об исправности диода будет говорить стремление отображаемого на экране числа к бесконечности в одном из этих двух случаев и нахождение его на отметке в несколько единиц — в другом.
Индуктивность, тиристор и стабилитрон
Проверяя микросхему на наличие неисправностей, возможно, придется также использовать мультиметр на катушке с током. Если где-то ее провод оборван, то прибор обязательно даст об этом знать. Главное, конечно, правильно его применить.
Индивидуальное зажигание
Системы индивидуального зажигания устанавливаются на большинство современных бензиновых двигателей. Они отличаются от классических и DIS-систем тем, что каждая свеча обслуживается индивидуальной катушкой зажигания. Как правило, катушки устанавливаются непосредственно над свечами. Изредка коммутация производится при помощи высоковольтных проводов. Катушки бывают двух типов — компактные и стержневые.
При проведении диагностики системы индивидуального зажигания контролируют следующие параметры:
- наличие затухающих колебаний в конце участка горения искры между электродами свечи зажигания;
- продолжительность времени накопления энергии в магнитном поле катушки зажигания (как правило, находится в пределах 1,5…5,0 мс в зависимости от модели катушки);
- продолжительность горения искры между электродами свечи зажигания (как правило, составляет 1,5…2,5 мс в зависимости от модели катушки).
Диагностика по первичному напряжению
Для проведения диагностики индивидуальной катушки по первичному напряжению, нужно просмотреть осциллограмму напряжения на управляющем выводе первичной обмотки катушки при помощи осциллографического щупа.
Осциллограмма напряжения на управляющем выводе первичной обмотки исправной индивидуальной катушки зажигания.
- Момент открытия силового транзистора коммутатора (начало накопления энергии в магнитном поле катушки зажигания).
- Момент закрытия силового транзистора коммутатора (ток в первичной цепи резко прерывается и возникает пробой искрового промежутка между электродами свечи зажигания).
- Участок горения искры между электродами свечи зажигания.
- Затухающие колебания, возникающие сразу после окончания горения искры между электродами свечи зажигания.
На рисунке слева вы можете видеть осциллограмму напряжения на управляющем выводе первичной обмотки неисправной индивидуальной КЗ. Признаком неисправности является отсутствие затухающих колебаний после окончания горения искры между электродами свечи (участок “4”).
Диагностика по вторичному напряжению с помощью емкостного датчика
Использование емкостного датчика для получения осциллограммы напряжения на катушке более предпочтительно, так как сигнал, полученный с его помощью более точно повторяет осциллограмму напряжения во вторичной цепи диагностируемой системы зажигания.
Осциллограмма импульса высокого напряжения исправной компактной индивидуальной КЗ, полученная при помощи емкостного датчика
- Начало накопления энергии в магнитном поле катушки (совпадает по времени с моментом открытия силового транзистора коммутатора).
- Пробой искрового промежутка между электродами свечи зажигания и начало горения искры (в момент закрытия силового транзистора коммутатора).
- Участок горения искры между электродами свечи.
- Затухающие колебания, возникающие после окончания горения искры между электродами свечи.
Осциллограмма импульса высокого напряжения исправной компактной индивидуальной КЗ, полученная при помощи емкостного датчика. Наличие затухающих колебаний сразу после пробоя искрового промежутка между электродами свечи (участок отмечен символом “2”) является следствием конструктивных особенностей катушки и не является признаком неисправности.
Осциллограмма импульса высокого напряжения неисправной компактной индивидуальной КЗ, полученная при помощи емкостного датчика. Признаком неисправности является отсутствие затухающих колебаний после окончания горения искры между электродами свечи (участок отмечен символом “4”).
Диагностика по вторичному напряжению с помощью индуктивного датчика
Индуктивный датчик при проведении диагностики по вторичному напряжению применяется в тех случаях, когда съем сигнала с помощью емкостного датчика невозможен. Такими катушками зажигания являются в основном стержневые индивидуальные КЗ, компактные индивидуальные КЗ со встроенным силовым каскадом управления первичной обмоткой, и объединенные в модули индивидуальные КЗ.
Осциллограмма импульса высокого напряжения исправной стержневой индивидуальной КЗ, полученная с помощью индуктивного датчика.
- Начало накопления энергии в магнитном поле катушки зажигания (совпадает по времени с моментом открытия силового транзистора коммутатора).
- Пробой искрового промежутка между электродами свечи зажигания и начало горения искры (момент закрытия силового транзистора коммутатора).
- Участок горения искры между электродами свечи зажигания.
- Затухающие колебания, возникающие сразу после окончания горения искры между электродами свечи зажигания.
Осциллограмма импульса высокого напряжения неисправной стержневой индивидуальной КЗ, полученная при помощи индуктивного датчика. Признаком неисправности является отсутствие затухающих колебаний в конце периода горения искры между электродами свечи зажигания (участок отмечен символом “4”).
Осциллограмма импульса высокого напряжения неисправной стержневой индивидуальной КЗ, полученная при помощи индуктивного датчика. Признаком неисправности является отсутствие затухающих колебаний в конце горения искры между электродами свечи зажигания и очень короткое время горения искры.
Три варианта действий
Проверка микросхем – достаточно сложный процесс, который, зачастую, оказывается невозможен. Причина кроется в том, что микросхема содержит большое число различных радиоэлементов. Однако даже в такой ситуации есть несколько способов проверки:
- внешний осмотр. Внимательно изучив каждый элемент микросхемы, можно обнаружить дефект (трещины на корпусе, прогар контактов и т.п.);
- проверка питания мультиметром. Иногда проблема кроется в коротком замыкании со стороны питающего элемента, его замена может помочь исправить ситуацию;
- проверка работоспособности. Большинство микросхем имеют не один, а несколько выходов, потому нарушение в работе хотя бы одного из элементов приводит к отказу всей микросхемы.
Самыми простыми для проверки являются микросхемы серии КР142. На них имеется всего три вывода, поэтому при подаче на вход любого уровня напряжения, на выходе мультиметром проверяется его уровень и делается вывод о состоянии микросхемы.
Следующими по сложности проверки являются микросхемы серии К155, К176 и т.п. Для проверки нужно использовать колодку и источник питания с конкретным уровнем напряжения, подбираемым под микросхему. Так же как и в случае с микросхемами серии КР142, мы подаем сигнал на вход и контролируем его уровень на выходе с помощью мультиметра.
Измерение сигнала
Порядок измерения параметров периодического сигнала следующий:
- Зажим «земля» фиксируется на общем проводе схемы, а сигнальный щуп присоединятся в контролируемое место схемы, где будут сниматься показания.
- С помощью регулятора устанавливаем масштаб по вертикали таким образом, чтобы полезная информация помещалась на экране целиком и занимала большую ее часть.
- Регулятором частоты добиваемся того, чтобы на экране помещалось несколько периодов сигнала.
- Точной подстройкой частоты добиваемся стабильного изображения, чтобы картинка не плыла.
- Теперь, когда на экране установлено стабильное изображение, можно определить по экранной шкале его форму, амплитуду и период.
- Для более точного измерения можно использовать ручки смещения по вертикали и по горизонтали, подводя интересующие элементы изображения под перекрестье линий сетки.
Для того чтобы быть уверенным в точности показаний, необходимо соблюдать несколько простых требований:
- после включения осциллографа на ЭЛТ необходимо дать ему прогреться в течение 10-15 минут;
- после каждого включения прибор необходимо откалибровать. Большинство моделей имеет встроенный калибровочный генератор, выдающий прямоугольный сигнал с фиксированной амплитудой и частотой;
- прибор должен быть заземлен;
- сигнал с очень низкой частотой (до 10 Гц) при подключении через емкостный вход сильно искажается. Работа в этом режиме не рекомендуется.
Лучший способ обучения — практическая работа. Получив первые навыки работы с простым аналоговым осциллографом, в дальнейшем можно будет приступать к более сложным устройствам. Которые будут иметь дополнительные функции и расширенные возможности. Главное — наличие желания и интереса к электронной технике.
Применение специального тестера
Для более сложных проверок нужно пользоваться специальным тестером микросхем, который можно приобрести или сделать своими руками. При прозвонке отдельных узлов микросхемы на экран дисплея будут выводиться данные, анализируя которые можно прийти к выводу об исправности или неисправности элемента.
Стоит не забывать, что для полноценной проверки микросхемы нужно полностью смоделировать ее нормальный режим работы, то есть обеспечить подачу напряжения нужного уровня. Для этого проверку стоит проводить на специальной проверочной плате.
Зачастую, осуществить проверку микросхемы, не выпаивая элементы, оказывается невозможным, и каждый из них должен прозваниваться отдельно. О том, как прозвонить отдельные элементы микросхемы после выпаивания будет рассказано далее.
Принципиальная схема
Принципиальная схема приставки изображена на рис. 1. Приставка к осциллографу позволяет проверять практически все элементы, устанавливаемые в радиоэлектронные устройства бытовой аппаратуры: от резисторов до управляемых вентилей (тиристоров), а также дает возможность оценить качество потенциометров, катушек индуктивности, исправность переключателей, реле, трансформаторов и т. д.
Таким образом, один осциллограф может заменить почти всю измерительную лабораторию входного контроля. Необходимо иметь в виду, что осциллограф служит не только для наблюдений различных процессов, связанных с изменением формы напряжения.
Рис. 1. Принципиальная электрическая схема приставки к осциллографу.
Осциллограф можно использовать как электронный вольтметр, омметр, а применяя приставку к осциллографу, можно наблюдать на экране осциллографа характеристики транзисторов, что расширяет возможности использования осциллографа в ремонтной и любительской практике.
Транзисторы (полевые и биполярные)
Переводим мультиметр в режим «прозвонки», подключаем красный щуп к базе транзистора, а черным касаемся вывода коллектора. На дисплее должно отобразиться значение пробивного напряжения.
Схожий уровень будет показан и при проверке цепи между базой и эмиттером. Для этого красный щуп соединяем с базой, а черный прикладываем к эмиттеру.
Следующим шагом будет проверка этих же выводов транзистора в обратном включении. Черный щуп подключаем к базе, а красным щупом по очереди касаемся эмиттера и коллектора. Если на дисплее отображается единица (бесконечное сопротивление), то транзистор исправен. Так проверяются полевые транзисторы.
Биполярные транзисторы проверяются аналогичным методом, только меняются местами красный и черный щуп. Соответственно, значения на мультиметре также будут показывать обратные.
Виды осциллографов
По принципу преобразования сигнала осциллографы бывают аналоговыми и цифровыми. Есть еще смешанный тип — аналогово-цифровой. Принципиальная разница между ними — в методах обработки сигналов и в возможности запоминания. Аналоговые модели транслируют «живой» сигнал в режиме реального времени. Записывать его на таком приборе нет возможности.
Аналогово-цифровые и цифровые уже имеют возможность записи. На них можно «открутить» время назад и просмотреть информацию, увидеть динамику изменения амплитуды или времени.
Еще одно отличие цифровых осциллографов от аналоговых — размеры. Цифровые приборы имеют значительно меньшие габариты
Цифровые осциллографы сначала оцифровывают синусоиду, записывают эту информацию в запоминающее устройство (ЗУ), а затем передают на экран монитора. Но не все цифровые модели имеют долговременную память — в таком случае запись ведется циклически. Это когда вновь пришедший сигнал записывается поверх предыдущего. В памяти хранится то, что появлялось на экране, но промежуток времени не такой большой. Если вам необходима запись длиной пять-десять минут, нужен запоминающий осциллограф.
Конденсаторы, резисторы и диоды
Исправность конденсатора проверяется путем подключения щупов мультиметра к его выводам. В течение секунды сопротивление вырастет от единиц Ом до бесконечности. Если поменять местами щупы, то эффект повторится.
Чтобы убедиться в исправности резистора, достаточно замерить его сопротивление. Если оно отлично от нуля и меньше бесконечности, значит, резистор исправен.
Проверка диодов из микросхемы достаточно проста. Измерив сопротивление между анодом и катодом в прямой и обратной последовательности (меняя местами щупы мультиметра), убеждаемся, что в одном случае одно находится на уровне нескольких десятков-сотен Ом, а в другом – стремится к бесконечности (единица в режиме «прозвонки» на дисплее).
DIS-система зажигания
Высоковольтные импульсы зажигания, генерируемые исправными DIS-катушками зажигания двух различных двигателей (работают на холостом ходу без нагрузки).
DIS-система (Double Ignition System) зажигания имеет особые катушки зажигания. Они отличаются тем, что оснащаются двумя высоковольтными выводами. Один из них подсоединяется к первому из концов вторичной обмотки, второй — ко второму концу вторичной обмотки катушки зажигания. Каждая такая катушка обслуживает два цилиндра.
В связи с описанными особенностями проверка зажигания осциллографом и съем осциллограммы напряжения высоковольтных импульсов зажигания при помощи емкостных DIS-датчиков происходит дифференциально. То есть, получается фактический съем осциллограммы выходного напряжения катушки. Если катушки исправны, то в конце горения должны наблюдаться затухающие колебания.
Для проведения диагностики DIS-системы зажигания по первичному напряжению, необходимо поочередно снять осциллограммы напряжения на первичных обмотках катушек.
Осциллограмма напряжения на вторичной цепи DIS-системы зажигания
- Отражение момента начала накопления энергии в катушке зажигания. Он совпадает с моментом открытия силового транзистора.
- Отражение зоны перехода коммутатора в режим ограничения тока в первичной обмотке катушки зажигания на уровне 6…8 А. Современные DIS-системы имеют коммутаторы без режима ограничения тока, поэтому зона высоковольтного импульса отсутствует.
- Пробой искрового промежутка между электродами обслуживаемых катушкой свечей зажигания и начало горения искры. Совпадает по времени с моментом закрытия силового транзистора коммутатора.
- Участок горения искры.
- Конец горения искры и начало затухающих колебаний.
Осциллограмма напряжения на управляющем выводе DIS катушки зажигания.
- Момент открытия силового транзистора коммутатора (начало накопления энергии в магнитном поле катушки зажигания).
- Зона перехода коммутатора в режим ограничения тока в первичной цепи по достижении тока в первичной обмотке катушки зажигания, равного 6…8 А. В современных DIS-системах зажигания, коммутаторы не имеют режима ограничения тока, и, соответственно, отсутствует зона 2 на осциллограмме первичного напряжения отсутствует.
- Момент закрытия силового транзистора коммутатора (во вторичной цепи при этом возникает пробой искровых промежутков между электродами обслуживаемых катушкой свечей зажигания и начало горения искры).
- Отражение горения искры.
- Отражение прекращения горения искры и начало затухающих колебаний.
Индуктивность и тиристоры
Проверка катушки на обрыв осуществляется замером ее сопротивления мультиметром. Элемент считается исправным, если сопротивление меньше бесконечности. Надо заметить, что не все мультиметры способны проверять индуктивность.
Проверка тиристора происходит следующим образом. Прикладываем красный щуп к аноду, а черный – к катоду. В окошке мультиметра должно отобразиться бесконечное сопротивление.
После этого управляющий электрод соединяем с анодом, наблюдая за падением сопротивления на дисплее мультиметра до сотен Ом. Управляющий электрод открепляем от анода – сопротивление тиристора не должно измениться. Так ведет себя полностью исправный тиристор.
Какой выбрать осциллограф для диагностики авто
Рассмотрим наиболее удобные и информативные приборы.
USB Autoscope Постоловского
На первом месте в рейтинге практиков стоит осциллограф Постоловского USB Autoscope IV. Имеет обширные диагностические функции.
Преимущества
- Профессиональные скрипты от Андрея Шульгина.
- Удобный интерфейс.
- Широкий диапазон измерения от 6 до 300 вольт.
- Обработка скриптов в автоматическом режиме.
- Информативный скрипт эффективности по цилиндрам CSS, показывающий работу форсунок, системы зажигания.
- Тест аккумулятора, генератора, стартера. Показывает неисправности в автоматическом режиме. Легкий процесс съема характеристик: достаточно иметь доступ к плюсовой или минусовой клеммам АКБ.
- Тест давления в цилиндре. Показывает метки системы газораспределения, правильно ли стоят фазы. Выявляет провернутый задающий диск.
Полная документация по работе с прибором. Подробно описаны скрипты, схемы подключения. Есть видео инструкция на сайте производителя. Отзывчивая поддержка.
Мотодок 3
Вторым в списке рейтинга осциллографов для диагностики автомобиля любой марки стоит Мотодок 3. Имеет схожие характеристики.
Преимущества и недостатки
- Скрипт Андрея Шульгина эффективности цилиндров. Есть некоторые недостатки по синхронизации с некоторыми автомобилями, имеющими слабый сигнал с датчика коленчатого вала. Но это сглаживается удобством и быстрой работой.
- Подключения на любое расстояние по кабелю RJ 45.
- Качество картинки при диагностике, что не маловажно при работе.
- Подробная документация на сайте производителя.
Для примера приведены только два осциллографа для диагностики авто. Существуют и другие приборы: отличаются ценой, производителем, но принцип измерения одинаков. Самое главное иметь опыт в чтении осциллограмм к каждой марке автомобиля.
Первая версия щупов
Что при его немаленькой стоимости, согласитесь, не лучший вариант. В моем же приборе, параллельно измеряемому конденсатору подключается резистор 100 Ом, что означает если конденсатор все-же и будет заряжен, то он при подключении щупов начнет разряжаться. В самом же крайнем случае, если микросхема применяемая в моем приборе выгорит, вам для произведения ремонта достаточно будет лишь вынуть микросхему из DIP панельки и воткнуть новую.
Для чего нужен осциллограф и как им выполнять измерения тока, напряжения, частоты и сдвига фаз
Как пользоваться осциллографом, надо знать каждому, кто желает углубить свои навыки в починке, обслуживании электротехники, в диагностических мероприятиях. Осциллограф предназначен для мониторинга изменений напряжения во времени. Устройство оснащено экраном с движущейся разверткой, показывающую графики, амплитуду, синусоиду колебаний за определенные периоды.
Что такое осциллограф
Осциллографом (O-Scope, Oscilloscope) регистрируют изменения (амплитуды, колебания) напряжений сигналов электроцепи с выводом в виде синусоид, пилообразных и других линий на координатную сетку на мониторе. Прибор применяют для изучения динамики системы во время ее работы. Характерный пример: тестирование импульсных, генераторных устройств (источники питания). Oscilloscope покажет форму напряжения, электросигналов во времени, уровень колебаний, изменения при определенных условиях и факторах (поломки, температура, магнитные поля, помехи, экранирование).
Назначение
O-Scope измеряет такие величины и решает следующие задачи:
- тестовые меры для электросхем, сборок, изделий при их выпуске, починке, в исследовательских учреждениях;
- всегда используется при проверке измерительных устройств;
- электро, теле и радио сфера: свойства сигналов, степень шумов, искажений;
- для узкоспециализированного аппаратного оснащения, для анализа АСУ, исполнительных приспособлений;
- замеры частот и амплитуд при отладке;
- визуальный мониторинг сигналов, фазных сдвигов;
- анализ функционирования датчиков автомобиля.
Если кратко отобразить функции, то аппарат позволяет наблюдать изменения напряжения:
- во времени: частоту, промежутки, скважность, циклы, скачки, спады, всплески;
- на физике: колебания, амплитуды, макс./мин. среднеквадратичные значения.
Осциллограф — это «глаза», позволяющие посмотреть внутрь цепи во время ее работы. Кроме простого измерения электросигнала, современные изделия могут делать математические преобразования в реальном времени (Фурье и пр.).
Где применяется
- всегда в научных, технических лабораториях, исследовательских отделениях на заводах, выпускающих электроприборы, например, производитель должен знать, как реагирует его продукция на помехи;
- при углубленном анализе сборок, при наладке, ремонте электроустройств: от радио и сотовой связи до цепей двигателей машин. Для радиолюбителей прибор незаменим.
Аппарат выдает визуальную информацию о характеристиках сложных сигналов, показывает временные и амплитудные данные изменений, что важно для расчетов и определения, как будет себя вести изучаемый объект за периоды в конкретных условиях.
Что может измерить осциллограф
Осциллограф может измерить:
- покажет по сигналам: форму;
- частотность;
- период;
- амплитуду;
- угол сдвига фазы;
- сравнение сигналов;
O-Scope — фактически это вольтметр, но отображающий изменения напряжения онлайн, им можно обозначить форму тока, подключив последовательно к обслуживаемой сети резистор (Rt, «t» — токовый, он же шунтирующий). Его число Ом подбирают намного меньшим, чем у цепи, чтобы отсутствовали влияния на схему. Далее, вычисляют по формуле и, зная величину Rt, можно найти ток.
Для чего предназначен осциллограф
Осциллограф используется электронщиками и радиолюбителями для того, чтобы измерить:
- амплитуду электрического сигнала — соотношение напряжения и времени;
- проанализировать сдвиг фаз;
- увидеть искажение электрического сигнала;
- на основе результатов вычислить частоту тока.
Несмотря на то, что осциллограф демонстрирует характеристики анализируемого сигнала, чаще его используют для выявления процессов происходящих в электрической цепи. Благодаря осциллограмме специалисты получают следующую информацию:
- форму периодического сигнала;
- значение положительной и отрицательной полярности;
- диапазон изменения сигнала во времени;
- длительность положительного и отрицательного полупериода.
Большинство из этих данных можно получить при помощи вольтметра. Однако тогда придётся производить замеры с частотностью в несколько секунд. При этом велик процент погрешности вычислений. Работа с осциллографом значительно экономит время получения необходимых данных.
У цифровых моделей есть функция записи и архивирования, что расширяет возможности. Для сопоставления результатов онлайн используют аппараты с несколькими каналами. Есть экземпляры, подключаемые к ПК и комбинации с другими измерительными девайсами.
Выбор аналоговых моделей (кроме простых и учебных) подразумевает наличие познаний во множестве настроек, регулировка усложненная. С другой стороны, такие приборы дают углубленную практику.
Цифровые модели — это рекомендованный выбор, на таком аппарате можно быстро освоить основы. Это вычислительные комплексы, с ними получение данных, интерпретация проще и намного быстрее. Есть также модели аналогово-цифровые.
Устройство
Главный узел осциллографа — трубка как у старых телевизоров, электронно-лучевая, осуществляющая визуализацию величин, принимаемых входным делителем, от которого зависят рамки допустимых замеров. Происходит усиление, синхронизация с генератором развертки. Далее, исследуемая величина попадает на оконечный усиливающий узел, на ЭЛТ, затем происходит отображение его онлайн без каких-либо задержек.
Алгоритм, как работает цифровой осциллограф несколько иной: он сначала пропускает сигнал через преобразователь (аналого-цифровой), замеряя его несколько раз в сек. Затем происходит реконструкция и отображение на мониторе. Одновременно данные записываются буферной памятью, есть возможность будущей их обработки.
Работать с цифровым осциллографом удобнее, его преимущества — полная функциональность с дополнительными опциями в маленьком корпусе, простота настроек. Выбор осциллографа в современных условиях обычно осуществляется среди указанных видов. Отдельные аналоговые старые основательные советские экземпляры (дешевле в 4–5 раз) неплохи, но они габаритные, требуют больше навыков по настройке.
Принцип действия осциллографа
Осциллограф выполняет замеры при помощи электронно-лучевой трубки. Это лампа, которая фокусирует анализируемый ток в луч. Он попадает на экран прибора, отклоняясь в двух перпендикулярных направлениях:
- вертикальное – показывает исследуемое напряжение;
- горизонтальное – демонстрирует затраченное время.
За отклонение луча отвечают две пары пластин электронно-лучевой трубки. Те, что расположены вертикально, всегда находятся под напряжением. Это помогает распределять разнополюсные значения. Положительное притяжение отклоняется вправо, отрицательное — влево. Таким образом, линия на экране прибора движется слева направо с постоянной скоростью.
На горизонтальные пластины также действует электрический ток, что отклоняет демонстрирующий показатель напряжения луча. Положительный заряд — вверх, отрицательный — вниз. Так на дисплее устройства появляется линейный двухмерный график, который называется осциллограммой.
Расстояние, которое проходит луч от левого до правого края экрана называется развёрткой. Линия по горизонтали отвечает за время измерения. Помимо стандартного линейного двухмерного графика существует также круглые и спиральные развёртки. Однако пользоваться ими не так удобно как классическими осциллограммами.
Как функционирует осциллограф
Если смотреть на быстро пробегающие объекты, то увидим размытую линию. Но если периодически открывать «окошко», то будут выхватываться статичные кадры. Это принцип стробоскопа, так же, но в электронной форме работает Oscilloscope.
Действие «окошка» синхронизуется (главное условие) со скоростью объектов (сигнала), поэтому при его открытии их место стабильно. В противном случае возникнет рассинхронизация.
Аппарат визуализирует периодические изменения в реальном времени на табло синусоидой или линией другой формы (пила, меандр и прочее). Каждый будущий отрезок схожий с прошедшим, он «останавливается» и показывается (в 1 момент — 1 период).
На что обратить внимание в Oscilloscope, ориентиры для выбора
Рассмотрим основы характеристик O-Scope, которые послужат также ориентирами, как выбрать осциллограф, надежную его модель.
Способы, чтобы проверить осциллограф:
- встроенным генератором (Калибровка), все цифровые модели имеют его. Включают режим и смотрят, есть ли синусоида. Если магазин специализированный, там должен быть внешний генератор для проверки;
- старые осциллографы начинают подвирать со временем, как проверить их есть простой способ: взять эталонный источник, например, ту же батарейку 1.5 В;
- экран должен быть достаточной яркости, луч без артефактов;
- дотронуться до щупа: фаза покажет синусоиду (правда с большими помехами), земля — ровную линию;
- посредством ПК, специальным ПО.
Полоса пропускания
Это минимальная и максимальная частоты, амплитудность, то есть диапазон, который может измерить прибор. Достаточно учесть верхнюю черту; нижнюю рисуют все устройства.
Частота дискретизации (Sampling rate)
У цифровых моделей. Данный параметр связан с предыдущим. Чем выше, тем лучше (например, у Siglent SDS — 1×109). Это число считываний за единицу времени, определяет максимальные частоты без потерь на экране. У приборов с несколькими каналами может уменьшаться при задействовании их всех (при покупке надо учесть).
По теореме Котельникова част. дискр. должна превышать в 2 раза верхнюю рамку пропускания, но на практике потребуется превышение в 4–5 раза. На этом и основывается выбор. Пример для изделия с полосой до 200–800 МГц (важно учесть параметр при использовании 2 и больше каналов).
Число каналов
Многие модели способны обрабатывать больше сигналов вместе, одновременно раздельно показывая их на мониторе. Обычно от 2 до 4. Иногда включение других каналов сказывается на производительности. Выбор осциллографа рекомендовано делать среди изделий с двумя каналами, что позволит сравнивать исследуемые величины, исчислять фазные сдвиги. Три и больше входа, это хорошо, но для обычных задач иногда чрезмерно, цена прибора возрастет многократно.
Эквивалентная частота дискретизации
Когда недостаточно реальной част. дискр., итоговая картинка реконструируется по нескольким последовательным измерениям. Пример: анализируется сигнал 200 МГц на модели с част. дискр. 1 млрд. выборок/сек. (1 GSa/s) — получают всего 5 измерений. По теор. Котельникова этого хватает, но можно детализировать (алгоритмическим методом) и активировать опцию: будет не 1 GSa/s, а уже 2 GSa/s.
Глубина памяти
Всегда есть в цифровых моделях (DSO=Digital Storage Oscilloscope). Чем ниже скорость развертки, тем точнее показатели и тем больше значений приходится сохранять прибору в памяти. Чем глубже память — тем лучше. Но иногда наблюдается негативный момент: при медленных измерениях прибор подтормаживает, выбирая изделие, надо поинтересоваться этим нюансом.
Обновление экрана
Чем чаще обновляется монитор, тем короче «мертвое время», требуемое для обработки захватываемой информации, более оперативно происходит обновление осциллограмм. Больше шансов, что аппарат покажет малозаметный артефакт. Впрочем, это имеет значение только для фанатов-электронщиков.
Максимальное входное напряжение (питание)
Любой прибор имеет предел по мощности питания, при превышении которого без дополнительных мер он просто сгорит, выйдет из строя. Нужно учитывать параметры обслуживаемых цепей. Пример: макс. напр. в режиме щупа 1:1 — 40 В, в режиме 1:10 — 400 В, то есть лезть в цепь с 400 В и больше без предохранительных мер уже небезопасно.
Устройство и основные технические параметры
Каждый прибор имеет ряд следующих технических характеристик:
- Коэффициент возможной погрешности при измерении напряжения (у большинства приборов это значение не превышает 3%).
- Значение линии развёртки устройства — чем больше эта характеристика, тем дольше временной промежуток наблюдения.
- Характеристика синхронизации, содержащая в себе: диапазон частот, максимальные уровни и нестабильность системы.
- Параметры вертикального отклонения сигнала с входной ёмкостью оборудования.
- Значения переходной характеристики, показывающие время нарастания и выброс.
Помимо перечисленных выше основных значений, у осциллографов присутствуют дополнительные параметры, в виде амплитудно-частотная характеристики, демонстрирующей зависимость амплитуды от частоты сигнала.
Цифровые осциллографы также обладают величиной внутренней памяти. Этот параметр отвечает за количество информации, которую аппарат может записать.
Начало работы
Работа с осциллографом по аналоговому прибору описывается более подробно. В роли объекта изучения можно использовать несложные модели: чрезвычайно простой учебный осциллограф н3013 или популярный С1-83. По цифровому — все то же, но он унифицирует, обобщает некоторые моменты.
В лучевой трубке Oscilloscope пучки электронов, идущие на табло, провоцируют свечение люминофора (светлая точка посередине). Отклоняющие пластины (2 пары) дают возможность гонять ее. Чем выше напряжение на клеммах, тем значительнее она подвигается. Подающееся напряжение на пласт. Х (вертикальные) инициирует пилообразную развертку, луч бегает циклически (это линия развертки или нуля). На пласт. Y подключают исследуемые величины.
Синхронизация
Перед тем, как работать с осциллографом, надо изучить основы (управление, подключение, какие щупы и прочее). Главный пункт взаимодействия — синхронизация. Если старт пилы (самое левое положение луча) и сигнала совпали, то 1 проход развертки покажет 1 или больше периодов и изображение как бы застынет. Изменяя скор. развертки делают так, что на табло будет только 1 отрезок: за 1 пер. пилы пройдет 1 пер. анализируемого сигнала.
- Пила и сигнал синхронизируются, регулируя селектором скорость до остановки синусоиды
- Задается уровень, указывают напряжение на входе для активации генератора. Пила появится, только при выставленном значении, синхронизация автоматическая. Надо учесть помехи: они могут активировать генератор ошибочно (уровень чрезмерно низкий), если очень высокий — сигнал не запустит систему.
Надо знать следующее:
- по горизонтали смещение луча прямо пропорциональное времени;
- по вертикали — пропорционально исследуемому напряжению.
Подключение
В осциллографе нет отдельных двух щупов, как у мультиметра. Есть один кабель с 2 отростками, жилами (напряжение меряют между 2 точками), втыкаемыми в розетку с 2 клеммами. Если на приборе гнезд с ними больше одного, то прибор двух или многоканальный.
- для фазы — подключена к входу усилителя, отклоняющего луч по вертикали;
- общая (земля, минус) — связана непосредственно с корпусом аппарата.
В иностранных приборах провод с «крокодилом» — земля, фаза — игла, которой тыкают в контакты проверяемых схем, в ножки микропроцессоров и прочее. В отечественной продукции часто провода одинаковые. Узнать назначение можно, коснувшись их рукой: минус (земля) — на экране ровная линия, фаза — искаженная синусоида.
Нельзя использовать любой провод для щупа — в осциллографе это только коаксиальные специальные изделия, любой другой кабель покажет чушь.
Упрощенно алгоритм использования, как подключить к анализируемой цепи и провести исследование:
- Осциллограф ставят в удобное место, ручки приводят в нормальное или нейтральное положение.
- Если есть калибратор, то надо откалибровать по инструкции.
- Землю сажают на «−» или общую жилу в исследуемой схеме. Если их невозможно определить — подключают к любому из контактов, между которыми проводят исследование. Сигналом тычут по схеме.
Прибор отображает напряжение на щупе по отношению к общему проводку. На некоторых таких шнурах (прямо на них) есть делители 1:0, 1:100 с тумблерами вкл./выкл., позволяющие воткнуть концы хоть напрямую в 220 В, не рискуя сжечь прибор.
Режим входа
Регулятор с прямой и, ниже нее, волнистой чертой — это режим входа. Верхняя позиция — допустимо подавать любое напряжение. Средняя — позволяет установить развертку. Нижняя позиция — только для переменной величины, при этом подключение идет через встроенный конденсатор.
Пример: надо проанализировать помехи на БП с 12 В, их интенсивность возможна до 0.3 В. На фоне 12 В незаметно. Можно повысить коэфф. по Y, но график выйдет за монитор, а смещения не хватит для наблюдения вершины. Тогда включаем в цепь конденсатор и 12 В осядут там, а в O-Scope пойдет переменная величина — 0.3 В помех, визуализацию усиливают и разглядывают полный масштаб.
Быстрый старт
Экран размечен линиями с делениями Y (вертикаль) и X (горизонталь) – это декартовая система координат, их селекторы (большие и заметные) — главные органы управления:
- Усиление (В/дел, вольт/на деление) — масштабирует по оси Y, чтобы просмотреть весь сигнал, и там же указано, сколько В на деление в итоге отобразится. Пример: если стоит 2 В на деление, а сигнал занимает две клеточки в высоту, то амплитуда равна 4 В; при выборе 1 В и подачи синусоиды ампл. в 0.2 В она займет 4 кл.;
- Длительность (Развертка) — регулировка частоты. Тут деления в мс и мкс. Чем меньший промежуток и больше частота, тем высокочастотный сигнал можно разглядеть и по его ширине можно исчислить, сколько он клеток, а умножив на масш. по линии X, получим его длительность в сек. Можно рассчитать один период, затем — значение частоты — f=1/t. Данная ручка — для выставления скорости луча на табло слева/направо. В цифровых аппаратах — сплошная линия. Поступающий через вход сигнал отклоняет луч вверх/вниз: возникает волнообразная синусоида, пила или иная форма линии, отображая шумы, помехи.
Клавиша развертка и крутилки со стрелочками позволят гонять график по экрану для удобства его восприятия и подгонки нужного участка под квадратики сетки. А изменяя скорость, частотность бега луча (величину частоты развертки), добиваются синхронизации, замирания изображения.
Источник питания и мостовой выпрямитель
Начнемс самого простого, — с источника питания на силовом трансформаторе и мостовом выпрямителе. Прежде всего необходим трансформатор, пусть это будет китайский «ALG» с вторичной обмоткой на 12V (рис.1). К вторичной обмотке трансформатора подключим вход осциллографа (пусть это С1-65) и мультиметр.
Предварительно ручку осциллографа «Время/дел.» установим на «10», и ручку «V/дел.» так же на «10», а переключатель входа установим в положение «импульсный режим». Теперь подадим на первичную обмотку переменное напряжение 220V (от электросети, соблюдая все необходимые правила электробезопасности).
Рис. 1. Схема для эксперимента и изображение на экране осциллографа.
Теперь сравним показания осциллографа и мультиметра. Мультиметр покажет переменное напряжение 12V (или около того), а размах синусоиды на экране осциллографа от пика до пика будет целых 34V. Зная, что амплитудное значение синусоидального напряжения равно половине размаха, а действующее , — в корень_из_2 раз раз меньше амплитудного, вычислим действующее значение:
Подключим к вторичной обмотке трансформатора мостовой выпрямитель из четырех диодов (рис. 2). К выходу выпрямителя подключим осциллограф.
На его экране будет весьма интересная картинка, — нижние полуволны синусоиды как бы перевернулись и расположились по положительной оси У. Практически, и частота колебаний увеличилась в два раза, то есть уже не 50, а 100 Гц, а размах уменьшился в два раза.
То, что видно на экране (рис. 2) принято называть пульсирующим напряжением. Но пульсирующее напряжение не годится для питания электронной схемы, — это еще не постоянное напряжение.
А чтобы его сделать постоянным нужно пульсации сгладить с помощью накопительного конденсатора.
На рисунке 3 показана схема с накопительным конденсатором С1 и резистором R1, который служит нагрузкой. Посмотрим, что нам теперь покажут приборы. Мультиметр покажет что-то около 16,5V, а на экране осциллографа будет видна искривленная линия, приподнятая вверх по шкале У на некоторую величину (рисунок 3, левая осциллограмма).
Рис. 2. Подключим и исследуем мостовой выпрямитель из четырех диодов.
По верхним пикам кривизны этой линии — на 17V. Так выглядит напряжение со сглаженными пульсациями. Чтобы посмотреть величину пульсаций нужно переключить вход осциллографа на переменный ток «
» и повернуть ручку «V/дел.» в сторону уменьшения, пока пульсации не будут видны отчетливо. В данном случае, установили 0,5V/дел. (рис.3, осциллограмма справа). Видно, что размах пульсаций равен 1V.
Таким образом, на выходе нашего выпрямителя есть постоянное напряжение с пульсациями 1V. Величина этих пульсаций зависит от емкости сглаживающего конденсатора и от нагрузки. Если нагрузка увеличится (уменьшится сопротивление R1) пульсации возрастут.
Рис. 3. Сглаживающий конденсатор в выпрямителе.
Это можно проверить, заменив R1 переменным. А с увеличением емкости пульсации уменьшаются. Вот, если в этом же примере (при том же сопротивлении R1) вы параллельно С1 подключите еще один конденсатор емкостью 220мкФ, пульсации уменьшатся до 0,ЗV, а при емкости конденсатора 1000 мкФ уровень пульсаций будет менее 0,1V.
Но это при сопротивлении нагрузки 1 кОм, то есть при токе нагрузки 16 миллиампер. С увеличением тока нагрузки пульсации будут увеличиваться. Именно по этому в выпрямителях, рассчитанных на большие нагрузки, используют сглаживающие конденсаторы очень большой емкости.
Выше, с помощью осциллографа была рассмотрена работа мостового выпрямителя. Но источник питания, часто кроме трансформатора и выпрямителя содержит стабилизатор напряжения.
Схема простейшего параметрического стабилизатора состоит из стабилитрона и токоограничительного резистора. Главное свойство стабилитрона в том, что он вроде бы работает как диод, то есть, пропускает ток в прямом направлении, но он пропускает и обратный ток, но только если обратное напряжение превысило некоторую величину, — напряжение стабилизации.
Подключим схему параметрического стабилизатора к вторичной обмотке трансформатора, и с помощью осциллографа, посмотрим во что превратилась синусоида переменного напряжения (рис.4). Ручку «Время/дел.» осциллографа установим на «10», и ручку «V/дел.» так же на «10», а переключатель входа — в импульсный режим.
Рис. 4. Исследуем параметрический стабилизатор.
Стабилитрон, работая как диодный одно-полупериодный выпрямитель, убрал отрицательные полуволны. А как стабилитрон, он обрезал верхушку положительных полуволн на уровне своего напряжения стабилизации (для Д814В — это 10V).
А теперь, подключим такой же стабилизатор на выходе выпрямительного моста (рис. 5). Импульсы пульсирующего напряжения стабилитрон так же, обрезал на уровне своего напряжения стабилизации. Причем, стабилитрону безразлично какой амплитуды эти импульсы или полуволны, 17V или, например, 27V, он их ограничит СТАБИЛЬНО на уровне 10V.
Рис. 5. Исследуем параметрический стабилизатор на выходе моста.
На рисунке 6 показана схема источника питания с параметрическим стабилизатором на выходе. Мультиметр и осциллограф покажут постоянное напряжение 10V, а пульсации будут значительно меньше чем без стабилизатора.
Рис. 6. Схема источника питания с параметрическим стабилизатором на выходе.
Измеряем напряжение
Для уменьшения погрешности, так как наблюдение визуальное, рекомендовано, чтобы график занимал 80–90 % монитора. Когда делают замеры напряжения и по частоте (есть временный интервал), надо регуляторы усиления и скорости развертки разместить в крайние правые позиции.
Порядок действий
Напряжение измеряется масштабированием по вертикали. Алгоритм:
- Перед началом замыкают сигнал щупа на свой же земляной проводок (иглу на «крокодил») или выставляют тумблер режима входа в позицию «земля».
- Высветится «пульс трупа», если нет, то надо подвигать смещение, стабилизацию и уровень — возможно изображение спряталось, не запустилось.
- Регулируем селекторами смещение полосы на ноль и регулятором «вверх-вниз» выставляем развертку на горизонталь сетки, так можно будет корректно рассчитать высоту осциллограммы. Если осциллограф старый или аналоговый, то надо ему дать прогреться минут 5.
- Выставляем предел измерений по напряжению, рекомендовано брать с запасом, потом можно уменьшить.
- На вход дают сигнал (или его переключатель переводится в одно из рабочих позиций). На мониторе появится график.
- Проиллюстрируем процесс: батарейка имеет 1.5 V, если прикоснуться земляным отростком щупа к ее минусу, а сигнальным — к плюсу, то появится скачок графика на 1.5 Вольта.
Для нахождения высоты графика осциллограмму подвигают селектором, чтобы отметка, по которой исчисляется амплитуда, была на центральной вертикали с долями. Получим чувствительность отклонения — 1 в/дел, размер осциллогр. — 2.6 дел., а отсюда ампл. = 2.6 В.
Ниже иллюстрация на аналоговом аппарате: 3.4 дел. — макс. напряжения. На соседнем рисунке — масштабирование по вертикали. Регулятор «плавно» (часть с зеленой риской) – в правой предельной позиции, черточка тумблера чувствительности — 0.5 в/дел. Множитель по масшт. — ×10. Расчет напряжения:
Кратко об управлении
Выглядит модель с1-49 так, как на фото:
Тумблер включения устройства, находится с правой стороны с надписью «Сеть», после перевода тумблера в положение включено должен засветиться индикатор красного света, находящийся над ним.
Рукоятка «Фокус» изменяет толщину луча — поскольку устройство не снабжено узлом компенсации температуры, и в процессе нагрева осциллографа диаметр изменяется.
Регулятор с надписью «Яркость» регулирует яркость точки на экране, можно индивидуально подстроить под рабочее окружение.
«Освещение шкалы», опять же индивидуальный подход к подсветке измерительной сетки, при ярком дневном освещении придется сделать ярче, чтобы рассмотреть сетку.
Ручка с надписью «Усиление Y», по своей сути грубая регулировка усиления вертикального размаха луча. При измерении сигналов высокого уровня, придется уменьшить уровень чувствительности, для того чтобы он вместился в экране осциллографа. При поиске слабых сигналов, нужно произвести увеличение чувствительности усилителя.
Ниже расположился тумблер с помощью которого производится подключение на вход измерительной емкости. Это сделано для отсечения постоянного тока от измерения. На усилитель попадает только переменная составляющая сигнала.
Под ним расположен измерительный входной разъем байонет, под специальный переходник. Прибор снабжается специальными щупами, для проведения измерений, экранированными проводами, с делителем напряжения. Щуп для измерений не вносит искажений в исследуемый сигнал, и воздействие на тестируемое устройство сведено к минимуму. Обычно с осциллографом поставляется несколько видов щупов, под разные виды измерений. Активный щуп — с собственным усилителем. Пассивный без каких либо дополнительных элементов, кроме цепочки согласования, для уменьшения влияния длины кабеля на входной сигнал. И щупы с делителем, в которых отдельным тумблером имеется возможность уменьшить амплитуду напряжения 1:10 ; 1:100 ; 1:1000.
Ниже байонета расположен выход со встроенного генератора прямоугольных импульсов. С его помощью можно проверить интересующее устройство, а также произвести стартовую калибровку измерителя.
Под экраном осциллографа расположились регуляторы со шкалой:
- Переключателем «Усиление» выбирается диапазон напряжений — вольт/деление. Выбирается, сколько вольт поместится в деление измерительной сетки экрана, и визуально можно определить величину напряжения, зная диапазон на переключателе.
- Второй переключатель со шкалой измеряет длительность импульса. Проще говоря, частоту измерения. Длительность сигнала на одно деление измерительной сетки.
- Регулятор « Развертка» смещает начало импульса по горизонтали. Им нужно пользоваться для смещения исследуемого сигнала по шкале, в случае, когда начало импульса получается за пределами шкалы.
- Вход «Х» позволяет применять внешние генераторы для управления горизонтальной разверткой. В том случае, когда встроенного не достаточно, или не стабилен, то есть частота плавает. В таком положении можно наблюдать фигуры Лиссажу. Сложные геометрические узоры.
Ниже расположены ручки управления синхронизацией:
- Тумблером «Внутренний — Внешний» происходит выбор, от какого источника будет синхронизироваться развертка. Одновременно с исследуемым сигналом или же от внутреннего.
- Регулятор «Уровень» изменяет чувствительность, от него зависит, по какому фронту сигнала произойдет запуск развертки, нарастающему или спадающему фронту внешнего сигнала.
- Тумблер «-/
Измерение частоты
Частота — это временная характеристика, интервалы, периоды сигнала; их измерение — прямое назначение осциллографа. Исследуемое значение всегда обратно пропорционально его периоду, который можно замерить в любой области осциллограммы. Но комфортнее и точнее это сделать в точках пересечения графика с горизонталью по центру (ось времени).
Перед исследованием полосу развертки выставляем на центральную горизонталь. Используя ручку со стрелкой в обе стороны, смещаем начало периода с самой крайней левой полосой на мониторе. В нашем случае промежуток = 6.8 дел., скор. развертки — 100 мкс/дел. Исчисления:
Выше на схожих двух рисунках те же сигналы, но при разной скорости развертки. По первому изображению исчисление частоты (точное значение — 1.459 кГц) имеет большую погрешность, по второму — меньшую, так как большую точность при измерении получают, если растянуть картинку.
На втором рисунке период чуть превышает 6.8 дел. и частота в реальности чуть ниже (1.459 КГц), чем полученная (1,47 КГц). Отклонение меньше 1 %, это допустимо и считается высокой точностью, ее обеспечит цифровой O-Scope (с линейной разверткой). В аналоговых моделях отклонение было бы выше. Характерная закономерность: с увеличением периода снижается частота (пропорция обратная), и наоборот.
Классификация и виды
Различают два основных вида осциллографов:
- аналоговые — аппараты для измерения средних сигналов;
- цифровые — приборы преобразовывают получаемое значение измерений в «цифровой» формат для дальнейшей передачи информации.
По принципу действия существуют следующая классификация:
- Универсальные модели.
- Специальное оборудование.
Наиболее популярными являются универсальные устройства. Эти осциллографы используют для анализа различных видов сигналов:
- гармонических;
- одиночных импульсов;
- импульсных пачек.
Универсальные приборы предназначены для разнообразных электрических устройств. Они позволяют измерять сигналы в диапазоне от нескольких наносекунд. Погрешность измерений составляет 6-8%.
Универсальные осциллографы делятся на два основных вида:
- моноблочные — имеют общую специализацию измерений;
- со сменными блоками — подстраиваются под конкретную ситуацию и тип прибора.
Специальные устройства разрабатываются под определённый вид электрической техники. Так существуют осциллографы для радиосигнала, телевизионного вещания или цифровой техники.
Универсальные и специальные устройства делятся на:
- скоростные – применяются в быстродействующих приборах;
- запоминающие — аппараты, сохраняющие и воспроизводящие ранее сделанные показатели.
При выборе устройства следует внимательно изучить классификации и виды, чтобы приобрести прибор под конкретную ситуацию.
Измеряем сдвиг фаз
Иногда бывает, что фазы напряжения и тока расходятся (при проходе через конденсаторы, индуктивность). С двухканальным O-scope возможно посмотреть уровень различий.
Сдвиг фаз покажет два процесса в движении, их положение с колебаниями. Измеряют не в ед. времени (горизонталь), а в долях промежутка сигнала (ед. угла). Одинаковому взаимному размещению сигналов соответствует такой же сдвиг, и он не зависит от периода и частоты. Поэтому измерения достовернее при максимальном растяжении периодов на мониторе.
Порядок действий
Этапы (модель С1-83):
- Крутилками со стрелками 2 каналов (по вертикали) развертку ставят на центральную линию (сигнал на входе отсутствует).
- Усил. (вертикаль) на первом канале устанавливают (ступени и плавно) большую амплитуду, на втором — делают ее меньшей.
- Скор. разв. настраивают, чтобы на табло поместился 1 определенный промежуток.
- Уровнем синхронизации выставляют старт графика с временной линии (развертки, т. А), а селектором с горизонтальной чертой с двумя стрелками — чтобы с крайней левой грани экрана (т. А);
- Скор. разв. (ступени и плавно) добиваются финиша графика на крайней правой вертикальной грани.
- Повторяют описанное, растягивая диаграмму на весь монитор, стартовая и финишная точка должны совпадать с полосой развертки.
- Определяют опережение, угол сдвига (φ) зависит от этого. Ниже на первом рис., ток отстает его старт позже (т. А и Б). На соседнем рисунке (б) он первый, его старт не показывается, поэтому смотрят на финиш первого полупериода: первым к 0 придет диаграмма, начавшаяся раньше (отметка Г подходит быстрее В).
φ — модуль угла, промежуток между начальной и финишной точками периода. Далее, φ узнаем по правилу: 1 промежуток любого колебания = 360° (это стабильная пропорция).
Замеры возможны и по концам периодов (Д и Е), но в правом сегменте монитора линейность плохая, вероятность погрешностей увеличивается.
Характерные неисправности и способы их устранения в осциллографе С1-73. (1/1)
Характерные неисправности и способы их устранения в осциллографе С1-73.
Характерные неисправности и способы их устранения в осциллографе С1-73.
В предыдущей статье мы рассмотрели устройство и принцип работы осциллографа С1-73, а сейчас продолжая тему рассмотрим основные характерные неисправности присущие данному типу осциллографа. Нам в поиске неисправностей помогут осциллограммы сигналов в контрольных точках. В табл. 1 — 5 приведены режимы элементов осциллографа по постоянному току.
Основные характерные неисправности
1. Осциллограф не включается, на экране ЭЛТ отсутствует свечение луча, индикаторная лампа на передней панели не светится
Вначале проверяют работоспособность элементов сетевого выпрямителя (см. рис. 3 и 7 — здесь и далее ссылки на рисунки первой части статьи): целостность сетевого предохранителя, обмоток силового трансформатора, исправность выпрямительных диодов Д1, Д2 и конденсатора С1. В случае неисправности силового трансформатора его можно заменить на унифицированный из серии ТН37-48 на частоту 50 Гц и напряжение 220В.
При подборе трансформатора следует придерживаться следующих условий:
•его мощность должна быть не менее 40 Вт;
•вторичная обмотка трансформатора должна быть рассчитана на ток не менее 1А и напряжение 20…22В;
•возможно использование трансформаторов других габаритных размеров, только в этом случае необходимо произвести некоторые конструктивные доработки корпуса выпрямителя;
•если используется одна вторичная обмотка без среднего вывода, возможно применение диодных мостов типов КЦ409, КЦ418 и им подобных, только в этом случае изменяется схема их включения.
Если блок выпрямителя исправен, снимают крышки кожуха осциллографа и проверяют наличие питающего напряжения 24…27В между конт. 55 и 69 платы И22.051.002 (см. рис. 6), в противном случае проверяют исправность элементов: предохранителя Пр1, диода Д2, выключателя В6 и дросселя Др2. Затем проверяют работоспособность элементов первичного стабилизатора напряжения — на выводах конденсаторов 5С7, 5С8 должно быть напряжение 18…19В, в противном случае в первую очередь проверяют элементы: 5Т1, 5Т2, Т3, Д1, 5Д1, 5Д11, 5С7, 5С9, 5С23 (см. рис. 6). Если элементы стабилизатора исправны, проверяют исправность транзисторов преобразователя напряжения Т1, Т2, 5Т10, 5Т11, а также резистора R30.
При симптомах этой неисправности также может быть неисправен по той или иной причине первичный задающий генератор источника питания (при условии работоспособности первичного стабилизатора). Вначале вольтметром проверяют наличие питающего напряжения 12…15В на коллекторах транзисторов 5Т9, 5Т12, а затем омметром исправность самих транзисторов и конденсаторов 5С13, 5С17. Осциллографом контролируют наличие прямоугольных импульсов размахом не менее 10В (см. осциллограммы рис. на коллекторах этих же транзисторов или на конт. 5Гн3, 5Гн4. Если импульсы отсутствуют или их размах значительно ниже нормы, проверяют исправность трансформаторов 5Тр1, 5Тр2 и еще раз транзисторов Т1, Т2, 5Т10, 5Т11.
Затем осциллографом контролируют сигналы на выводах транзисторов Т1, Т2, 5Т10, 5Т11. Если на выходах стабилизаторов платы И22.051.002 выходные напряжения отсутствуют или сильно занижены (+10, –10, +80 и +130В), то проверяют элементы узла, а затем нагрузки источника питания (ИП) на предмет короткого замыкания или утечек.
Косвенные признаки короткого замыкания в нагрузках ИП следующие:
•сильный нагрев транзисторов Т1-Т3;
•уменьшенное напряжение на выходе первичного стабилизатора напряжения (ниже 15В);
•частое периодическое перегорание предохранителя Пр1.
2. Осциллограф включается, луча на экране нет
Вначале контролируют наличие всех выходных напряжений ИП. Затем проверяют напряжения на выводах ЭЛТ (см.табл. 1). Регуляторы „Яркость”, „Стаб.” и „Уровень” передней панели переводят в крайнее правое положение. Переводят осциллограф в режим внутренней синхронизации (переключатель „Синхр.” правой панели). Если луча нет, переводят переключатель „Развер.” правой панели в положение „ХmХ”. В случае отсутствия светящейся точки в центре экрана, контролируют напряжение +71 В на конт. 6 Гн2 усилителя подсвета (см. рис.6), в противном случае проверяют исправность его элементов, а также наличие питающего напряжения +80 В.
При отсутствии положительного результата проверяют подогреватель ЭЛТ, а также напряжения на вертикальных и горизонтальных отклоняющих пластинах трубки (они должны быть на всех пластинах равны приблизительно 44…46В). Если напряжения на отклоняющих пластинах не равны, возможно, неисправны элементы соответствующего оконечного усилителя (И22.030.120 или И22.030.109). Чаще всего в оконечных усилителях выходят из строя транзисторы типа КТ602, неплохой заменой которым могут быть КТ683 с буквенными индексами А, Б, В.
При признаках этой неисправности возможны неконтакты между ЭЛТ и соединительной панелью, а также неисправность самой ЭЛТ.
3. Отсутствует отклонение луча по вертикали
3.1 Регулятором „Ч” луч перемещается по экрану, изображение измеряемого сигнала отсутствует
Эта неисправность типична при выходе из строя транзистора 1Т1 узла предварительного усилителя вертикального отклонения (см. рис. 2/1). Неисправность проявляется достаточно часто при измерении сигналов больших размахов в положении переключателя „В/дел” на малых пределах измерения и неиспользовании выносного делителя 1:10. В редких случаях также возможен выход из строя следующего за 1Т1 транзистора из состава микросборки 1У1. При замене 1Т1 подбирают его с теми же характеристиками, что и 1Т2. Чтобы не заниматься подбором пары транзисторов, используют отечественную микросборку типа КПС315А. Неисправные транзисторы из состава микросборки 1У1 (типа 217НТ2) можно заменить на КТ3117А.
Если указанные выше транзисторы исправны, высокоомным вольтметром (В7-16А) проверяют режимы по постоянному току всех полупроводниковых элементов цепей вертикального отклонения луча (см. табл. 2 — 4). После этого с помощью измерительного осциллографа проверяют каскады усиления от переключателя В1 — 4 („ В/дел”) до отклоняющих пластин ЭЛТ (при положении переключателя „ В/дел”—”t 5 дел”). После ремонта цепей вертикального отклонения луча необходимо произвести их балансировку и калибровку по методике, описанной в первой части статьи.
3.2. Изображение измеряемого сигнала смещено по вертикали. Регулятором „Ч” линия развертки не смещается по вертикали или смещается незначительно
При симптомах этой неисправности, вероятней всего, неисправны элементы оконечного усилителя вертикального отклонения.
4.Изображение исследуемого сигнала не синхронизируется в режиме внутренней синхронизации
Измерительным осциллографом проверяют цепи внутренней синхронизации: коллектор транзистора 1Т8 (конт. 1 Гн6), переключатель В1 (Внутр./внешн. синхронизация), переключатель В3-1, конт. 24 генератора развертки (см. рис. 5).
5.Изображение исследуемого сигнала не синхронизируется в режиме внешней синхронизации
Проверяют уровень внешнего синхронизирующего сигнала, его размах должен быть в пределах 0,5…50В. Проверяют цепь внешней синхронизации: внешние соединители Гн3, Гн4, переключатель В1, переключатель В3 — 1, конт. 24 платы И22.051.022.
6. Отсутствие синхронизации изображения в любом положении переключателя В1
С помощью измерительного осциллографа проверяют цепи прохождения синхросигналов (см. п.п. 4 и 5) и далее цепь: конт. 24 платы И22.051.022, транзисторы 2Т1 — 2Т3, диод 2Д4, транзистор 2Т4, транзистор 3Т1 узла генератора развертки. Если необходимо, высокоомным вольтметром проверяют режимы по постоянному току элементов узла синхронизации (см. табл.2, 3, 5).
7. Отсутствует горизонтальная развертка
Вращают регулятор „Стаб” передней панели вправо до упора. Переводят переключатель выбора синхронизации правой панели в положение „Внутренняя”. Регуляторами „Ч” и „Ц” устанавливают луч в центре экрана. Контролируют наличие питающих напряжений (+10 и –10 В) на элементах генератора развертки. Высокоомным вольтметром контролируют напряжения на элементах генератора развертки (см. табл. 2). Проверяют исправность элементов генератора развертки, в особенности 3Д1, 3Д2, 3Т1 — 3Т4.
8. Линия развертки начинается и кончается каждый раз в разных точках экрана
Возможен неконтакт переключателя В1 — 4 (см. рис. 5) или неисправность одного из конденсаторов 2С2 — 2С7.
9. На экране видны линии обратного хода луча
В этом случае проверяют исправность элементов усилителей подсвета (см. рис. 6).
10. В положении переключателя „ В/дел” — „t5 дел” на экране отсутствует изображение сигнала с калибратора
Вольтметром проверяют поступление питающих напряжений (+10 и –10В) на узел калибратора (см. рис. 5). Затем проверяют исправность следующих элементов: транзисторов 4Т1-4Т3, диодов 4Д1, 4Д2, конденсатора 4С1. Также проверяют исправность переключателя В1-4.
r_s1-73.zip
Что можно сделать с помощью осциллографа
В мастерской электронщика и электрика если не обязательно, то, по крайней мере, крайне желательно наличие осциллографа. Его используют на ряду с простыми измерительными приборами: амперметром, вольтметром, омметром, в конце концов мультиметром. Из этой статьи вы узнаете об осциллографе — что это такое и для чего он нужен.
Осциллограф — что это?
Все, кто работает с электричеством, знают, что напряжение измеряют вольтметром, а ток амперметром. Но эти приборы показывают только то значение тока, которое есть в момент измерений. Даже при измерении переменных по значению и знаку величин вы получаете какое-то усредненное по определенным алгоритмам или законам значение.
Но с помощью вольтметра можно следить за тем, как измеряется величина, правда, с погрешностями. У стрелочных приборов они обусловлены конструктивными особенностями, а у цифровых также, но добавляются еще и частота дискретизации и другие программные проблемы.
Но как проследить за быстроизменяющимся сигналом, у которого величины изменяются за тысячные и миллионные доли секунды?
Такие измерения крайне важны во многих сферах:
Во всех областях электронике;
При изучении параметров электрооборудования;
В диагностике и настройки систем автомобиля и прочих.
Для этого используют осциллографы и осциллографические пробники. Осциллограф — это тот же вольтметр, только на экране которого показывается не значение напряжения сигнала, а его форма и поведение. Форма сигнала отображается с привязкой к шкале проградуированной в Вольтах (вертикально) и секундах (горизонтально) — для подробного их изучения.
На картинке ниже вы видите примеры изображений на экране осциллографа, красным выделено сколько микросекунд в одном квадратике по горизонтали, а зеленым – сколько вольт по вертикали. Иными словами цена деления на изображении – 1В/дел и 10 мкс/дел.
Сразу стоит отметить, что, в основном, с помощью осциллографов изучают сигнал, который периодически повторяется. Сигналы изменяющиеся произвольным образом изучают с помощью осциллографа с функцией самописца.
Такой функцией обладают преимущественно цифровые осциллографы, но не все цифровые осциллографы умеют записывать осциллограммы в память. На фото ниже изображен аналоговый с электроннолучевой трубкой – он для таких задач не подходит.
Чтобы разобраться каким образом сигнал, который измеряется с периодом в доли секунды замирает на экране можно привести простой пример — стробоскоп. Если любой подвижный предмет периодически освещать коротковременными вспышками света, то в результате вы будете видеть конкретные его положения, как на фотографиях.
При этом, если освещать таким образом вращающийся с определенной скоростью предмет, то при условии, что частота вспышек совпадет со скоростью его вращения — вы будете видеть неподвижный предмет или определенную часть вращающегося предмета обращенного к вам одной и той же стороной в момент вспышки. Если частота вспышек не будет совпадать со скоростью вращения предмета, то вы будете видеть последовательность отдельных его участков в произвольном порядке.
Я встречал и сравнение на примере поезда с бесконечным числом одинаковых вагонов:
Если вспышки буду идти с частотой, совпадающей с частотой смены вагонов перед вами, то вам будет казаться, что каждый раз вы видите один и тот же неподвижный вагон перед собой.
Таким же образом работает и осциллограф — он отображает один и тот же участок периодического сигнала, в результате вы можете изучить особенности его изменения.
В пределах этой статьи мы не будем вдаваться в блоки, из которых он состоит, режимы работы, синхронизации и прочего, давайте рассмотрим что можно сделать с помощью осциллографа.
Осциллограф в электронике
Первое что приходит в голову — это электроника. Вы не можете наглядно увидеть, открылся ли транзистор, и как часто он это делает. Кроме того, при проектировании современных быстродействующих устройств, важно знать не только о самом факте срабатывания полупроводниковых ключей, но и о формах фронтов нарастания и затухания тока и напряжения.
Благодаря этому вы можете узнать насколько правильно подобран режим работы транзистора или другого компонента и о корректности работы радиоэлектронного устройства в целом.
Итак, при проектировании электроники нужно использовать осциллограф для наладки готового изделия и подбора конечных номиналов компонентов, что повышает его надежность.
Осциллограф в ремонте
Ремонт электроники это процесс поиска вышедшей из строя детали, который без необходимого набора инструментов сводится к поочередной замене элементов и узлов до доведения прибора до работоспособности. Иначе говоря — ремонт методом тыка.
Отдельные элементы, например транзисторы, резисторы, индуктивности и конденсаторы зачастую вы можете проверить с помощью мультиметра или универсального транзистор-тестера. С микросхемами дело обстоит иначе.
При ремонте блоков питания вы можете наглядно проконтролировать работу ШИМ-контролера — сердца импульсных преобразователей. Больше нет способов с помощью которых вы можете достоверно убедится в его исправности. Хотя в этом можно убедиться по косвенным признакам.
При ремонте устройств с микроконтроллерами можно проверить работу тактового генератора, наличие сигналов на всех пинах микроконтроллера.
При диагностике усилителей звука, можно увидеть в каком месте исчезает или искажается сигнал.
Ремонт автомобилей
Большинство неисправностей современных автомобилей типа: «не заводится», «провалы при разгоне», «плохо едет и глохнет», — связаны с проблемами в электрической части. Так как все двигателя, которые сейчас устанавливаются, инжекторные, если речь вести о газе или бензине, а если в двигатель работает на дизельном топливе, то у него наверняка стоят форсунки с электронным управлением. То же самое касается и системы зажигания.
Для функционирования систем впрыска и зажигания топлива, расчета моментов срабатывания форсунок и искрообразования, необходимо знать о положении коленчатого и распределительного валов двигателя. Поэтому автомобили оборудованы множеством датчиков.
Для диагностики всех этих систем используют как встроенные протоколы связи, считывают ошибки, так и мотортестеры — приборы которые могут и связываться с системой управления двигателя и работать в роли осциллографа.
Таким образом вы можете узнать о работе датчиков положения, проследить соответствие положения распределительного и коленчатого вала (фазы ГРМ).
С помощью специальных щупов — исправность работы системы зажигания, а по форме осциллограммы определить неисправность катушки, свечей, высоковольтных проводов и наличие импульса на катушки вообще.
Систему зарядки автомобиля можно проверить с помощью осциллографа. Так вы можете диагностировать неисправности диодного моста генератора, не снимая его с автомобиля.
Заключение
Осциллограф помогает увидеть форму сигнала и есть ли он вообще. Это важно и при разработке устройств и при их ремонте. Следует отметить, что можно обойтись и без него, но тогда вы потратите намного больше времени на диагностику прибора, а ремонт превратится в гадание на кофейной гуще.