2. Как размещается избыточный заряд на изолированном проводнике в отсутствие внешнего электростатического поля?
2. Избыточный заряд при отсутствии внешнего поля распределяется по поверхности проводника.
Решебник по физике за 10 класс (В.А.Касьянов, 2009 год),
задача №2
к главе «14. Энергия электромагнитного взаимодействия неподвижных зарядов. §86. Проводники в электростатическом поле. Ответы на вопросы».
Как размещается избыточный заряд на изолированном проводнике в отсутствие внешнего электростатического поля?
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Где и как распределяются заряды в проводнике?
Проводником электричества является любое вещество, у которого присутствуют свободные отрицательные или положительные заряды. У металлов носителями зарядов являются электроны. Рассматривая вопрос о распределении зарядов в проводнике мы, по умолчанию, будем ссылаться на металлические тела. Но все выводы, касающиеся перераспределения зарядов в металлах, справедливы и для других типов веществ, с наличием свободных носителей положительных ионов.
Носители зарядов и их движение
При отсутствии электрического поля свободные точечные заряды пребывают в равновесии. Они осуществляют колебания, взаимодействуя между собой и с ионами такого же, либо противоположного знака. Однако картина равновесия вмиг нарушается при попадании металла в электрическое поле. На заряженном проводнике возникает электрическое смещение.
Под действием кулоновских сил происходит перераспределение электронов в металлическом теле. Перемещению зарядов способствует напряжённость поля, действующая на носители заряженных частиц разных знаков, но в разных направлениях.
В результате этого воздействия заряженные частицы устремляются в противоположные стороны. Точнее, в металлах происходит только перемещение электронов, которые скапливаются на поверхности с одной стороны.
Положительные ионы, связанные атомными силами кристаллической решётки не перемещаются, но поскольку электроны устремились в одну сторону, то на другой стороне проводника преобладают дырки (положительно заряженные ионы) (см. рис. 1). Таким образом, можно утверждать, что электроны и положительные ионы под действием электрического поля распределяются в противоположных направлениях на поверхности тел. То есть, заряды стремятся к равновесному распределению.
Рис. 1. Распределение зарядов в проводнике
Процесс распределения частиц продолжается до тех пор, пока не уравновесится их взаимодействие внешних и внутренних сил. То есть, пока сумма напряжённостей внешнего электрического поля не уравняется с внутренней напряжённостью. Данный процесс длится доли секунды. Если плотность энергии не меняется, а металл остаётся в спокойствии, то равновесие сил является константой.
Учитывая направления внешних векторов напряженности и внутренних сил, действующих на проводник, можно записать:
Результирующий вектор напряженности
Нулевое значение напряжённости поля означает, что внутренний потенциал тела компенсируется действием внешних сил:
Если в электрическое поле поместить металлический шар, то все статическое электричество на его поверхности будет иметь одинаковый потенциал. Такие поверхности получили название эквипотенциальных поверхностей. Заряды, скопившиеся под действием сил напряжённости поля, называются индуцированными или избыточными. Наличие избыточных зарядов характерно для всех типов проводников, оказавшихся в электрическом поле.
Рассуждения, приведённые выше, справедливы также для веществ со свободными ионами разных знаков (растворы солей и кислот). В результате такого распределения заряды также располагаются на противоположных концах токопроводящего тела. При этом равенство, записанное выше, сохраняется.
Рис. 2. Выводы
Ещё одно важное свойство проводников: при сообщении им дополнительных зарядов, собственные заряженные частицы распределяются так, чтобы восстановилось равновесие. Например, при добавлении отрицательных зарядов, последние будут противодействовать избыточным электронам, стремясь занять их место на поверхности тела.
Если же создать условия для отвода избыточных заряженных частиц (при сохранении притока новых), например, заземлить кондуктор, то возникнет электрический ток. Причём перемещение заряженных частиц будет проходить по поверхности металла, но не внутри его, как можно было бы ожидать.
Электроемкость уединенного проводника
Рассмотрим отдельно взятый проводник, удалённый от других заряженных тел. Такие токопроводящие тела называют уединёнными. В результате электростатической индукции на поверхности уединённого проводника возникает статическое электричество. Количество индуцированных зарядов зависит от уровня напряжённости внешнего поля.
Потенциал на таком проводнике зависит от его заряда (φ): Q=Cφ, откуда
С = Q/φ , где C – электроёмкость.
Ёмкостью уединённого проводника называют заряд, сообщение которого изменяет потенциал этого тела на единицу. На ёмкость влияет размер и форма токопроводящего тела. Но ёмкость не зависит от агрегатного состояния и на неё не влияет форма и размер внутренних полостей.
Если уединённому проводнику сообщить некий дополнительный заряд, то в течение некоторого времени он будет сохраняться. Количество электричества, которые способен удержать уединённый проводник, зависит от его формы и площади поверхности. Наибольшую ёмкость имеют сферические образования, так как площадь поверхности сферы на единицу объёма самая большая.
Два уединённых проводника разделённые диэлектриком образуют конденсатор. При этом электроемкость конденсатора Cконд = Q/(φ1 – φ2), где ( φ1 – φ2 ) разница потенциалов между обкладками. Индуцированные заряды с обкладок заряженного конденсатора можно снять на нагрузку, подключённую к выводам обкладок.
Распределение зарядов и форма тела
Как было замечено выше, распределение зарядов зависит от формы тела. Больше всего статического электричества собирается на выступах, особенно на острых концах (см. рис. 3, 4).
Рис. 3. Форма тела и распределение статического электричества
Рис. 4. Распределение статического электричества на кондукторе
Как видно из рисунка 4 плотность распределения зарядов на вогнутых поверхностях минимальна. Электростатическое поле сплошных и полых проводников не отличается, если их поверхности идентичны. Другими словами все токопроводящие тела с одинаковыми поверхностями обладают одинаковыми поверхностными плотностями.
На сферических поверхностях статическое электричество распределяется равномерно. Ёмкость конденсатора (сферического) вычисляют по формуле:
Емкость сферического конденсатора
где R1 и R2 – внешний и внутренний радиусы сферического конденсатора.
Распределение статического электричества на сфере иллюстрирует рисунок 5. Обратите внимание на то, что внутри сферического тела, как впрочем, и любого другого, заряды отсутствуют: вектор E=0, φ=const.
Рис. 5. Распределение заряженных частиц на сфере
Вы, наверно, слышали о клетке Фарадея. Человек, находящийся в замкнутом пространстве из токопроводящего материала, то есть в клетке, не ощущает на себе влияния мощных разрядов. Статическое электричество стекает по поверхностям стенок клетки на землю, и не могут попасть внутрь клетки.
Распределение избыточного заряда на проводниках в состоянии равновесия
К проводникам относятся вещества, проводящие электрический ток. В них имеются свободные заряды, которые способны перемещаться по проводнику под действием внешнего электрического поля. В металлических проводниках свободными зарядами являются электроны, они образуют газ, заполняющий кристаллическую решетку положительно заряженных ионов.
Рассмотрим, что произойдет, если проводнику сообщить избыточный заряд. При этом положительному заряду металлического проводника соответствует недостаток свободных электронов, а отрицательному заряду – их избыток. В условиях равновесия избыточного заряда справедливы следующие утверждения:
1.Электрическое поле внутри проводника отсутствует, а объем проводника и его поверхность являются эквипотенциальными
Действительно, если равенства (2.39) не выполняются, то тогда свободные заряды в проводнике будут перемещаться, так как работа сил электрического поля не будет равна нулю ( ). Это противоречит условию равновесия избыточного заряда: в условиях равновесия они должны быть неподвижными.
2.Избыточный заряд распределяется только по внешней поверхности проводника, так как из-за кулоновского отталкивания одноименных зарядов они стараются разойтись на максимально возможные расстояния друг от друга.
Это утверждение можно доказать, используя теорему Гаусса. Выберем внутри проводника произвольную замкнутую поверхность (рис.3.14,а) и рассчитаем поток вектора через нее в условиях равновесия. Учтем, что связанных зарядов в металле не возникает (q’ =0) и поэтому из формулы (3.27) следует
т.е. внутри такой поверхности избыточного заряда нет, так как этот заряд одного знака. Следовательно, он располагается только на внешней поверхности проводника.
3.Распределение избыточного заряда по внешней поверхности проводника является неравномерным: модуль вектора и поверхностная плотность заряда σ больше в тех точках поверхности проводника, где ее кривизна больше.
Кривизну поверхности в какой-либо ее точке можно определить радиусом R вписанной вблизи этой точки сферы, а именно, кривизна поверхности обратно пропорциональна R.
Докажем третье утверждение. Для этого отметим, что выводы об электрическом поле равномерно заряженной по поверхности сферы, сделанные в параграфе 3.1.8, справедливы и в случае заряженной металлической сферы или шара, так как кривизна поверхности во всех ее точках одинакова, т.е. избыточный заряд распределяется по ней равномерно.
Если учесть, что поверхность проводника можно представить в виде совокупности разных участков вписанных в нее сфер (рис.3.14,б) и использовать формулы (3.39) для Е и φ на поверхности сферы, то тогда можно записать:
Согласно формуле (3.42б) модуль вектора вблизи какой-либо точки поверхности заряженного проводника пропорционален поверхностной плотности заряда σ в этой точке. Формулу (3.42б) можно было получить на основе теоремы Гаусса, выбирая вспомогательную замкнутую поверхность в виде цилиндра малого объема, образующая которого перпендикулярна к поверхности проводника (рис.3.14,в). Считая в пределах цилиндра электрическое поле однородным и применяя формулу (3.29) придем к выражению (3.42 б).
На рис. 3.15,а приведено графическое изображение с помощью линий электрического поля заряженного проводника сложной формы.
Нужно учесть, что линии во всех точках перпендикулярны к поверхности металла, так как она является эквипотенциальной поверхностью.
Вблизи острия модуль вектора может превысить значение, соответствующее ионизации молекул воздуха (Еиониз≈3×10 6 В/м при атмосферном давлении), и тогда возникает явление стекания зарядов, сопровождающееся электрическим ветром.
Образующиеся при ионизации молекул электроны движутся к острию и компенсируют на нем часть заряда, равновесие зарядов на проводнике нарушается и к острию подходят заряды с других участков поверхности проводника (рис.3.15,б). Это движение продолжается до тех пор, пока модуль напряженности электрического поля вблизи острия будет превышать Еиониз. В
то же время положительные ионы молекул воздуха движутся в противоположном направлении, от острия, увлекают за собой нейтральные молекулы, создавая движения воздуха — электрический ветер.
Тот факт, что избыточные заряды в состоянии равновесия находятся только на внешней поверхности проводника, позволяет создать устройства, способные накапливать большие заряды и достигать разности потенциалов в несколько миллионов вольт. К ним можно отнести электростатический генератор Ван-де-Граафа.
Он представляет собой металлическую сферу 1, закрепленную на изолирующей колонне 2 (рис. 3.16). На металлическую щетку 3 поступаетположительный заряд от источника напряжения 4 в несколько десятков киловольт. Вблизи остриев щетки напряженность электрического поля превышает Еиониз молекул воздуха (радиус острия щетки r
1 мм, Е = 107 В/м) и заряд стекает на диэлектрический транспортер 5 – движущуюся замкнутую ленту из прорезиненной ткани. Эта лента подает заряд внутрь металлической сферы, он стекает на щетку и сразу поступает на внешнюю поверхность сферы. Максимально достижимая разность потенциалов Uмакс в таком устройстве ограничивается явлением стекания заряда с поверхности сферы, т.е. возникновением разряда в воздухе при Есф≥Еиониз. Величина Uмакс составляет порядка 10 мегавольт при радиусе сферы R=5 м
Электрические генераторы подобного типа используются главным образом в высоковольтных ускорителях заряженных частиц, а также в слаботочной высоковольтной технике.