2. Какие заряды называют свободными? Какие вещества называют проводниками? Приведите примеры проводников.
2. Заряженные частицы называются свободными, они могут перемещаться под действием электрического поля.
Вещество является проводником, если содержащиеся в нем свободные заряды способны перемещаться по всему объему вещества. Например, металлы, растворы кислот, солей и щелочей и многие другие вещества.
Решебник по физике за 10 класс (В.А.Касьянов, 2009 год),
задача №2
к главе «14. Энергия электромагнитного взаимодействия неподвижных зарядов. §84. Электрическое поле в веществе. Ответы на вопросы».
Свободные и связанные электрические заряды, токи проводимости и смещения
Частицы, из которых состоят любые вещества, обладают электрическими зарядами. Электрон имеет отрицательный заряд е = 0,16 • 10 -18 к, а протон — такой же положительный заряд. Суммарный заряд атома, молекулы или тела, состоящего из множества молекул, может быть положительным, отрицательным или равным нулю в зависимости от соотношения между общими положительными и отрицательными зарядами составляющих их элементарных частиц.
В зависимости от способности перемещаться в электрическом поле заряды могут быть разделены на две большие группы. Заряды первой группы характеризуются возможностью неограниченного перемещения в электрическом поле и поэтому называются свободными зарядами. Вторая группа зарядов не имеет этой возможности, их перемещение ограничивается структурой атома, молекулы, кристалла или неоднородностью строения вещества. Эти заряды называются связанными.
Разделение на свободные и связанные заряды не всегда зависит только от физической природы рассматриваемых частиц. Заряды, являющиеся свободными в однородной среде, могут оказаться связанными при образовании композиций, состоящих из различных материалов.
Свободные электроны и ионы вещества под действием электрического поля перемещаются от одного электрода к другому, образуя ток проводимости.
Связанные электрические заряды под действием электрического поля имеют возможность перемешаться только в некоторых, часто очень ограниченных, пределах. Этот процесс перемещения, называемый поляризацией, характеризуется вектором поляризации, и существенно зависит от физических связей между зарядами. При поляризации смещаются заряды под действием электрического поля и появляется ток смещения.
Диэлектрик содержит равное количество положительных и отрицательных связанных между собой зарядов, и влияние внешнего электрического поля сказывается на взаимном смещении центров положительных и отрицательных зарядов и в появлении электрических моментов пар разноименных зарядов — дипольных моментов. В однородном поле вектор поляризации представляет собой среднее значение суммарного дипольного момента единицы объема. Поляризации диэлектрика зависит от напряженности электрического поля.
Материалы, в которых имеют значение только токи проводимости, а токами смещения можно пренебречь, называются проводниками. Материалы, в которых токи проводимости ничтожны и ими можно пренебречь, называются изоляторами. Материалы, в которых большое значение имеет поляризация, называются диэлектриками (смотрите — Металлы и диэлектрики — в чем отличие). Те материалы, в которых необходимо учитывать как токи проводимости, так и токи смещения, относят к категории полупроводников.
Явление поляризации диэлектриков и появления тока смещения в промышленности используется при высокочастотном нагреве диэлектриков (например, сушка древесины, картона, нагрев в пищевой промышленности) и полупроводников.
Нагреваемый материал помещается между пластинами конденсатора, к которым подведено напряжение высокой частоты. Токи проводимости и смещения, возникающие в материале, помещенном в электрическом поле высокой частоты, вызывают выделение тепла в материале и его нагрев. Этот вид нагрева называется диэлектрическим нагревом.
Процесс сушки влажных материалов, т. е. удаление из них влаги, может происходить за счет двух явлений: непосредственного испарения влаги внутри материала и выхода ее в виде пара и перемещения влаги в жидкой фазе из внутренних областей к поверхности. Наличие электрического поля в материале оказывает существенное влияние на испарение и перемещение влаги, позволяя значительно интенсифицировать процесс сушки.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Свободные и связанные заряды
Когда рассматриваются диэлектрики в электростатических полях, следует различать два вида электрических зарядов: свободные и связанные.
Свободные заряды – это заряды, перемещающиеся под действием поля на существенные расстояния.
Например, электроны в проводниках, ионы в газах и заряды, привносимые извне на поверхность диэлектриков, которые нарушают их (диэлектриков) нейтральность. Заряды, входящие в состав нейтральных, в целом, молекул диэлектриков, так же, как ионы, закрепленные в кристаллических решетках твердых диэлектриков около положений равновесия, получили название связанных зарядов.
Поверхностная плотность зарядов
Формула потенциала электростатического поля в диэлектрике φ запишется как:
φ = φ 0 + φ ‘ ( 1 ) с φ 0 , являющимся потенциалом поля, создаваемого свободными зарядами, с
φ ‘ — потенциалом поля, создаваемого связанными зарядами.
φ 0 = ∫ ρ d V R + ∫ σ d S R ( 2 ) , ρ — это объемная плотность свободных зарядов, σ — их поверхностная плотность. Определение потенциала поля связанных зарядов:
φ ‘ = ∫ P → R → R 3 d V ( 3 ) , где P → служит вектором поляризации.
Можно сделать вывод, что из ( 1 ) и ( 3 ) получим:
φ = φ 0 + ∫ P → R → R 3 ( 4 ) .
При использовании теоремы Остроградского-Гаусса с некоторыми формулами векторного анализа имеем совсем иной вид уравнения ( 4 ) :
φ = φ 0 + ∫ ρ s υ R d V + ∫ σ s υ R d V = ∫ ρ s υ + ρ R d V + ∫ σ s υ + σ R d V ( 5 ) ,
где ρ s υ обозначается в качестве средней объемной плотности связанных зарядов, а σ s υ — средняя поверхностная плоскость связанных зарядов. По уравнению ( 5 ) видно, что при наличии диэлектрика электрическое поле совпадает с полем, созданным свободными зарядами плюс поле, которое создается связанными зарядами.
Плотность связанных зарядов
Если P → = c o n s t , то средняя плотность связанных зарядов равняется нулю. Это говорит о том, что накопление зарядов одного знака в диэлектрике не происходит. На границе между поляризованным диэлектриком и вакуумом или металлом сосредоточен поверхностный связанный заряд плотности:
σ s υ = ± P n , — d i v P → = ρ s υ ( 6 ) с P n , являющейся нормальной компонентой вектора поляризованности диэлектрика на его границе с вакуумом.
Функция φ вида ( 7 ) будет решением уравнения:
∇ 2 φ = — 4 π ( ρ + ρ s υ ) ( 7 ) .
При E → = — ∇ φ → d i v E → = — ∇ 2 φ ( 8 ) и ( 6 ) получим:
d i v E → = 4 π ρ — 4 π d i v P → ( 9 ) .
d i v E → + 4 π P → = 4 π ρ ( 10 ) .
Выражение ( 10 ) называют основным дифференциальным уравнением электростатического поля в любой произвольной среде.
Для получения полной системы уравнений электростатики, нужно использовать формулу ( 10 ) с определением, связывающим векторы напряженности электрического поля с векторами поляризации.
Зависимость P → E → представится как:
P i = ε 0 ∑ j χ i j E j + ε 0 ∑ j , k χ i j k E j E k + . . . ( 11 ) , где i , j служат для нумерации компонентов по осям декартовой системы координат ( i = x , y , z ; j = x , y , z ) , χ i j — это тензор диэлектрической восприимчивости.
Если имеется внешнее электрическое поле, вещество становится источником поля, значит, поле изменяется.
Дан плоский конденсатор с пространством, между обкладками которого заполнено однородным изотропным диэлектриком с диэлектрической восприимчивостью χ . На них располагается поверхностный заряд с плотностью σ . Определить напряженность результирующего поля в конденсаторе.
Решение
Если при имеющихся обкладках конденсатора находится вакуум, то напряженность поля, создаваемого заряженными обкладками, запишется как:
E v a k = σ ε 0 с ε 0 = 8 , 85 · 10 — 12 Ф м , являющейся электрической постоянной.
+ q , — q — это заряды, находящиеся на обкладках конденсатора.
E v a k → — напряженность поля, создаваемого обкладками конденсатора.
— q ‘ , + q ‘ — заряды диэлектрика.
E → ‘ — напряженность поля, создаваемого в результате поляризации диэлектрика.
Очевидно, что диэлектрик поляризуется, тогда напряженность уменьшается. Диэлектрик однородный, а поле, создаваемое в плоском конденсаторе, также считается однородным. Отсюда вывод – поляризованность диэлектрика однородна, иначе говоря, отсутствуют объемные связанные заряды ρ s υ = 0 . Имеются только поверхностные с плотностью σ s υ :
Так как известна связь напряженности поля и вектора поляризации для изотропного диэлектрика, то
σ s υ = χ ε 0 E с Е , являющейся проекцией напряженности на внешнюю нормаль к поверхности диэлектрика.
Направление напряженности идет от стороны положительно заряженной пластины к отрицательной. Из σ s υ = χ ε 0 E получаем, что поверхностная плотность связанного заряда на границе с положительно заряженной пластиной отрицательная, а на границе с отрицательной пластиной – положительная. Следовательно, напряженность поля в диэлектрике между этими пластинами равняется напряженности поля в вакууме между ними, но со значением поверхностной плотности заряда, вычисляемой по формуле σ ‘ = σ — σ s υ .
На основании выше сказанного зафиксируем, что напряженность поля в конденсаторе с диэлектриком запишется как:
E = σ — σ s υ ε 0 = σ — χ ε 0 E ε 0 .
Произведем выражение из E = σ — σ s υ ε 0 = σ — χ ε 0 E ε 0 искомой напряженности:
Свободные и связанные заряды
Свободными называют заряды, которые могут под воздействием электрического поля перемещаться за значительные расстояния.
Свободными являются электроны в проводниках, ионы в газах, заряды на поверхности диэлектрика, которые попали на него снаружи, нарушающие нейтральность этих веществ.
Заряды, которые входят в состав нейтральных молекул диэлектриков, ионы, закрепленные в узлах кристаллических решеток у положений своего равновесия, являются связанными зарядами.
Проводники и свободные заряды в них
Проводником называют вещества, в которых свободные заряды могут двигаться по всему объему.
Проводниками являются металлы, щелочи, кислоты, солевые растворы и т.д.
При помещении проводника во внешнее электрическое поле происходит разделение зарядов противоположного знака. Данное явление называют электростатической индукцией. Как только проводник попал в электрическое поле, свободные заряды начинают двигаться. Перераспределение этих зарядов изменяет электрическое поле. Движение зарядов происходит до тех пор пока напряженность электрического поля внутри проводника не станет равна нулю. Отметим, что свободные заряды распределены на поверхности проводника таким образом, что $\overline
В равновесии заряды распределены так, что равнодействующая всех сил, приложенных к каждому заряду, была равна нулю. Следовательно, необходимым условием электростатического равновесия является равенство нулю напряженности электростатического поля внутри проводника ($\overline
Условие отсутствие электростатического поля внутри проводника ведет к тому, что заряды распределяются только на поверхности проводника.
Используя теорему Гаусса можно получить формулу, определяющую напряженность электростатического поля около поверхности проводника. Выделим на поверхности проводника элемент $\Delta S$, который можно считать плоским, поверхностную плотность заряда на нем постоянной ($\sigma $). Построим замкнутую цилиндрическую поверхность составляющие которой перпендикулярны поверхности проводника, а основания параллельны $\Delta S$ (рис.1). При этом нижнее основание нашего цилиндра находится внутри проводника, где $\overline
При таком выборе поверхности поток напряженности проходит только через верхнее основание выделенного цилиндра, тогда по теореме Гаусса — Остроградского имеем:
Формула (1) дает напряжённость полного электростатического поля, которое существует около поверхности проводника, независимо от того, создается ли это поле только самим проводником, несущим заряд или еще другими зарядами.
Диэлектрики и связанные заряды в них
Диэлектриками называют вещества, которые в обычном состоянии содержат только связанные заряды. Примерами диэлектриков являются: дистиллированная вода, масла, стекло, фарфор и т.д.
Если диэлектрик поместить в электрическое поле, то заряды не могут разделиться, так как свободных зарядов нет. В таком случае происходит поляризация, то есть процесс смещения зарядов, имеющих противоположные знаки в пределах молекулы (или атома). В результате поляризации на поверхности диэлектрика возникают связанные заряды. При этом, вектор напряженности поля, создаваемого связанными зарядами, имеет направление противоположное вектору напряженности внешнего поля. При этом говорят, что диэлектрик ослабляет электрическое поле в $\varepsilon $раз по сравнению с тем же полем в вакууме. $\varepsilon $- диэлектрическая проницаемость вещества.
Примеры задач с решением
Задание. Как, используя теорему Гаусса — Остроградского, показать, если проводник заряжен, избыточный заряд распределяется по его поверхности?
Решение. Рассмотрим произвольную замкнутую поверхность, которая выделяет некоторый объем внутри проводника ($V$) (рис.2).
Во всех точках этой поверхности напряженность электрического поля равна нулю:
Это означает, что поток напряженности через данную поверхность равен нулю:
По теореме Гаусса:
Из выражений (1.2) и (1.3) следует, что полный заряд в выделенном объеме, ограниченном рассматриваемой поверхностью равен нулю:
Так как мы выбирали поверхность произвольно, то результат можно применить к любому участку внутри проводника до его поверхности.
Ответ. Мы получили, что у проводника избыточный заряд распределен по его поверхности.
Задание. От чего зависит плотность распределения заряда на поверхности проводника?
Решение. Если заряженный проводник является уединенным, то плотность заряда ($\sigma $) тем больше, чем больше полный заряд проводника ($q$). Допустим, что проводник является шаром. В таком случае заряд распределен по поверхности равномерно так, что:
Напряженность поля, которое создает заряженный шар, около его поверхности равна:
Принимая во внимание (2.1), имеем:
Выражение (2.3) выполняется в общем случае, а не только для заряженного шара. Величину $\sigma $ можно выразить через потенциал шара, зная, что:
Учитывая (2.4) и (2.1), получаем:
Какой сложной не была бы форма проводника, потенциал проводящего тела во всех точках одинаков. Значит, поверхностная плотность заряда будет больше там, где меньше R, то есть, где кривизна поверхности больше. В этих же местах будет больше напряженность электрического поля.