Эксперимент по извлечению энергии из поля постоянного магнита
Существует большое количество устройств, относящихся к так называемым «вечным двигателям». Среди них имеются многочисленные конструкции генераторов тока, позволяющие получать электричество из магнита. В этих устройствах применяются свойства постоянных магнитов, способных к совершению внешней полезной работы. В настоящее время ведутся работы по созданию магнитного двигателя, способного приводить в движение устройство вырабатывающее ток. Исследования в этой области еще до конца не закончены, но, на основе полученных результатов можно представить себе его устройство принцип действия.
Вопрос эффективности
Получение электричества из земли окутано мифами – в Интернет регулярно выкладываются материалы на тему получения бесплатной электроэнергии за счет использования неисчерпаемого потенциала электромагнитного поля планеты. Однако многочисленные видео, на которых самодельные установки добывают ток из земли и заставляют сиять многоваттные лампочки или крутиться электромоторы, являются мошенническими. Если бы получение электричества из земли было настолько эффективно, атомная и гидроэнергетика давно ушли бы в прошлое.
Однако бесплатное электричество добыть из земной оболочки вполне реально и сделать это можно своими руками. Правда, полученного тока хватит только на светодиодную подсветку или на то, чтобы не торопясь подзарядить мобильное устройство.
Напряжение из магнитного поля Земли — возможно ли!?
Для получения тока из природной среды на постоянной основе (то есть, исключаем разряды молний), нам необходим проводник и разность потенциалов. Найти разность потенциалов проще всего в земле, которая объединяет все три среды – твердую, жидкую и газообразную. По своей структуре грунт представляет собой твердые частички, между которыми присутствуют молекулы воды и пузырьки воздуха.
Важно знать, что элементарной единицей почвы является глинисто-гумусовый комплекс (мицелла), который обладает определенной разностью потенциалов. Внешняя оболочка мицеллы накапливает отрицательный заряд, внутри нее формируется положительный. За счет того, что электроотрицательная оболочка мицеллы притягивает из окружающей среды ионы с положительным зарядом, в почве беспрерывно протекают электрохимические и электрические процессы. Этим почва выгодно отличается от водной и воздушной среды и дает возможность своими руками создать устройство для добычи электроэнергии.
Рекомендации по выбору
Любые подобные устройства (особенно магнитные генераторы) стоят довольно много. Зачастую потребители хотят купить качественную модель, но при этом потратить минимальное количество денег. В последнее время люди начали приобретать товары из Китая. Это обусловлено тем, что продукция стоит дешёво и имеет вполне терпимое качество. Генераторы или же элементы конструкции можно купить за границей, но есть определённые риски, которые следует учитывать:
- Приходится платить за товар до его получения.
- Часто случается, что продукция не соответствует описанию на сайте.
- Иногда посылка не доходит до адресата, а деньги при этом никто не вернёт.
Часто такая экономия оказывается ложной. Есть возможность покупки генератора напрямую от производителя. Но при таком варианте необходимо знать все тонкости конструкции аппарата, чтобы опытный продавец не смог «втюхать» генератор, не соответствующий требованиям, поэтому перед покупкой следует:
- Досконально изучить рынок таких устройств. Это позволит обнаружить лидеров среди производителей.
- Правильно рассчитать мощность. Так можно сэкономить, не переплачивая за ненужные характеристики.
Желательно убедиться, что к товару выписывается гарантийный талон. У каждой модели должен быть лист испытаний, который может подтвердить качество.
Способ с двумя электродами
Простейший способ получить в домашних условиях электроэнергию – использовать принцип, по которому устроены классические солевые батарейки, где использована гальваническая пара и электролит. При погружении стержней, выполненных из разных металлов, в раствор соли, на их концах образуется разность потенциалов.
Мощность такого гальванического элемента зависит от целого ряда факторов
- сечение и длину электродов;
- глубину погружения электродов в электролит;
- концентрацию солей в электролите и его температуру и т.д.
Чтобы получить электричество, требуется взять два электрода для гальванической пары – один из меди, второй из оцинкованного железа. Электроды погружают в грунт приблизительно на глубину в полметра, установив их на расстоянии около 25 см, относительно друг друга. Грунт между электродами следует хорошо пролить раствором соли. Замеряя вольтметром напряжение на концах электродов спустя 10-15 минут, можно обнаружить, что система дает бесплатно ток около 3 В.
Добыча электричества с помощью 2-х стержней
Если провести ряд экспериментов на разных участках, выяснится, что показания вольтметра варьируются в зависимости от характеристик грунта и его влажности, размеров и глубины установки электродов. Для повышения эффективности рекомендуется ограничить при помощи куска трубы подходящего диаметра контур, куда будет заливаться солевой раствор.
Внимание! Требуется использовать насыщенный электролит, а такая концентрация соли делает почву непригодной для роста растений.
Как получить электричество из земли и возможно ли это
Вопросами бесплатного получения электроэнергии задавалось множество хороших инженеров, таких как Никола Тесла, так и толпы лжеученных, которых ждало лишь разоблачение.
Результатом их работы является целый ряд схем и способов получения энергии из альтернативных источников. Реально действующих установок или опытов, которые могут нести практическую пользу немного.
В этой статье мы рассмотрим, как можно получить электричество из земли.
Возможно ли это?
Прежде чем рассмотреть технологические схемы и ответить на вопрос «как взять электроэнергию из почвы?», давайте разберемся насколько это реально.
Считается, что в земле очень много энергии и, если сделать установку – вы вечно будете бесплатно ей пользоваться. Это не так, ведь чтобы получить энергию нужен определенный участок земли и металлические штыри, которые вы в неё установите. Но штыри будут окисляться и рано или поздно приём энергии закончится. Кроме того, её количество зависит от состава и качества самой почвы.
Чтобы добиться хорошей мощности нужен очень большой участок земли, поэтому в большинстве случаев энергии, полученной из земли, достаточно для включения пары светодиодов или небольшой лампочки.
Из этого следует, что энергию из земли получить можно, но использовать её как альтернативу электросетям вряд ли получится.
Электричество из нуля и заземлителя
Этот способ подходит для жителей частных домов, если у них есть заземляющий контур. Знаете ли вы, что между заземлителем и нулевым проводом часто наблюдается разность потенциалов в 10-20 Вольт? Это значит, что их можно использовать бесплатно. Повысить их вы можете с помощью трансформатора.
Энергия потребленная таким образом счётчиком учитываться не будет. Такое напряжение можно определить либо вольтметром, либо подключив между этими двумя проводами низковольтную лампочку типа тех, что устанавливают в габариты или приборные панели автомобилей.
Важно! Не перепутайте фазу с нулём – это опасно!
Стоит отметить, что в качестве заземлителя используется отдельное устройство из металлических штырей, вбитых на глубину более 1 метра. Трубопровод в большинстве случаев не даст хорошего результата. Подробнее про заземление в частном доме вы можете узнать из нашей отдельной статьи.
Потенциал между крышей и землей
Этот метод также требует вбить в землю металлический штырь, к нему подключается провод. Второй провод подключается к металлической крыше. Так вы получите пару Вольт. Ток от такой схемы будет ничтожно мал и не факт, что его хватит для включения одного светодиода.
Гальванический элемент
Следующий способ – простая химия. Это самый реальный и понятный способ получения электричества из земли в домашних условиях. Для этого нужны медные и цинковые электроды. В их роли могут выступать пластины, штыри, гвозди. Если медь распространена – с цинком могут возникнуть проблемы, поэтому легче найти оцинкованное железо.
Нужно забить ваши электроды в землю на одинаковом расстоянии друг от друга. Допустим 1 метр в глубину и 0,5 метра между электродами. В таком случае медь будет катодом, а цинк – анодом. Напряжение такого элемента может составлять порядка 1-1,1 Вольта. Это значит, чтобы получить из земли электричество напряжением в 12 вольт нужно забить 12 таких электродов и соединить их последовательно.
Решающим фактором в такой батарее является площадь электродов, от этого зависит и сила тока, ровно, как и от того, что находится между ними.
Для того, чтобы батарея выдавала ток – земля должна быть влажной, для этого её можно полить, иногда цинковый электрод заливают раствором соли или щёлочи.
Для повышения токовой отдачи можно забить больше электродов и соединить их параллельно. Таким образом устроены все современные батареи и аккумуляторы.
На схеме ниже вы видите еще одну интересную реализацию такой батареи из медных труб и оцинкованных стержней.
Однако с течением времени электроды разрушаться и батарея постепенно прекратит свою работу.
Метод получения электричества по Белоусову
Валерий Белоусов много лет изучает молнии и защиту от них. Он является автором книг о бесплатной энергии и разработал ряд решений, чтобы получить электричество из земли.
На схеме вы можете видеть два условных обозначения заземления. Здесь один из них – это заземлитель, а второй, рядом с которым буква «А» – ноль бытовой электросети. На следующем видео демонстрируется работа такой установки и описываются результаты, полученные с её помощью:
Полученной энергии достаточно чтобы запитать светодиодную лампу на 220 Вольт малой мощности. Такой способ удобно использовать на даче, он может быть легко воспроизведён в домашних условиях.
Получение бесплатного электричества из земли своими руками возможно. Но говорить о практическом применении и подключении мощных потребителей сложно. Холодильник вы так не запустите. На сегодняшний день единственным хорошо изученным источником электроэнергии из недр земли являются природные ресурсы, такие как уголь, газ, топливо для атомных электростанций и т.д.
Наверняка вы не знаете:
Способ с нулевым проводом
Напряжение в жилой дом подается с использованием двух проводников: один из них фаза, второй – нуль. Если дом оборудован качественным заземляющим контуром, в период интенсивного потребления электроэнергии часть тока уходит через заземление в грунт. Подключив к нулевому проводу и заземлению лампочку на 12 В, вы заставите ее светиться, поскольку между контактами нуля и «земли» напряжение может достигать 15 В. И этот ток электросчетчиком не фиксируется.
Добыча электричества с помощью нулевого провода
Схема, собранная по принципу ноль – потребитель энергии – земля, вполне рабочая. При желании для выравнивания колебаний напряжения можно использовать трансформатор. Недостатком является нестабильность появления электричества между нулем и заземлением – для этого требуется, чтобы дом потреблял много электроэнергии.
Обратите внимание! Данный способ добывать даровое электричество пригоден только в условиях частного домовладения. В квартирах нет надежного заземления, а использовать в этом качестве трубопроводы систем отопления или водоснабжения нельзя. Тем более запрещено соединять контур заземления с фазой для получения электричества, так как заземляющая шина оказывается под напряжением 220 В, что смертельно опасно.
Несмотря на то, что такая система задействует для работы землю, ее нельзя отнести к источнику земной электроэнергии. Как добыть энергию, используя электромагнитный потенциал планеты, остается открытым.
При монтаже электрощита зачем соединять между собой ноль и землю?
Вот скопировал с инета—“”Немного теории.
Ток трехфазный 380В бегает между фазами, а ноль нужен для получения 220В. Расфазировка (распределение по фазам) в квартирном щитке выполняется для выравнивания нагрузок на фазы, т.е. по несколько квартир подключаются к одной фазе и стараются, чтобы квартиры были на разных этажах.
Замеряя ток рабочего нуля мы определяем ток между группами квартир, а не ток к земле или к нулю трансформатора. Ток по нулю трасформатора есть, но другой и только при не равномерной нагрузке на фазы.
Чем больше квартир в доме, тем лучше распределение нагрузок на фазы, тем стабильнее напряжение в сети 220В.
В квартиру приходит ноль и фаза. При измерении токов этих проводов – они должны быть равны. Но ноль в стояке щитка – это не тот же ноль в квартире, хоть и они соединены проводом. Ноль в стояке является связующим разные группы квартир, подключенных к разным фазам.
Энергия магнитного поля планеты
Земля представляет собой своего рода конденсатор сферической формы, на внутренней поверхности которой накапливается отрицательный заряд, а снаружи – положительный. Изолятором служит атмосфера – через нее проходит электрический ток, при этом разность потенциалов сохраняется. Утерянные заряды восполняются за счет магнитного поля, которое служит природным электрогенератором.
Как получить на практике электричество из земли? По сути, необходимо подсоединиться к полюсу генератора и организовать надежное заземление.
Устройство, получающее электричество из природных источников, должно состоять из следующих элементов
- проводник;
- заземляющий контур, к которому подсоединен проводник;
- эмиттер (катушка Тесла, высоковольтный генератор, позволяющий электронам покидать проводник).
Схема получения электроэнергии
Верхняя точка конструкции, на которой расположен эмиттер, должна располагаться на такой высоте, чтобы за счет разницы потенциалов электрического поля планеты электроны поднимались по проводнику вверх. Эмиттер их будет освобождать из металла и в виде ионов выпускать в атмосферу. Процесс будет продолжаться до тех пор, пока потенциал в верхних слоях атмосферы не станет вровень с электрическим полем планеты.
К цепи подключается потребитель энергии, причем чем эффективнее работает катушка Тесла, тем выше сила тока в цепи, тем больше (или мощнее) потребителей тока можно подключить к системе.
Так как электрическое поле окружает заземленные проводники, к которым относятся деревья, здания, различные высотные конструкции, то в городской черте верхняя часть системы должна располагаться выше всех имеющихся объектов. Своими руками создать подобную конструкцию не реально.
Видео по теме:
Прибор Вега и его особенности
Бтг работают по схеме захвата свободной энергии, после чего идёт её преобразование в индукционный ток. Адамс и Бедини посвятили свою жизнь изучению этого физического явления. Приборы можно применять как автономное обеспечение электроснабжением для:
- частных домов;
- фермерских или же лесных угодий;
- судоходства;
- автомобилестроения;
- самолётостроения и космонавтики.
Эффективность бестопливных генераторов на магнитах зачастую проявляется в местах, которые не получается обеспечить топливом, а силы природной энергии недостаточно для полного обеспечения электричеством. Следует понимать, что устройство Адамса не является вечным генератором электричества. При эксплуатации ему необходим периодический ремонт. Также агрегат требует постоянного обслуживания.
Бестопливный генератор на магнитах от имеет ряд преимуществ:
- Прибор можно использовать в любых погодных условиях, а также вдали от сетей электроснабжения.
- Топливом является кинетическая энергия.
- Ограничения по производству электричества отсутствуют.
- Полностью безопасен для организма человека и природы.
- Сделать бестопливный генератор можно своими руками.
- Агрегат очень компактный.
- Минимальный срок эксплуатации составляет 20 лет.
Основное преимущество заключается в том, что не нужно самостоятельно придавать движение валу. Весь процесс автоматизирован, благодаря преобразованию кинетической энергии в электрический импульс.
Электричество из магнита
Существует большое количество устройств, относящихся к так называемым «вечным двигателям». Среди них имеются многочисленные конструкции генераторов тока, позволяющие получать электричество из магнита. В этих устройствах применяются свойства постоянных магнитов, способных к совершению внешней полезной работы. В настоящее время ведутся работы по созданию магнитного двигателя, способного приводить в движение устройство вырабатывающее ток. Исследования в этой области еще до конца не закончены, но, на основе полученных результатов можно представить себе его устройство принцип действия.
Как получить электричество из магнита
Для того, чтобы понять как работают подобные устройства, необходимо точно знать, чем они отличаются от обычных электрических двигателей. Все электродвигатели, хотя и пользуются магнитными свойствами материалов, движение свое осуществляют исключительно под действием тока.
Для работы настоящего магнитного двигателя используется только лишь постоянная энергия магнитов, с помощью которой выполняются все необходимые перемещения. Основной проблемой этих устройств является склонность магнитов к статическому равновесию. Поэтому на первый план выходит создание переменного притяжения, с использованием физических свойств магнитов или механических приспособлений в самом двигателе.
Принцип действия двигателя на постоянных магнитах основан на крутящем моменте отталкивающих сил. Происходит действие одноименных магнитных полей постоянных магнитов, расположенных в статоре и роторе. Их движение осуществляется во встречном направлении по отношению друг к другу. Для того, чтобы решить проблему притяжения был использован медный проводник с пропущенным по нему электрическим током. Такой проводник начинает притягиваться к магниту, однако при отсутствии тока, притяжение прекращается. В результате, обеспечивается цикличное притяжение и отталкивание деталей статора и ротора.
Основные виды магнитных двигателей
За весь период исследований было разработано большое количество устройств, позволяющих получить электричество из магнита. Каждый из них имеет собственную технологию, однако все модели объединяет магнитное поле. Среди них не существует идеальных вечных двигателей, поскольку магниты через определенное время полностью утрачивают свои качества.
Наиболее простое устройство у антигравитационного магнитного двигателя Лоренца. В его конструкцию входят два диска с разноименными зарядами, подключенные к питанию. Половина этих дисков размещается в полусферическом магнитном экране, после чего начинается их постепенное вращение.
Самым реальным функционирующим устройством считается простейшая конструкция роторного кольцара Лазарева. Он состоит из емкости, которую разделяет пополам специальная пористая перегородка или керамический диск. Внутри диска устанавливается трубка, а сама емкость заполняется жидкостью. Вначале жидкость попадает в низ емкости, а затем под действием давления начинает пот трубке перемещаться вверх. Здесь жидкость начинает капать из загнутого конца трубки и вновь попадает в нижнюю часть емкости. Для того, чтобы это сооружение приняло форму двигателя, под каплями жидкости располагается колесико с лопастями.
Непосредственно на лопастях устанавливаются магниты, образующее магнитное поле. Вращение колесика ускоряется, вода перекачивается быстрее и, в конце концов, устанавливается определенная предельная скорость работы всего устройства.
Основой линейного двигателя Шкондина является система расположения одного колеса в другом колесе.Вся конструкция состоит из двойной пары катушек с разноименными магнитными полями. За счет этого обеспечивается их движение в разные стороны.
В альтернативном двигателе Перендева используется только магнитная энергия. Конструкция состоит из двух кругов – динамичного и статичного. На каждом из них с одинаковой последовательностью и интервалами расположены магниты. Свободная сила самоотталкивания приводит в бесконечное движение внутренний круг.
Планета Земля: природный электрический мотор – генератор и альтернативная чистая энергетика на его основе
Генератор на неодимовых магнитах: принцип и схема работы
Неодимовые магниты – элементы, которые позволяют конструировать альтернативные источники энергии. Неважно, какими они будут: ветряными, водными или механическими. Речь идёт не о мифологических вечных двигателях, а о целиком реальных устройствах с высоким КПД. В быту они, как минимум, помогут вам зарядить гаджеты или автомобильный аккумулятор.
Внимание! Все утверждения о «реально бесплатной» или «свободной» энергии и вечных двигателях на основе неодимовых магнитов – ложь, противоречащая законам физики. Для работы любого двигателя нужна энергия. Задача генераторов на основе этих элементов – уменьшить её потребление извне, при этом максимально увеличив производительность.
В таких устройствах за основу взят обычный маятник, а давать низкопотенциальную энергию будет сила тяжести. Схема работы такова:
- В верхней части маятник вольно качается на паре подшипников.
- Внизу на конце рычага маятника находится дугообразный отрезок с парой мощных неодимовых магнитов.
- На неподвижной опоре в верхних точках колебания маятника установлены два электромагнита, сопоставимые по мощности с неодимовыми. По мере приближения маятника они будут кратковременно включаться и отталкивать его.
- По качающейся дуге располагаются менее мощные неодимовые магниты. На них возложена функция ротора.
Магниты
Принцип работы устройства
Теоретически, в полной мере, этим критериям как раз и отвечает электромагнитный генератор, возбуждение которого производится постоянными магнитами. Принцип работы основывается на законе Ампера, в котором участвует проводник и электроток в магнитном поле. Этот закон выражается формулой F=BLI, то есть сила находится в прямой пропорциональной зависимости с индукцией F, длиной проводника L и силой тока в этом проводнике I. Таким образом, мощность электромагнитного генератора может возрастать вместе с мощностью постоянных магнитов.
Можно сделать вывод, что использование постоянных магнитов, как неисчерпаемый источник энергии, позволит создать установку, с коэффициентом полезного действия более 100%. Однако, здесь не все так просто и этому есть целый ряд причин.
Плюсы и минусы конструкции
Специалисты считают, что для обеспечения электричеством загородного дома достаточно маятника с осью длиною 6 м. В таком случае электромагниты будут толкать неодимовые магниты на маятнике с силой более 100 кг. Плюсы такого устройства в том, что оно не зависит от ветра или солнца. Кроме того, такой генератор не нуждается в дорогих аккумуляторах, как другие альтернативные генераторы энергии.
Однако при использовании не исключены проблемы:
- В момент движения маятника в обратную сторону может смениться полярность магнитов. Решается с помощью включения в цепь тиристоров и диодов.
- В момент зависания маятника в верхней точке может возникнуть эффект пульсации в сети. Решается так:
- устанавливается конденсатор, который краткосрочно собирает энергию, препятствуя скачкам;
- монтируется аккумулятор, который будет собирать энергию долгосрочно;
Генератор на неодимовых магнитах
- конструируется ещё один генерирующий маятник, который будет работать асинхронно с первым (когда один – в верхней точке окружности, второй – в нижней).
Внимание! С ферритовыми магнитами этот проект реализовать не удастся из-за их технических характеристик.
Преимущества
Универсальный линейный генератор на постоянных магнитах выгодно отличается от всех современных аналогов многочисленными положительными характеристиками:
- Небольшой вес и компактность. Такой эффект достигается за счет отсутствия кривошипно-шатунного механизма.
- Доступная цена.
- Качественная наработка на отказ из-за отсутствия системы сжигания.
- Технологичность. Для производства долговечных деталей используются исключительно нетрудоемкие операции.
- Регулировка объема камеры сгорания топлива без остановки двигателя.
- Базовый ток нагрузки генератора не влияет на магнитное поле, что не влечет за собой снижение характеристик оборудования.
- Отсутствует система зажигания.
Смотреть галерею
Ветрогенератор на неодимовых магнитах своими руками: монтаж основы
В качестве основы для таких установок выступают автомобильная ступица плюс тормозные диски. Преимущество в том, что её просто достать (в т.ч. купить б/у) и не нужно основательно переделывать или дополнять:
- разберите;
- почистите от ржавчины (например, стальной щёткой, насаженной на дрель);
- смажьте детали;
- соберите;
- покрасьте корпус и пользуйтесь.
Неодимовые магниты будут крепиться прямо на ступицу. Их потребуется около 20 штук: примерная высота 8 мм, диаметр 25 мм. Очень важно правильно, равномерно и точно расположить магниты – по кругу, с чередованием полюсов. Крепить их лучше на клей, который стоит предварительно испытать на прочность.
Совет. Народные конструкторы рекомендуют сначала расчертить ступицу или разложить магниты на бумажном макете, чтобы разместить их на равном расстоянии друг от друга.
После того как все магниты будут приклеены, залейте поверхность диска эпоксидной смолой. По контуру намотайте борт. Материал и способ может быть разным:
- грубый картон;
- гибкая пластмасса;
- пластилин;
- тонкая полоска шпона.
Ветрогенератор
Для этого генератора лучше всего подходит трёхфазная модель. Она сложна в сборке, но имеет ощутимые преимущества:
- не производит вибрацию, которая является бичом ветрогенераторов;
- бесшумна;
- осуществляет постоянную подачу тока;
- генерирует стабильную мощность (фазы компенсируют друг друга).
Cамодельный генератор для ветряка
Как сделать низкооборотный генератор для ветряка из неодимовых магнитов. Самодельный генератор для ветряка, схемы, фото, видео.
Для изготовления самодельного ветряка в первую очередь требуется генератор, при чём, предпочтительней низкооборотный. В этом и заключается основная проблема, найти такой генератор достаточно сложно. Первое что приходит в голову, взять стандартный автомобильный генератор, но все автомобильные генераторы рассчитаны на высокие обороты, зарядка аккумулятора начинается от 1000 об/мин. Если установить автогенератор на ветряк, то достичь таких оборотов будет сложно, понадобится делать дополнительный шкив с ременной или цепной передачей, всё это усложняет и утяжеляет конструкцию.
Для ветряка нужен низкооборотный генератор, оптимальный вариант генератор аксиального типа на неодимовых магнитах. Поскольку таких генераторов по доступной цене в продаже практически нет, аксиальный генератор можно изготовить самостоятельно.
Самодельный генератор для ветряка из неодимовых магнитов.
Для изготовления генератора аксиального типа понадобятся:
- Ступица от авто, тормозные диски.
- Неодимовые магниты.
- Медная проволока (0,7мм).
- Эпоксидная смола.
- Крепёжные элементы.
Генератор аксиального типа для ветряка представлен на схеме.
В данном случае в роли статора будет диск с катушками, ротором будут два диска с постоянными магнитами. При вращении ротора в катушках статора будет генерироваться ток, который нужен нам для зарядки аккумуляторов.
Самодельный генератор: изготовление статора.
Статор – неподвижная часть генератора состоит из катушек, которые размещаются напротив магнитов ротора. Внутренний размер катушек обычно равен внешнему размеру магнитов, которые используются в роторе.
Для намотки катушек можно изготовить простое приспособление.
Толщина медной проволоки для катушек примерно 0,7 мм, количество витков в катушках нужно подсчитывать индивидуально, общее количество витков во всех катушках должно быть не менее 1200.
Катушки размещаются на статоре, выводы катушек можно подключить двумя способами, в зависимости от того на сколько фаз будет генератор.
Трёхфазный генератор будет более эффективным для ветрогенератора, поэтому рекомендуется соединить катушки по типу звезда.
Чтобы катушки зафиксировать на статоре их заливают эпоксидной смолой. Для этого нужно сделать форму для заливки из куска фанеры, чтобы жидкая смола не растеклась, нужно сделать борта из пластилина или аналогичного материала. На этом этапе нужно предусмотреть проушины для крепления статора.
Важно чтобы получилась идеально ровная плоскость, поэтому перед заливкой матрицу с катушками нужно установить на ровную поверхность. Катушки перед заливкой нужно тщательно проверить мультиметром и выложить на матрицу по кругу с таким расчётом, чтобы потом магниты ротора находились напротив катушек.
В матрицу заливается жидкая эпоксидная смола по уровень края катушек, перед заливкой форму нужно смазать вазелином.
Когда смола полностью застынет, матрицу разбираем и извлекаем готовый статор с катушками.
Статор фиксируется на корпусе генератора с помощью болтов или шпилек с гайками.
Самодельный генератор: изготовление ротора.
В этой конструкции ротор будет двусторонним, статор с катушками будет посредине между вращающимися дисками с магнитами.
На каждом диске ступицы нужно по кругу расположить магниты, в последовательности поочерёдно меняя полюса.
Когда диски ротора будут установлены, магниты должны быть направлены друг к другу разными полюсами.
Магниты нужно приклеить к дискам суперклеем и залить эпоксидной смолой, верхняя часть магнитов должна остаться непокрытой.
Изготовление ротора для самодельного генератора видео.
Чтобы закрепить статор на ветрогенераторе нужно изготовить металлическое основание, статор крепится к нему с помощью болтов или шпилек.
Собираем всю конструкцию, при этом нужно оставить минимальный зазор между статором ротором, чем меньше зазор, тем эффективней генератор будет вырабатывать энергию. На выход из катушек нужно подключить диодный мост.
В итоге у вас получится аксиальный генератор на неодимовых магнитах. Самодельный генератор может работать на низких оборотах и при этом вырабатывать достаточно энергии для зарядки аккумуляторных батарей, что немаловажно при установке ветогенератора в районах, где преобладают слабые ветра.
Генератор для ветряка видео.
Самодельный генератор для ветряка на 2,5 кВт видео.
Сборка и установка ветрогенератора
После завершения сборки ротора следует подготовить детали для неподвижной части конструкции – статора. Он состоит из катушек из медного провода. Его сечение должно быть большого диаметра, чтобы снизить сопротивление. Как правило, намотку таких катушек осуществляют на глаз. Чтобы зарядить батарею в 12В при 120-150 оборотах в минуту, нужно около полутора тысяч витков (суммарно для всех катушек). Наматывается провод на готовых частях будущей конструкции или самодельных макетах.
Статоры могут быть как круглые, так и прямоугольные. Всё зависит от параметров магнитов. Если форма прямоугольная, лучше, чтобы магнитное поле располагалось вдоль большей стороны. Толщина неподвижных элементов также должна соответствовать высоте магнитов. В таком случае вы получите наибольшую эффективность устройства.
Ветряк
Генератор собран – можно приступать к монтажу мачты и сборке винта. Для вышки главное, чтобы устройство на её вершине имело доступ к свободному потоку воздуха. Если она установлена среди застройки, высота должна минимум на 1 м превышать уровень близлежащих строений или деревьев. Для открытой площадки обычно достаточно 5 м. Также мачта должна соответствовать следующим критериям:
- прочность;
- удобство для монтажа и обслуживания генератора на высоте;
- устойчивость, в т.ч. – к вибрации.
Винты для генератора лучше всего изготавливать крыльчатой формы – для максимального аэродинамического эффекта. Материал – ПВХ трубы диаметром от 4 мм или металл. Лопасти крепятся к двигателю с помощи металлической головки с приваренными пластинками по числу винтов. Оптимальное количество лопастей – от 3 до 6.
Внимание! Винты крепятся на расстоянии не меньше 25 см от генератора. Это мера безопасности. При сильном порыве они могут сломаться о корпус устройства.
Не стоит отчаиваться, если генератор в собранном виде не показал того результата, на который вы рассчитывали. Проверьте расчёты, доработайте и усовершенствуйте модель.
Ограничения
Все большую популярность приобретает доступный и надежный линейный генератор. В качестве источника энергии этот агрегат можно использовать как в бытовой, так и промышленной сфере. Но каждый пользователь должен помнить о некоторых ограничениях. В процессе эксплуатации стираются кулачки приводов клапанов, в результате чего механизм не открывается, из-за чего мощность падает до критических отметок.
Из-за частой эксплуатации быстро прогорают края горячего клапана. В устройстве присутствуют вкладыши – подшипники скольжения, которые расположены на шейке коленвала. Со временем эти изделия тоже стираются. В результате образуется свободное пространство, через которое начинает проходить заправленное масло.
Смотреть галерею
Бесплатное электричество! Это может сделать каждый!
Здравствуйте, уважаемые читатели сайта Uspei.com. Сегодняшнюю статью посвящаем изготовлению простейшего прибора для получения бесплатного электричества. И сразу вам хочется сказать, что это все не фейк и я это вам докажу.
Следующий вопрос, почему это электричество не применяется везде? Многие скажут- “Ну кому это выгодно и зачем бесплатно”. Нужно же с нас деньги за что-то брать, поэтому о таком приборе молчат и скрывает всю информацию по изготовлению.
Ну а мы с вами, попробуем изготовить миниатюрные источники бесплатного электричества из подручных материалов. Для этого, нам всего лишь понадобится круглый магнит и проволока.
Магнит, как оказалось, в настоящее время не так просто раздобыть. Берем проволоку и наматываем ее на магнит по кругу, снять изоляцию с обоих концов. Благодаря круговой намотке и замкнутому контуру, магнитные поля, создаваемые магнитом, приводят в движение свободные электроны в проволоке.
И поэтому, вокруг так называемой катушки, создается электромагнитное поле, которое и является источником бесплатного электричества. Все, магнитная катушка готова. Ну а теперь, приступим к испытаниям. Испытания проведем на люминесцентной лампочке,которую подносим к катушке.
Как видим, лампочка реагирует на электромагнитное поле и загорается. В зависимости от того, как поднести лампочку к полю, так и степень загорания и яркость меняется. Полностью лампочка загорается только в определенном положении, если бы магнит был побольше, то и результат был бы получше.
А сейчас попробуем поднести диодную лампочку, посмотрим, как она реагирует на поле. Как видим, она тоже загорается и также меняется яркость в зависимости от того, как близко лампочка находится от катушки.
А теперь поднесем обычную лампочку накаливания на 60 ватт к магнитной катушке, как не подноси, ни крути, никакой реакции нет. Возможно не хватает мощности магнита.
Еще проверим, как будет реагировать кусок светодиодной ленты. Результат совсем слабенький, но реакция есть. Как видим, магнитная катушка работает, возможно не та мощность, которую хотелось бы видеть, но здесь маленький магнит и изготовлено все в домашних условиях, без каких-либо расчетов, а самый главный результат достигнут!