Урок физики по теме "Постоянные магниты. Магнитное поле Земли". 8-й класс
Назад Вперёд
Цель урока: ознакомить учащихся со свойствами постоянных магнитов и пояснить происхождение магнитного поля Земли.
- Образовательная: Познакомить со свойствами постоянных магнитов и их применением в технике; дать представление о магнитном поле Земли.
- Развивающая: Развивать аналитическое мышление и творческую самостоятельность учащихся при работе в малых группах, умение проводить исследования и анализировать полученные результаты.
- Воспитывающая: Воспитывать культуру общения, коммуникативные качества.
Оборудование к уроку: компьютер, мультимедийный проектор, экран, презентация; полосовой магнит (2 шт.), подковообразный магнит, магнитная стрелка на подставке (или компас), стальные скрепки, медный провод, карандаш (2 шт.), ластик, стальной и железный стержни, глобус, железные опилки, наборы магнитов для парной работы учащихся.
Демонстрации: взаимодействие постоянных магнитов; спектры магнитных полей постоянных магнитов; магнитное поле Земли; устройство и действие компаса.
Тип урока: комбинированный урок.
Ход урока
1. Организационный момент.
2. Актуализация знаний. (Слайд 2-4)
Выполнение тестовых заданий с выбором ответа. Анализ ошибочных решений.
Катушка с током представляет собой.
А). витки провода, включаемые в электрическую цепь.
Б). прибор, состоящий из витков провода, включаемых в электрическую цепь.
В). каркас в виде катушки, на который намотан провод, соединенный с клеммами, подключаемыми к источнику тока.
2. Какие полюсы имеет катушка с током? Где они находятся?
А) Северный и южный; на концах катушки.
Б) Северный и южный; на середине катушки.
В) Западный и восточный; на концах катушки.
3.Какова форма магнитных линий магнитного поля катушки с током? Каково их направление?
А) Кривые, охватывающие катушку снаружи; от северного полюса к южному.
Б) Замкнутые кривые, охватывающие все витки катушки и проходящие сквозь ее отверстия; от северного полюса к южному.
В) Замкнутые кривые, проходящие внутри и снаружи катушки; от южного полюса к северному.
4. Электромагнит – это .
А). катушка с железным сердечником.
Б). любая катушка с током.
В). катушка, в которой можно изменять силу тока.
5. От чего зависит магнитное действие катушки с током?
А) От числа витков, силы тока и напряжения на ее концах.
Б) От силы тока, сопротивления провода и наличия или отсутствия железного сердечника внутри катушки.
В) От числа витков, силы тока и наличия или отсутствия железного сердечника.
6. Какое действие надо выполнить, чтобы электромагнит перестал притягивать к себе железные тела?
А) Изменить направление тока.
Б) Разомкнуть электрическую цепь.
В) Уменьшить силу тока.
3. Изучение нового материала
Демонстрационный эксперимент (слайд 5). Для опыта возьмем стальной и железный стержни и намотаем на них 20-30 витков изолированного провода. Пропустим по обмотке постоянный электрический ток. Поднося стержни к металлическим опилкам, обнаружим их магнитные свойства. После выключения электрического тока стержень из железа размагничивается, а стальной стержень сохраняет способность притягивать металлические тела. Таким образом, в природе существуют вещества, которые длительное время могут сохранять намагниченность.
Тела, длительное время сохраняющие намагниченность, называются постоянными магнитами. (Слайд 6)
Любой кусок железа или стали становится магнитом, если по нему несколько раз провести в одном направлении концом постоянного магнита. Магниты могут иметь разнообразную форму и размеры. Делятся на искусственные и естественные магниты. Искусственные – сталь, никель, кобальт приобретают магнитные свойства в присутствии магнитного железняка. Богатые залежи магнитного железняка имеются на Урале, на Украине, в Карелии, Курской области. (слайд 7)
Французский ученый Ампер объяснял намагниченность железа и стали существованием электрических токов, которые циркулируют внутри каждой молекулы этих веществ. Вокруг этих токов существуют магнитные поля, которые и приводят к возникновению магнитных свойств вещества. (Слайд 8)
Во времена Ампера о строении атома еще ничего не знали, поэтому природа молекулярных токов оставалась неизвестной. Теперь мы знаем, что в каждом атоме имеются отрицательно заряженные частицы – электроны. Движение электронов представляет собой круговой ток, порождающий магнитное поле.(Слайд 9)
В магнитах элементарные кольцевые токи ориентированы одинаково. Поэтому магнитные поля, образующиеся вокруг каждого такого тока, имеют одинаковое направление. Они усиливают друг друга, создавая поле вокруг и внутри магнита. (Слайд 10)
- Положим магнит в коробочку с мелкими железными опилками. Если достать магнит, мы увидим, что опилки прилипают не ко всей поверхности магнита, а лишь к некоторым его частям. Те места магнита, где обнаруживаются наиболее сильные магнитные действия, называют полюсами магнита. Таким образом, магнит имеет два полюса: северный (N) и южный (S). (Слайд 11)
- Получить магнит с одним полюсом невозможно. Если магнит разделить на две части, то каждая из них окажется магнитом с двумя полюсами. Таким образом, магнитные полюсы существуют только парами. (Слайд 12)
- Поднесем северный полюс магнитной стрелки сначала к северному полюсу магнита, затем к южному полюсу. От северного полюса магнита стрелка оттолкнется, а к южному полюсу – притянется. И наоборот, южный полюс стрелки отталкивается от южного полюса магнита и притягивается северным полюсом. Таким образом, разноименные магнитные полюсы притягиваются, одноименные отталкиваются. (Слайд 13)
- Положим магнит на стол и накроем его листом картона. Посыпав его железными опилками, получим картину магнитного поля постоянного магнита. Магнитные линии магнитного поля магнита – замкнутые линии. (Слайд 14)
- Вне магнита магнитные линии выходят из северного полюса магнита и входят в южный, замыкаясь внутри магнита. (Слайд 15) Аналогично получим магнитные линии магнитного поля двух магнитов, обращенных друг к другу одноименными и разноименными полюсами. (Слайд 16)
- Расположим между двумя магнитами стеклянную пластинку. Взаимодействие между магнитами не нарушается. Таким образом, магниты оказывают свое действие через стекло, а также воду и тело человека. (Слайд 17)
- При сильном нагревании магнитные свойства исчезают как у природных, так и у искусственных магнитов. (Слайд 18)
- Магнитные носители информации: жесткие диски, дискеты. (Слайд 19)
- Кредитные, банковские карты имеют магнитную полоску на одной стороне, которая кодирует необходимую информацию. (Слайд 20)
- Обычные телевизоры и компьютерные мониторы (Слайд 21)
- Громкоговорители и микрофоны используют постоянный магнит для преобразования электрической энергии в механическую энергию (Слайд 22)
- Компас — является намагниченным указателем, который может свободно вращаться и ориентируется на направление магнитного поля
- Игрушки
- Ювелирные украшения (Слайд 23)
- Медицинские учреждения используют методы магнитного резонанса для сканирования различных органов в организме человека и для хирургических целей. (Слайд 24)
Наш земной шар – это огромный космический магнит. Впервые эту мысль высказал английский физик Уильям Гильберт. Он изготовил шарообразный магнит и исследовал его с помощью маленькой магнитной стрелки. (Слайд 25)
Внешние, расплавленные, слои ядра Земли находятся в постоянном движении. В результате этого в нем возникают магнитные поля, формирующие в конечном итоге магнитное поле Земли. Магнитная стрелка, свободно вращающаяся вокруг вертикальной оси, всегда устанавливается в данном месте Земли в определенном направлении, то есть вдоль его магнитных линий. На этом и основано применение компаса.
Компас — прибор для определения горизонтальных направлений на местности. Предположительно, компас был изобретён в Китае при династии Сун и использовался для указания направления движения по пустыням. В конце XII — начале XIII вв. арабские мореплаватели завезли компас в Европу. (Слайд 26)
Как и обычный магнит, земной шар имеет два магнитных полюса: северный и южный. Так как разноименные полюсы магнитов притягиваются, то северный полюс магнитной стрелки указывает направление на Южный магнитный полюс Земли. Этот полюс удален от Северного географического полюса примерно на 2100 км. Северный магнитный полюс находится вблизи Южного географического полюса. Таким образом, магнитные полюсы Земли не совпадают с ее географическими полюсами. Это приводит к тому, что направление стрелки компаса не совпадает с направлением географического меридиана, и она лишь приблизительно показывает направление на север. (Слайд 27)
Магнитные полюса Земли непостоянны. Периодически они меняются местами. Не так давно исследователи установили, что Земля "помнит" о смене полюсов. Анализ таких "воспоминаний" показал, что за последние 160 миллионов лет магнитные север и юг менялись местами около 100 раз. Последний раз это событие произошло около 720 тысяч лет назад. (Слайд 28)
На поверхности Земли имеются территории, где ее собственное магнитное поле сильно искажено магнитным полем железных руд, залегающих на небольшой глубине. Такие области называются областями магнитной аномалии. Одна из таких территорий – Курская магнитная аномалия. (Слайд 29)
Иногда на Земле возникает кратковременное изменение магнитного поля Земли, так называемые магнитные бури. Наблюдения показывают, что они связаны с солнечной активностью. С поверхности Солнца в мировое пространство выбрасываются потоки частиц: электронов и протонов. Они летят во всех направлениях, в том числе и к Земле. Магнитное поле, создаваемое этими частицами, изменяет магнитное поле Земли и вызывает магнитную бурю. (Слайд 30)
Магнитные бури оказывают сильное влияние на все живое на Земле. Изучением влияния различных факторов погодных условий на организм здорового и больного человека занимается специальная дисциплина — биометрология. Магнитные бури вносят разлад в работу сердечно-сосудистой, дыхательной и нервной системы, а также изменяют вязкость крови. (Слайд 31)
При взаимодействии заряженных частиц с магнитным полем Земли наблюдается их отклонение от первоначального направления в районы магнитных полюсов. В этих регионах Земли частицы влетают в верхние слои атмосферы, вызывая их ионизацию. Это приводит к возникновению красивейших явлений природы – полярных сияний. (Слайд 32)
Земное магнитное поле надежно защищает поверхность Земли от космического излучения, действие которого на живые организмы разрушительно. Не будь у Земли магнитного поля, защищающего ее от солнечной радиации, наша планета превратилась бы в выжженную пустыню, а живые существа погибли бы. (Слайд 33)
Перелетные птицы обладают способностью видеть магнитное поле Земли. Они ориентируются в любой местности и находят дорогу домой по линиям магнитного поля. (Слайд 34)
3 разных типа магнитов и их применение
Магниты — это материалы, которые генерируют поле, которое притягивает или отталкивает некоторые другие материалы (например, железо и никель) с определенного расстояния. Это невидимое поле, известное как магнитное поле, отвечает за ключевые свойства магнита.
Древние люди использовали магниты по крайней мере с 500 г. до н.э., и самые ранние известные описания таких материалов и их характеристики происходят из Китая, Индии и Греции около 25 веков назад. Однако искусственные магниты были созданы еще в 1980-х годах.
Очевидно, что не все магниты состоят из одних и тех же веществ, и поэтому их можно разделить на разные классы в зависимости от их состава и источника магнетизма. Ниже приведен подробный список трех основных типов магнитов с указанием их свойств, прочности, а также промышленного и непромышленного применения.
1. Постоянные магниты
После намагничивания постоянные магниты могут сохранять магнетизм в течение продолжительного времени. Они сделаны из материалов, которые могут намагничиваться и создают собственное постоянное магнитное поле.
Обычно постоянные магниты изготавливаются из четырех различных типов материалов:
I) Ферритовые магниты
Стек ферритовых магнитов | Изображение предоставлено: Викимедиа
Ферритовые магниты (также называемые керамическими магнитами) являются электроизоляционными. Они темно-серого цвета и выглядят как карандашный грифель.
Ферриты обычно представляют собой ферромагнитные керамические соединения, получаемые путем смешивания больших количеств оксида железа с металлическими элементами, такими как марганец, барий, цинк и никель. Некоторые ферриты имеют кристаллическую структуру, например ферриты стронция и бария.
Они довольно популярны благодаря своей природе: они не подвержены коррозии и, следовательно, используются для продления жизненного цикла многих продуктов. Ферритовые магниты могут использоваться в чрезвычайно жарких условиях (до 300 градусов Цельсия), и стоимость изготовления таких магнитов также низкая, особенно если они производятся в больших объемах.
Они могут быть далее подразделены на «твердые», «полужесткие» или «мягкие» ферриты, в зависимости от их магнитных свойств.
Поскольку твердые ферриты трудно размагничивать, они обладают высокой коэрцитивной силой. Они используются для изготовления магнитов, например небольших электродвигателей и громкоговорителей. Мягкие ферриты, с другой стороны, имеют низкую коэрцитивную силу и используются для изготовления электронных индукторов, трансформаторов и различных микроволновых компонентов.
II) магниты Алнико
Магнит-подкова из алнико 5 | Эта U-образная форма образует мощное магнитное поле между полюсами, позволяя магниту захватывать тяжелые ферромагнитные материалы.
Магниты алнико состоят из алюминия (Al), никеля (Ni) и кобальта (Co), отсюда и название al-ni-co. Они часто включают титан и медь. В отличие от керамических магнитов, они являются электропроводящими и имеют высокие температуры плавления.
Чтобы классифицировать их (основываясь на их магнитных свойствах и химическом составе), Ассоциация производителей магнитных материалов присвоила им номера, такие как Alnico 3 или Alnico 7.
Алникос был самым сильным типом постоянных магнитов до развития редкоземельных магнитов в 1970-х годах. Известно, что они создают высокую напряженность магнитного поля на своих полюсах — до 0,15 Тесла, что в 3000 раз сильнее, чем магнитное поле Земли.
Сплавы Alnico могут сохранять свои магнитные свойства при высоких рабочих температурах, вплоть до 800 градусов Цельсия. Фактически, они являются единственными магнитами, которые имеют магнетизм при нагревании раскаленным докрасна.
Эти магниты широко используются в бытовых и промышленных применениях: несколько примеров — это магнетронные трубки, датчики, микрофоны, электродвигатели, громкоговорители, электронные трубки, радары.
III) Редкоземельные магниты
Как следует из названия, редкоземельные магниты изготавливаются из сплавов редкоземельных элементов. Это самый сильный тип постоянных магнитов, разработанный в 1970-х годах. Их магнитное поле может легко превышать 1 Тесла.
Два типа редкоземельных магнитов — самарий-кобальтовые и неодимовые магниты. Оба уязвимы для коррозии и очень хрупкие. Таким образом, они покрыты определенным слоем (слоями), чтобы защитить их от сколов или поломок.
Самарий-кобальтовые магниты состоят из празеодима, церия, гадолиния, железа, меди и циркония. Они могут сохранять свои магнитные свойства при высоких температурах и обладают высокой устойчивостью к окислению.
Из-за их меньшей напряженности магнитного поля и высокой стоимости производства они используются реже, чем другие редкоземельные магниты. В настоящее время они используются в настольном ядерно-магнитно-резонансном спектрометре, высококачественных электродвигателях, турбомашиностроении и во многих областях, где производительность должна соответствовать изменению температуры.
Неодимовые магниты, с другой стороны, являются наиболее доступным и сильным типом редкоземельных магнитов. Они представляют собой тетрагональную кристаллическую структуру, изготовленную из сплавов неодима, бора и железа.
Благодаря своим меньшим размерам и небольшому весу они заменили ферритовые и алникомагниты в многочисленных применениях в современных технологиях. Например, неодимовые магниты в настоящее время используются в головном приводе для компьютерных жестких дисков, электродвигателей для аккумуляторных инструментов, механических переключателей электронных сигарет и динамиков мобильных телефонов.
IV) одномолекулярные магниты
Универсальный внутриклеточный белок, называемый ферритином, считается магнитом с одной молекулой. Он хранит железо и выпускает его контролируемым образом.
К концу 20-го века ученые узнали, что некоторые молекулы [которые состоят из ионов парамагнитного металла] могут проявлять магнитные свойства при очень низких температурах. Теоретически они способны хранить информацию на уровне магнитных доменов и обеспечивать гораздо более плотный носитель, чем традиционные магниты.
Одномолекулярные магниты состоят из кластеров марганца, никеля, железа, ванадия и кобальта. Было обнаружено, что некоторые цепные системы, такие как одноцепные магниты, сохраняют магнетизм в течение длительного периода времени при более высоких температурах.
Исследователи в настоящее время изучают монослои таких магнитов. Одним из ранних соединений, которое было исследовано в качестве одно-молекулярного магнита, является додекануклеарная марганцевая клетка.
Потенциальные возможности применения этих магнитов огромны. К ним относятся квантовые вычисления, хранение данных, обработка информации и биомедицинские приложения, такие как контрастные агенты МРТ.
2. Временные магниты
Некоторые объекты могут быть легко намагничены даже слабым магнитным полем. Однако, когда магнитное поле удалено, они теряют свой магнетизм.
Временные магниты различаются по составу: они могут быть любым объектом, который действует как постоянный магнит в присутствии магнитного поля. Например, магнитомягкий материал, такой как никель и железо, не будет притягивать скрепки после удаления внешнего магнитного поля.
Когда постоянный магнит подносится к группе стальных гвоздей, гвозди прикрепляются друг к другу, а затем к постоянному магниту. В этом случае каждый гвоздь становится временным магнитом, а когда постоянный магнит удаляется, они больше не прикрепляются друг к другу.
Временные магниты в основном используются для изготовления временных электромагнитов, сила которых может варьироваться в соответствии с требованиями. Они также используются для разделения материалов, сделанных из металла, на складах металлолома и дают новый импульс современной технологии — от высокоскоростных поездов до высокотехнологичного пространства.
3. Электромагнит
Электромагнит притягивающий железные опилки
Электромагнит был изобретен британским ученым Уильямом Стердженом в 1824 году. Затем он был систематически усовершенствован и популяризирован американским ученым Джозефом Генри в начале 1830-х годов.
Электромагниты представляют собой плотно намотанные витки провода, которые функционируют как магниты при прохождении электрического тока. Его также можно классифицировать как временный магнит, поскольку магнитное поле исчезает, как только ток отключается.
Полярность и напряженность магнитного поля, создаваемого электромагнитом, можно регулировать, изменяя направление и величину тока, протекающего через провод. Это главное преимущество электромагнитов перед постоянными магнитами.
Для усиления магнитного поля катушка обычно наматывается на сердечник из «мягкого» ферромагнитного материала, такого как мягкая сталь. Провод, свернутый в одну или несколько петель, называется соленоидом.
Эти типы магнитов широко используются в электрических и электромеханических устройствах, включая жесткие диски, громкоговорители, жесткие диски, трансформаторы, электрические звонки, МРТ-машины, ускорители частиц и различные научные приборы.
Электромагниты также используются в промышленности для захвата и перемещения тяжелых предметов, таких как металлолом и сталь.
Часто задаваемые вопросы
Из чего сделаны магниты?
Ферриты — это ферромагнитные соединения, полученные путем смешивания большого количества оксида железа с металлическими элементами, такими как марганец, барий, цинк и никель.
- Магниты AlNiCo содержат алюминий, никель и кобальт.
- Самарий-кобальтовые магниты изготавливаются из празеодима, церия, гадолиния, железа, меди и циркония.
- Неодимовый магнит, самый сильный тип редкоземельного магнита, изготавливается из сплавов неодима, бора и железа.
- Одномолекулярные магниты содержат кластеры марганца, никеля, железа, ванадия и кобальта.
Что такое природный магнит?
Природные магниты — это постоянные магниты, которые встречаются в природе естественным образом. В отличие от искусственных магнитов, они никогда не теряют своей магнитной силы при нормальных условиях.
Самый сильный природный магнит — магнитный камень, кусок минерального магнетита. Он черный или коричневато-черный и блестит при полировке. Кусочки магнитного камня фактически использовались в самых первых когда-либо созданных магнитных компасах.
Какой магнит самый сильный?
Самым сильным типом постоянного магнита, имеющегося в продаже, являются неодимовые (Nd) магниты. Они изготавливаются путем смешивания неодима, железа и бора с образованием тетрагональной кристаллической структуры Nd2Fe14B. Это соединение было впервые обнаружено компаниями General Motors и Sumitomo Special Metals (работавшими независимо друг от друга) в 1984 году.
Влияют ли магниты на человеческий мозг?
Да. Поскольку нейроны электрически заряжены, магнитное поле может вызвать протекание тока через нейроны. Это может изменить активность нейронов.
До сих пор нейробиологи использовали транскраниальную магнитную стимуляцию (ТМС) для улучшения времени реакции, памяти и некоторых других когнитивных способностей. Однако, несмотря на некоторые положительные результаты, долгосрочные эффекты не совсем понятны.
Могут ли магниты потерять свой магнетизм?
Да, даже постоянные магниты могут потерять свой магнетизм при определенных условиях. Например:
Избыточное нагревание: ферромагнитные материалы теряют свой магнетизм при нагревании выше определенной точки, называемой температурой Кюри. Неодимовые магниты демонстрируют лучшие магнитные характеристики до 150 ° C. Выше этой точки они теряют часть своих характеристик при повышении температуры на каждый градус.
Размагничивание: постоянные магниты можно размагнитить, подвергая их достаточно сильному магнитному полю противоположной полярности. Способность магнита противостоять внешнему магнитному полю, не размагничиваясь, называется коэрцитивной силой.
Удар: более старые материалы, такие как AlNiCo и магнитная сталь, имеют низкую коэрцитивную силу. Они подвержены размагничиванию, если через материал передается достаточная энергия посредством удара. Этот шок может быть вызван ударами молотка по материалу или его падением.
Увидеть невидимое
Наглядность — штука очень хорошая. Можно долго объяснять на формулах, показывать расчёты, обрисовывать словами… но проще показать одной картинкой и сразу всё понял. Особенно если это касается физических явлений, которые невидимы глазу. Я решил собрать в один пост известные мне техники визуализации разных физических явлений в 1 и в 2х измерениях.
Техники, известные в докомпьютерную эпоху и не использующие измерение датчиком по координатам, с последующим составлением карты.
▍Магнитное поле
Силовые линии магнитного поля — абстракция, но можно наглядно показать направление и интенсивность магнитного поля в пространстве. Для этого достаточно насыпать частички железа, они сами выстраиваются вдоль линий магнитного поля:
Для совсем мелких объектов вместо опилок можно использовать магнитную жидкость — те же опилки только очень мелкие и стабилизированные в растворе. Вот так магнитная жидкость проявляет метки магнитной полосы карты:
Опилками пользоваться неудобно, поэтому изобрели специальную плёнку, где частички никеля (меньше остаточно намагничиваются) плавают в масле внутри микрокапсул, заключённых в плёнку. Она очень удобна, например, при сборке, когда нужно магнит ориентировать конкретным образом. Или убедиться, что диск магнитного энкодера не размагничен. На фото видно виниловый магнит, он намагничен полюсами в одну сторону, поэтому этой плёнкой можно быстро определить, на какую из сторон клеить декорацию.
А вот на этом фото видно, как я испортил родное намагничивание винила маленьким неодимовым магнитом, получилось скрытое послание. Визуально видно, где нарушен периодический характер магнитного поля.
Так как плёнка сохраняет картинку, если убрать магнит, то её используют в конструкции некоторых магнитных пломб — внешнее поле разрушит картинку специального магнита, использованного при производстве.
Для визуализации очень слабого магнитного поля, например, от магнитного пигмента в защищённой полиграфии, используют специальные магнитооптические кристаллы. Используется магнитооптический эффект, под внешним магнитным полем поворачивается поляризация отраженного света, что видно в увеличительное стекло. На фото ниже видно в поляризованном свете на поверхности кристалла в правой части картинки, что пигмент содержит магнитные частицы:
Способ хорош высокой чувствительностью, видны очень мелкие элементы, например, запись на магнитной ленте. И даже изменения структуры металла, например, при перебивке серийного номера.
Увы, мне удалось купить только сильно исцарапанный магнитооптический кристалл в составе DORS 30, оказалось их не так просто изготавливать, и у китайцев я их не нашёл. Вот так выглядят намагниченные биты всё той же магнитной полосы пластиковой карточки. Обратите внимание на рисунок доменов, где происходит смена полярности:
▍Механические напряжения
Увидеть внутренние напряжения в прозрачных средах можно благодаря явлению фотоупругости. При наличии таких внутренних напряжений, плоскость поляризации проходящего света поворачивается, что видно по изменению цвета и яркости через поляризационный фильтр. Устройства для просмотра таких напряжений называются полярископы. Вот, например, явно видно, где в очковой линзе из-за неидеальной обточки есть внутренние напряжения:
Способ используют для контроля наличия внутренних напряжений в прозрачных материалах, например, в стеклянных изделиях. В докомпьютерную эпоху из оргстекла изготавливали масштабные модели деталей, например, мостовых ферм, и нагружали их, наблюдая распределение нагрузок. Более наглядного распределения нагрузок в детали не показать, только моделировать на компьютере.
Вот наглядно видно, какие напряжения в оргстекле оставляет рез лазером, особенно заметно внутри буквы R. А отверстие справа не имеет ореола — исходная деталь, в которой я вырезал логотип, была изготовлена методом фрезеровки. Именно из-за внутренних напряжений порезанный на лазере акрил может покрыться трещинами по краю при нанесении клея.
▍Температура
Ну наверное самое простое — угадайте, где под землёй теплотрасса?:)
Для визуализации распределения температур на поверхности есть жидкокристаллические плёнки. Угол, на который поворачивают плоскость поляризации оптически активных веществ, очень сильно зависит от температуры. Если нанести их на плёнку, то получится тепловизор для бедных, причём он работает в очень узком диапазоне температур, полный переход от черного до черного укладывается в диапазон менее 10 С.
Плёнка получила широкое распространение не для наблюдения за распределением температуры на поверхности, а в виде плоских (толщина бумаги) термометров. Есть даже одноразовые медицинские:
Вместо жидких кристаллов можно использовать термохромную краску. Она меняет свой цвет обратимо при пороговой температуре. Такое встречается, например, на сувенирных футболках, сразу видно, кто где кого трогал:
Практически все эти способы вытесняет тепловизор — камера, матрица которой реагирует не на свет, а на тепло. Это требует особой конструкции чувствительной матрицы и оптики. Но этот способ уже под изначальный мотив поста «без компьютера» не сильно подходит).
▍Потоки воздуха
Наиболее распространённый способ визуализировать движение воздуха — шлирен метод. Смысл состоит в том, что используется параболическое зеркало, которое отражает свет, собирая его в точку — фокус. К краю фокуса подводят нож, если свет отклонился от идеальной траектории из-за преломления на границе разных плотностей воздуха, то он упрётся в нож, и на итоговой картинке будет тёмным пятном.
Есть разные вариации этого метода, в том числе с использованием ретрорефлективных экранов. Способ используется для изучения потоков воздуха.
Другой способ, используемый в аэродинамических трубах — подмешать в поток воздуха дымка, который наглядно покажет, как движется воздух:
Для потоков жидкости можно использовать перламутр, его частички плоские, поэтому ориентируются вдоль потока и выглядят светлыми, если поток меняет направление — мы видим торцы частичек — тёмные. На этом эффекте, например, в Парке чудес Галилео мы делали экспонат «вихревая жидкость».
Если шайбу раскрутить и резко остановить, то видно, как в продолжающей по инерции движении жидкости — образуются вихри:
▍ Акустические стоячие волны
Когда акустическая волна бежит, отражается и сама с собой интерферирует, возможно образование стоячей волны, когда образуются узлы — места, где волна взаимоуничтожилась, а есть места, где она взаимоусилилась. Самый простой способ визуализации этого явления — фигуры Хладни. Просто посыпаем пластину песком, если образуется стоячая волна, от вибрации песок сам убежит в узлы, где вибрации нет. Такой экспонат в парк чудес Галилео мы тоже делали:
Стоячие волны как раз одна из причин, почему резонаторы музыкальных инструментов, сделанные «от балды» могут звучать плохо. Одномерным вариантом визуализации стоячей волны является труба Кундта, с ней мы тоже намучались. Благодаря прозрачности и тому, что пробку в трубе можно перемещать, Кундт смог исследовать и измерить скорость звука в газе.
Ну и конечно труба Рубенса, где вместо воздуха с легкими частицами для визуализации используется горючий газ. В узлах давление газа будет ниже и высота столбиков пламени — ниже.
▍ Электрическое поле
Для демонстрации электростатического заряда на поверхности можно использовать метод, который использовал Лихтенберг. Он делал скользящий разряд от большой электрофорной машины по поверхности диэлектрика, и затем посыпал это место тонкоизмельченным порошком, например, серой. Частички налипали в местах, где сохранялась поляризация диэлектрика и проявляла характерную фигуру, которая и носит имя Лихтенберга:
(в домашних условиях можно взять белый пластик, щёлкнуть по поверхности пьезозажигалкой и «окурить» пылью тонера — фигура проявится.)
Такие фигуры вы можете часто видеть на внутренних поверхностях пластиковых деталей приборов — там годами мелкодисперсная пыль из воздуха налипает. Фактически вся лазерная печать работает на аналогичном механизме, тонер налипает на те места фотобарабана, где сохраняется электростатический заряд.
▍ Невидимые излучения
Для визуализации излучений, которые не воспринимаются глазом, используются различного вида люминесцентные экраны, они воспринимают кванты света невидимой нами длины волны, и переизлучают его уже в видимом диапазоне. Например, для рентгеновского излучения:
Аналогичные по использованию есть материалы для УФ и ИК диапазона. Вот, например, карточки, светящиеся от ИК излучения лазера, упрощающие процесс юстировки:
Вот изящная демонстрация — используется флуоресцентный экран, который светится зелёным под действием УФ излучения. Причём УФ излучение взяли конкретной длины волны — 253 нм, по линии поглощения атомов ртути. В итоге мы видим пары ртути — они поглощают УФ свет и мы видим их как тёмные пятна.
▍ Элементарные частицы
Они столь малы, что точно невидимы глазу, поэтому их визуализируют по «разрушениям» ими оставленными. Примером такого способа визуализации является камера Вильсона. В ней создаётся слой переохлаждённого пара, которому достаточно пролетающей элементарной частицы, чтобы наконец сконденсироваться. Выглядит красиво (видно следы частиц, вылетевших из кусочка руды, и следы частицы из космоса):
Наиболее завораживает это на видео:
▍ Поляризация света
Люди (в отличии, например, от пчёл) не способны видеть поляризацию света. Для её визуализации придется использовать поляризатор — который пропускает свет только поляризованный в одном направлении. В итоге, при просмотре через поляризатор, мы будем видеть светлыми те участки, где плоскость поляризации источника совпадает с плоскостью поляризации поляризатора, и тёмными, где угол поляризации перпендикулярен углу поляризации поляризатора. Вот наглядно показывается поляризация света от неба, при помощи лепесточков поляризующей плёнки:
▍ Потожировые следы
Не совсем физические явления, но тоже относятся к техникам визуализации невидимого. Крупные жирные отпечатки пальцев можно проявить при помощи порошка, контрастного цвета. Мягкой кисточкой отпечаток обрабатывают порошком, и он прилипает к следу.
Но способ плохо работает со старыми, слабыми отпечатками, особенно на пористых поверхностях. Для проявления таких следов используют пары цианоакрилатного клея. Пары клея при контакте с жиром отпечатка полимеризуются и оседают белым налётом, способ крайне эффективен, да и вы сами наверняка видели отпечатки пальцев на старом тюбике с клеем.
А какие ещё приёмы визуализации не видимых глазу физических явлений вы знаете?
Сообщество «Физика»
Аркадий Хромов # написал комментарий 7 февраля 2016, 02:43 Детский сад — штаны на лямках
- редактировать
- удалить
Парфёнов Сергей # ответил на комментарий Аркадий Хромов 7 февраля 2016, 11:25 . все Всё знают, супер специалисты, однако-же мир превращается в руины, а человек деградирует и при этом всегда виновата власть. тов. Хромов — Вы наверное миллиардер если такой умный — а?
- редактировать
- удалить
Аркадий Хромов # ответил на комментарий Парфёнов Сергей 8 февраля 2016, 00:27 Разве миллиардеры бывают умными? Зачем публиковать школьно-научно-популярную статью?
- редактировать
- удалить
Парфёнов Сергей # ответил на комментарий Аркадий Хромов 8 февраля 2016, 21:05 Вот школьная задачка без расчётов: существует целый спектр задачек с расчётом частоты де-Бройлевской волны от скорости движения электронов по проводнику. так вот. действительно ли излучается де-Бройлевская волна согласно формуле ?
- редактировать
- удалить
Яррандус Попов # написал комментарий 7 февраля 2016, 13:06 Что поделаешь клоуны не известной породы
- редактировать
- удалить
Яррандус Попов # написал комментарий 7 февраля 2016, 13:08 И вообще ляпов в физике огромное количество
- редактировать
- удалить
- редактировать
- удалить
Александр Овод # написал комментарий 8 февраля 2016, 11:55 Пока дочитал до конца, забыл начало!