Почему не существует вечного двигателя
Перейти к содержимому

Почему не существует вечного двигателя

Почему невозможно создать вечный двигатель? ⁠ ⁠

Примерно в 1159 году математик по имени Бхаскара Ученый придумал дизайн колеса, содержащего в себе изогнутые резервуары со ртутью. Он предполагал, что когда колесо вращается, ртуть будет перетекать вниз каждого резервуара, постоянно делая одну из сторон колеса тяжелее другой. Этот дисбаланс заставил бы колесо вращаться вечно.

Рисунок Бхаскара был одним из ранних дизайнов вечного двигателя, устройства, которое должно работать бесконечно, без использования внешнего источника питания. Представьте себе ветряк, создающий ветер, необходимый ему для вращения. Или лампочку, которая своим светом создает для себя электричество. Такие устройства владели умами многих изобретателей, поскольку могли бы изменить наши взаимоотношения с энергией.

К примеру, если бы вы могли построить вечный двигатель, использующий людей в качестве элемента такой идеально эффективной системы, он мог бы поддерживать жизнь бесконечно. Но есть одна проблема. Они не работают. Все идеи создания вечного двигателя нарушают один или несколько законов термодинамики, раздела физики, который описывает взаимоотношения между разными формами энергии.

Первый закон термодинамики гласит, что энергию невозможно создать или уничтожить. Невозможно получить больше энергии, чем было затрачено. Соответственно, вечный двигатель невозможно создать, поскольку никакое устройство не может выработать больше энергии, чем оно потребляет. Не может быть избытка, чтобы привести в движение автомобиль или зарядить телефон. Но что, если мы хотим устройство, которое приводит в движение само себя? Изобретатели предлагают множество идей. Некоторые из них были разновидностями дисбалансного колеса Бхаскара, с перекатывающимися шариками или весами на подвижных плечах. Ни одно из них не работало.

Подвижные элементы, которые делают одну сторону колеса тяжелее, также смещают центр его тяжести ниже собственной оси. С низким центром тяжести, колесо лишь качается вперед-назад, как маятник, а потом останавливается. А что, если попробовать другой подход? В 17-м веке, Роберт Бойль выдвинул идею самонаполняющегося сосуда. Он предположил, что капиллярность и притяжение жидкостей и поверхностей, продвигающие воду по тонкой трубке могут заставить воду циркулировать по сосуду. Но если капиллярность настолько сильна, что преодолевает гравитацию, поднимая воду вверх, она же и не позволяет ей попадать обратно в сосуд.

Существуют также версии с магнитами, как эта система наклонных поверхностей. Предполагается, что шарик будет притягиваться вверх магнитом, падать в дыру и скатываться вниз, повторяя этот цикл. Но и это не работает поскольку, как и самонаполняющийся сосуд, магнит будет просто удерживать шарик на вершине. Даже если бы шарик двигался, сила притяжения магнита со временем снизится и он перестанет работать. Чтобы все эти механизмы работали, они должны генерировать дополнительную энергию, чтобы система смогла преодолеть сдерживающий фактор, нарушая первый закон термодинамики.

Кажется, что есть механизмы, которые работают, но в реальности, оказывается что они неизбежно используют энергию из какого-либо внешнего источника. Даже если бы инженерам удалось создать механизм, который не нарушал первого закона термодинамики, он все равно бы не смог заработать из-за второго закона. Второй закон термодинамики гласит, что энергия склонна распределяться из-за таких процессов, как, например, трение.

Любой действующий механизм имеет подвижные элементы, или взаимодействует с молекулами воздуха или жидкостей, что создает незначительные количества трения и теплоты, даже в вакууме. Из-за нагрева теряется энергия, и ее утечки неизбежны. Это снижает количество энергии, доступной для самой системы, приводя, в итоге, к необратимой остановке. До сих пор, эти два закона термодинамики ставили в тупик все идеи вечного двигателя и мечты об идеально эффективном создании энергии, следующие из них.

Однако, трудно безапелляционно утверждать, что нам никогда не изобрести вечный двигатель, поскольку мы все еще многого не знаем о вселенной. Возможно, мы найдем новые, экзотические формы материи, которые заставят нас пересмотреть законы термодинамики. А может быть, вечное движение существует в миниатюрном квантовом масштабе.

В чем нам стоит быть уверенными, так это в том, что мы никогда не остановим поиски. На сегодня, единственное, что действительно кажется вечным, это наш поиск.

Я про вечный двигатель читал ещё в детстве, в «Занимательной физике» Перельмана.

Иллюстрация к комментарию

Если ребенок раскачивается на качели только с помощью изменения угла ног, можно ли сделать подобный маятник и хватит ли мощности с одного его хода для генерации энергии, способной изменить угол?

Иллюстрация к комментарию

Зептосекунда⁠ ⁠

Ядерные реакции в звёздах (те, которые породили атомы в вашем теле) происходят на протяжении зептосекунд.

В 1 секунде гораздо больше зептосекунд, чем было секунд после Большого взрыва.

Зептосекунда — это одна сектиллионная доля секунды (10^-21). Самая высокая точность определения времени когда-либо достигнутая.

Зептосекунда Наука, Физика, Космос, Астрономия, Астрофизика

Нобелевская премия по физике за «жуткую» квантовую запутанность⁠ ⁠

Три квантовых физика получили Нобелевскую премию по физике за свои эксперименты с запутанными фотонами , в которых частицы света становятся неразрывно связанными. Такие эксперименты заложили основу для множества квантовых технологий, включая квантовые компьютеры и средства связи. Ален Аспект, Джон Клаузер и Антон Цайлингер получат по одной трети приза в размере 10 миллионов крон (915 000 долларов США). На пресс-конференции, посвященной присуждению награды, Цайлингер отдал дань уважения начинающим ученым, работавшим с ним. «Эта премия была бы невозможна без многолетней работы более 100 молодых людей».

В свое время Альберт Эйнштейн назвал квантовую запутанность «призрачным действием на расстоянии», поскольку кажется, что частицы обмениваются информацией мгновенно, даже если они находятся далеко друг от друга.

Нобелевская премия по физике за «жуткую» квантовую запутанность Наука, Ученые, Исследования, Познавательно, Физика, Квантовая запутанность, Нобелевская премия

Нобелевка по физике за 2022й год⁠ ⁠

Лауреатами Нобелевской премии по физике 2022 года стали Ален Аспе (Alain Aspect), Джон Клаузер (John F. Clauser) и Антон Цайлингер (Anton Zeilinger) — за эксперименты с запутанными фотонами, исследование нарушений неравенств Белла и работы по квантовой информатике. И, что самое главное, они в трёх разных экспериментах всё-таки нашли нарушения неравенств Белла

Все трое исследовали запутанные состояния квантовых чисел и упорно искали нарушения неравенств Белла (предложены ещё в 60х годах прошлого века). Эти неравенства возникают при анализе парадокса Эйнштейна — Подольского — Розена (ЭПР-парадокс). Первым нарушения обнаружил Джон Клаузер, после чего очень многие то подтверждали, то отвергали эти нарушения неравенств Белла.

Смысл в этих экспериментах один — доказать полноту квантовой физики целиком, в то время как парадокс ЭПР утверждает от неполноте квантовой теории физики и указывает, что должны быть «скрытые параметры»

Пейзаж в магнитном поле⁠ ⁠

Магнитная жидкость в поле одного магнита под микроскопом

Пейзаж в магнитном поле Микроскоп, Технологии, Микросъемка, Стереофотография, Магнитная жидкость, Физика, Научпоп, Наука

Пейзаж в магнитном поле Микроскоп, Технологии, Микросъемка, Стереофотография, Магнитная жидкость, Физика, Научпоп, Наука

Пейзаж в магнитном поле Микроскоп, Технологии, Микросъемка, Стереофотография, Магнитная жидкость, Физика, Научпоп, Наука

Голос атомных ядер: собираем магнитно-резонансный магнитометр⁠ ⁠

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Пора уже поближе познакомиться с квантовой физикой на практике! Сегодня я расскажу вам об истории открытия эффекта ядерного магнитного резонанса, но в отличие от классических учебников полных зубодробительного матана мы обратим наш разрушительный для когеренции взгляд на экспериментальную составляющую. С полученными знаниями вы сможете в духе старого доброго DIY собрать несложный прибор, который позволит вживую послушать сигналы ядер атомов водорода а также измерить величину магнитного поля нашей планеты.

Немного истории

Где-то сто лет тому назад, физики увлечённо пытались разобраться из чего же состоит наш мир. На тот момент было очень мало известно о том, что же из себя представляют мельчайшие частицы материи – атомы. Резерфорд в своём знаменитом эксперименте обстрелял тонкую золотую фольгу альфа-частицами и после интерпретации результатов предположил что атом (уж по крайней мере, золота) это положительное ядро-планета, а вокруг него вращаются отрицательные спутники-электроны. Однако это был полный нонсенс для физиков того времени, так как уже тогда в школах изучали простую истину «положительный заряд притягивается к отрицательному». Ради забавы делали даже расчёты, которые предсказывали что электрон в такой модели должен был бы упасть на ядро за примерно 0.0000000001 секунды, на чём история нашей вселенной и закончилась бы. Но Нильс Бор всех спас, введя свои знаменитые постулаты. Он послал подальше классическую механику и заявил, что орбиты электронов в отличие от хорошо уже изученных на тот момент орбит планет, могут принимать только несколько определённых значений. Причём обязательно таких, чтобы атом был стабилен, и никто никуда в нём не падал. Честно говоря, такая модель физикам ещё больше не понравилась, ведь это было скорее похоже на натягивание совы на глобус атом. Масла в огонь подлил Арнольд Зоммерфельд, который дополнил модель Бора и предположил, что на этих невообразимо мелких масштабах вообще всё в атоме должно принимать только определённые значения (проще говоря — квантоваться): энергия, угловой момент движущихся электронов и ядер и даже ориентация орбит электронов в пространстве!

Последнее особенно сильно зацепило Отто Штерна, тоже физика. Он потратил кучу времени на то, чтобы найти способ опровергнуть эту возмутительную теорию, и даже выпросил денег на эксперименты у самого Эйнштейна. Вместе со своим коллегой Вальтером Герлахом они построили установку, которая позволяла бы определить, любую ли ориентацию в пространстве могут иметь орбиты электронов атомов или только несколько определённых. Предположения были довольно простые: как было известно из простейших экспериментов, ток, текущий по кругу в медной рамке, приводит к возникновению магнитного поля. Ток — это поток электронов, следовательно и на атомарном уровне, электрон, двигающийся по орбите, тоже должен создавать своё небольшое магнитное поле, а атом в целом вести себя как маленький магнитик. Выходит, что если пустить поток атомов через неоднородное поле больших магнитов, то в зависимости от того, как ориентирована орбита каждого атома в пространстве, они разлетятся в разные случайные направления, что и можно попытаться зафиксировать.

Установка состояла из печи, которая нагревала серебро до тех пор, пока оно не начинало испаряться (более 1000 ), после чего его атомы собирались в подобие пучка при помощи заслонки с отверстием посередине. Стоит ли говорить, что всё это, разумеется, происходило в вакууме. Поток атомов пролетал между магнитами и в итоге попадал на пластину — детектор.

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Схема экспериментальной установки Штерна-Герлаха, которую можно часто встретить на страницах учебников. Магнит сверху специально сделан в виде клина, чтобы сделать поле в районе пучка как можно более неоднородным. Для простоты показаны только полюса магнитов, участвующие в процессе (нет, это не монополи!).

Прожжённый физик конечно скажет, что картинка эта слишком рафинированная. Ведь настоящая установка напоминала собой этакий самовар с кучей непонятных трубочек, вполне в духе своего времени. Эксперимент с ней шёл пару часов, после чего надо было разбирать аппарат и подготавливать всё заново. Вместо отверстия для получения луча из атомов исследователи в итоге использовали щель (с отверстием опыт нормально не получался). Также, в первых попытках след не было видно вовсе и какое-то время коллеги полагали, что луч просто не попадал в пластину. Однако в один прекрасный момент, в процессе пристального разглядывания Штерн имел неосторожность подышать на неё, от чего внезапно рисунок проявился. Оказалось что дешёвые сигары, которые Отто курил порой прямо в лаборатории содержат очень много серы, реакция с которой и приводила к такому эффекту (похоже на байку, но это таки было проверено в 2002 году). В итоге, из-за несовершенства магнитов и сложностей в их юстировке, два раздельных пучка всё равно не расходились полностью, а лишь в середине, но тем не менее, рисовали на стекле первый поцелуй от квантовой физики человечеству:

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Настоящая установка Штерна-Герлаха во всей красе.

Результат у них получился шокирующим и полностью противоположным их ожиданиям. Вместо опровержения теории они подтвердили её: поток атомов серебра четко разбивался на два пучка, что означало что квантование — это не теоретическая выдумка и математические шуточки, а нечто реальное. И где-то на глубоком уровне наноскопических масштабов магнитные свойства электронов могут принимать только два значения и никаких промежуточных. Исследователи по всему миру тут же стали повторять опыт, дорабатывать его, и писать новые теоретические обоснования и статьи. Было выяснено, что наблюдаемый эффект возникает из-за наличия магнитного момента у одного-единственного электрона, что болтается без пары на внешней орбитали атома серебра. Взяли бы Штерн и Герлах другое вещество для эксперимента, где все электроны парные и компенсируют моменты друг друга, не факт, что у них бы что-то получилось. Так, случайность как минимум дважды сыграла главную роль в этой цепочке событий.

Ещё немного истории

Когда все отошли от первого шока, стало интереснее заглянуть ещё глубже и понять вращаются ли ядра атомов, как и планеты, есть ли у них свой магнитный момент и самое главное, квантуется ли он. В экспериментальной установке Штерна-Герлаха электронные оболочки мешали это выяснить, так как момент электронов был много больше, чем у ядер. Одним довольно логичным решением оказалось использовать в экспериментах вместо атомов целые молекулы. Ведь если два атома с одним внешним электроном образуют молекулу, то магнитный момент оболочек будет скомпенсирован, и станет видно только момент ядер. Таким образом удалось определить, что момент есть в наличии у ядер водорода (протонов), однако точно измерить его не получалось. И тут за дело взялся Исидор Раби. Он улучшил разработку своих коллег, скрестив в своём аппарате сразу две их секции:

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Парные магниты А и В повторяли собой конструкцию Штерна-Герлаха, но при этом технологично были более совершенны. Вместо постоянных везде были использованы компактные и температурно-стабилизированные электромагниты с активным жидкостным охлаждением. Это позволяло точнее контролировать и без того многочисленные переменные величины эксперимента и избавиться от кучи проблем связанных с неодинаковостью параметров молекул в пучках. Предполагалось, что пучок молекул входит в установку немного под углом и дважды изгибаясь снова фокусируется на выходе, где стоит детектор. Он, кстати, тоже стал электронным и курить около него не требовалось:

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Хитрость была в том, что пары магнитов А и B были расположены с противоположной друг другу по вертикали полярностью, что и позволяло загибать и разгибать обратно пучки используя только магнитный момент ядер атомов. Две синие кривые на рисунке показывают путь молекул с разной скоростью и угловым моментом. Как бы они ни старались, в середине установки они были в одинаковых условиях и над ними можно было проводить всяческие манипуляции. Именно там Раби разместил третий электромагнит, помеченный как «С» с однородным полем, направленным уже горизонтально и, чтобы совсем стало сложно и научно, ещё и небольшие витки из медных трубочек внутри этого магнита, подключаемые к высокочастотному генератору.

Идея Раби была основана на теории о том, что у молекул, ядер атомов и электронов в постоянном магнитном поле должен быть разный угловой, а следовательно, и магнитный момент. Предпосылки к таким умозаключениям выросли опять же из механики: имея две юлы с разной массой вы скорее всего получите разные скорости их вращения в одном и том же поле тяготения вашей планеты и при прочих других равных условиях. А потому он предполагал, что когда пучок молекул попадает в магнит «С», на вращающиеся ядра составляющих их атомов можно будет выборочно воздействовать при помощи переменного поля подходящей частоты и таким образом переориентировать их в пространстве. Если такое произойдёт, то пучок молекул уже не сможет достигнуть детектора, так как он изогнётся в другую сторону. Именно такая ситуация показана на рисунке в виде перехода синих кривых в желтые.

Раби подавал на медные витки в центре установки фиксированный высокочастотный сигнал 3.5 МГц и менял ток в центральном электромагните, таким образом регулируя величину поля. В какой-то момент было зафиксировано отклонение пучка от детектора, что означало, что магнитный момент ядер поменялся под воздействием внешнего сигнала. Причём важно отметить, что процесс происходил довольно внезапно, то есть носил резонансный характер. Это было свидетельством квантовой природы феномена. Ядра при смене своего магнитного состояния поглощали энергию фотонов только строго определённой величины, и конечно же, количество таких состояний было ограничено:

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Первый в мире график, демонстрирующий ядерный магнитный резонанс, именно Раби дал этому эффекту его имя (1938 г.). Получен он на пучках хлорида лития, содержащих изотоп 7Li.

Зная параметры процесса, стало возможным с небывалой точностью измерять магнитные моменты ядер разных атомов. Правда даже гениальному Раби на тот момент не пришло в голову, что открытый им эффект может быть повёрнут с ног на голову и использован где-то ещё кроме экспериментальных вакуумных установок для ядерной физики.

Лишь некоторое время спустя, в разных местах планеты Феликс Блох, Эдвард Пёрселл и Константин Завойский независимо обнаружили, что магнитный резонанс – это не только поглощение энергии ядрами, для смены их магнитной ориентации, но ещё и последующий процесс её высвобождения при их возвращении в предыдущее состояние. Оказалось, что такие сигналы релаксации вполне можно детектировать и в обычных материалах и предметах, а не только с отдельными атомами или молекулами в пучках. Достаточно поместить исследуемый объект в однородное магнитное поле, побеспокоить его другим перпендикулярным полем, и ядра атомов (или электроны) хором начнут отвечать:

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Как измеряются сигналы магнитного резонанса. Стрелка компаса имитирует общую суммарную намагниченность ядер атомов внутри какого-либо объекта. Для их возбуждения на катушку можно подавать постоянный ток, или же сигнал определённой частоты (что, конечно, более эффективно). На экране осциллографа — сигнал релаксации от ядер атомов, снимаемый с той же катушки. Частота его специфична для разных атомов и даже их позиций в молекулах вещества.

Такой разворот открыл человечеству небывалые перспективы для новых методов определения состава веществ, структур молекул и всякой там томографии при помощи одних только магнитных полей. Все кроме Завойского в итоге получили нобелевские премии, химики – крутейшие спектроскопические анализаторы для лабораторий, а вы — возможность посмотреть, что же там болит в пояснице без какого-либо внешнего вмешательства.

Дико неэффективный процесс

Сегодня мы уже знаем, что ничего нигде в атомах не вращается. Ведь, например, чтобы получить величину магнитного момента электрона, наблюдаемую экспериментально, последний в своём вращении должен превышать скорость света где-то в сто раз, что крайне сомнительно. А ещё выяснилось, что он не возвращается в исходное состояние за один оборот, как это происходит с привычными нам в быту предметами. Поэтому для всех этих квантовых странностей был введён специальный отдельный термин «спин». Он есть и у ядер, которые следуют похожей никому непонятной логике.

Также выяснилось, что далеко не с любыми атомами магнитно-резонансные фокусы работают. Необходимым условием оказалось наличие нечётного количества протонов и (или) нейтронов в ядре. Но тем не менее, охват таблицы Менделеева впечатляет. Вот современные сводные данные от лаборатории государственного университета Флориды, где профессионально увлекаются вопросом:

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Как видите, покрытие практически полное. Однако нельзя игнорировать слово «изотопы». Оно присутствует на картинке вовсе не для научного занудства. Многие химические элементы в обычном своём состоянии не удовлетворяют условиям получения сигналов от их ядер, а потому приходится выкручиваться с их собратьями другой массы, которые зачастую и не особо интересны для исследователей.

Другая титаническая проблема состоит в том, что ядра будучи не в лабораторных условиях, а внутри вещества упорно не хотят поляризоваться внешним магнитным полем, особенно если оно слабое. Причин для этого на атомных масштабах целая куча, но мы с высоты своих гигантских размеров не имеем возможности особо в них вникать, а поэтому называем ёмким термином «температура». Так, например, в поле величиной 1 Тесла (примерно такое можно найти у самой поверхности неслабых таких неодимовых магнитов) при комнатной температуре поляризация ядер водорода будет всего лишь 3 ядра на миллион своих ленивых собратьев, которые участвовать в этом откажутся. Разумеется, поймать сигнал от трёх ядер малореально, даже если задействовать самые топовые технологии человечества. Выручает тот факт, что в одной лишь капле воды атомов водорода будет где-то в районе 3,34*10^21. Благодаря такому безумному множителю мы уже можем что-то с этим сообразить.

Вообще говоря, водород как будто идеально был создан для магнитного резонанса: он есть практически везде и в больших количествах а его частота прецессии в магнитных полях, которые мы можем технически организовать или даже найти в природе — очень удачно подходит под возможности нашей приёмной электроники. Именно сигналы этого элемента чаще всего измеряют во всех сферах деятельности, где так или иначе замешан ядерный магнитный резонанс. И именно поэтому далее мы будем получать сигналы от протонов водорода в нашем самодельном магнитометре.

Ну наконец-то! Переходим к практике

Итак, довольно историй, пора действовать! Сперва понадобится найти подходящую ёмкость для водорода. Шучу, нам сойдет любая чистая вода, даже из-под кулера в вашем офисе (но в идеале, конечно, дистиллированная). Нужных атомов в ней будет предостаточно. Но тем не менее, не повторяйте моих ошибок и найдите по-настоящему герметичную ёмкость для жидкости. Для выбора её размеров есть ограничения с двух сторон — слишком маленькая бутылочка даст в итоге очень слабый сигнал, слишком большую использовать нецелесообразно экономически, так как впоследствии потребуется намотать вокруг неё катушку медного провода, который сегодня в дефиците. Я остановил свой выбор на баночке из-под жвачки:

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Баночка из-под жвачки избавлена от содержимого и этикетки. Катушка справа — спойлер к дальнейшим действиям.

Следующий важный компонент — много медной проволоки. Понадобится как минимум метров 50-80 если речь идёт о диаметре 0.08 мм, который использовал я. В моём случае она была аккуратно выдрана из сломанного двигателя от какой-то бытовой техники. Вообще говоря, чем больше будет у вас проволоки и чем она толще — тем лучше для экспериментов. Проволоку надо намотать прямо поверх бутылки. Я использовал суперклей для фиксации в начале и прямо в процессе. Если вы когда-либо собирали катушку Тесла, то это не вызовет у вас затруднений. Да, нам понадобится значение индуктивности этой самодельной катушки далее, так что если у вас нет приборов для её измерения, то придётся считать витки по ходу дела:

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Мотаем первый слой, не останавливаемся, и также мотаем поверх второй и третий. Резинка на горлышке немного поможет от будущих протечек.

Данная конструкция будет одновременно служить и для возбуждения протонов в воде и для приёма сигнала от них. Поэтому катушка должна иметь с одной стороны как можно большую индуктивность (много витков), с другой — не слишком большое сопротивление (мало витков). Эти условия как два конца одной палки, поэтому придётся находить баланс, учитывая материалы, которые вы найдёте. Для поляризации протонов на катушку понадобится подавать ток в пределах 250-750 мА, соответственно, если намотаете слишком много, то придётся объединять кучу батареек последовательно, чтобы получить нужный ток. Да-да, именно батареек. Забудьте про любые импульсные источники питания и стабилизаторы, ибо данный процесс будет дико чувствительным к любым помехам. Сопротивление моей катушки получилось около 27 Ом, что потребовало в итоге использования как минимум одного (18 В) аккумулятора от шуруповёрта для получения нужного тока поляризации.

Процесс работы устройства будет выглядеть так:

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Принцип работы простейшего магнитно-резонансного протонного магнитометра (о-о-о-чень упрощённый).

Мы поляризуем протоны воды магнитным полем, создаваемым катушкой, а далее подключаем её к аудио-усилителю и слушаем ответные сигналы водорода. Частота сигналов будет зависеть от величины внешнего однородного магнитного поля, в котором находится бутылочка. Где ж его взять? Оно уже здесь вокруг вас, бесплатно предоставлено в пользование нашей любимой планетой Земля. Так удачно совпало, что резонансные сигналы водорода в поле Земли будут в районе 2 кГц, прекрасно слышимых нашими ушами (не зря же выбирали водород!).

К сожалению, сигналы эти, несмотря на огромное количество протонов в воде, будут категорически слабыми, с амплитудой где-то в десяток микровольт в лучшем случае. Посему просто прицепить к катушке переключатель и динамик как на анимации выше не прокатит, и без специального усилителя тут не обойтись. И спаять его придётся самостоятельно:

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Да, коэффициент усиления будет бешеный, но и мы собираемся тут атомные ядра слушать, а не перфоратор соседа.

Общую архитектуру я скопировал отсюда, хотя компонентно моё решение думаю будет даже проще для повторения. Нам понадобится всего лишь три микросхемы двойных операционных усилителей. Я использовал то что было под рукой (TL082), но безусловно можно найти и что-то получше. Для данной задачи нужно обратить внимание на такие характеристики как коэффициент шума и входное сопротивление. Чем первая ниже, а вторая соответственно выше, тем будет лучше устройство работать в итоге.

Итак, главная причина, по которой усилитель надо собрать самостоятельно состоит в том, что его конструкция будет буквально зависеть от того, на каком месте планеты вы находитесь. Так как мы задействуем в эксперименте магнитное поле Земли, то перед созданием схемы сначала надо примерно выяснить величину этого поля, после чего получить значение рабочей частоты, а от него уже посчитать номиналы элементов схемы.

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Карта магнитных полей нашей планеты, значения представлены в нанотесла.

По такой карте выходит довольно грубая прикидка, поэтому тут можно схитрить и использовать плоды прогресса. В смартфоне, с которого вы вероятнее всего читаете этот текст, уже есть магнитометр, который можно задействовать для более точных локальных измерений. Также в маркетах много приложений, которые показывают величины для вашей местности (напр. CrowdMag). В моём случае я выяснил величину в 49600 нанотесла. Её нужно умножить на гиромагнитное соотношение для водорода (42.58) и разделить на тысячу чтобы не было путаницы в порядках. Таким образом у меня вышло 2112 Герц. Это число далее будем использовать для подбора резонансного конденсатора, а также полосовых фильтров в схеме усилителя.

Кстати, вот и она:

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Нажмите чтобы увидеть полный размер.

Несмотря на то, что выглядит сложно, она состоит из одинаковых кирпичиков — ступеней усиления, повторяя структуру с картинки выше. Если уж у вас хватит усидчивости мотать катушку, то спаять вместе три микросхемы — и подавно.

Небольшое описание к схеме

Кратко пройдёмся по ней слева-направо: сигнал приходит с катушки и встречает два диода 1n4007. Они ограничивают максимальную амплитуду на входе усилителя, чтоб не спалить его при тестах.

Следом идёт конденсатор. Он является, наверное, самым критичным элементом, и должен чётко быть в резонансе с катушкой. Именно для расчёта его номинала нам нужно значение индуктивности последней, а также рабочая частота контура (2112 Гц в моём случае). В интернете полно калькуляторов для его вычисления. Обратите внимание, для вашей местности номинал будет скорее всего отличаться от моего! Если вдруг у вас есть векторный анализатор (напр. OSA103), то настроить резонансный контур будет проще простого. Особо отчаянные могут использовать научный метод подбора и генератор. Чем меньше индуктивность вашей катушки — тем больше придётся делать номинал этого конденсатора.

Затем идут каскады усиления. Каждому операционному усилителю в соответствии с нужным коэффициентом вычисляются номиналы резисторов, тут можно просто повторить представленные в моей схеме. А вот для ступеней полосовых фильтров придётся применить вот этот калькулятор (снова используем значение частоты, полученное ранее). В итоге во всей схеме получается четыре одинаковые каскада, отличающиеся лишь номиналом одного резистора и две ступени с дополнительными резисторами и конденсаторами, формирующие фильтры. Как и в соц сетях, без фильтров тут никак не обойтись.

Катушки индуктивности на линиях питания — тоже важный элемент, предотвращающий взаимодействие каскадов друг с другом, их надо поставить обязательно. Номинал я не написал, так как намотал их наобум, но в данном случае — чем больше мкГн тем лучше.

На выходе последнего операционника стоит электролитический конденсатор, он позволяет отсечь постоянный ток через наушники, чтобы выход нашего усилителя не надорвался, если вдруг сопротивление подключенных динамиков будет слишком малым.
Для запитки усилителя снова потребуются батарейки. Я задействовал две «кроны», так как TL082 хочет двухполярного питания для нормальной работы. В любом случае, не следует использовать один и тот же источник питания для запитки усилителя и для поляризации во избежание недоразумений.

Чтобы читатель не пугался всех этих электронных сложностей, я спаял схему в максимально небрежной и раздолбайской манере и ещё и на макетке. Это было сделано умышленно и должно продемонстрировать насколько грубой может быть реализация такого чувствительного прибора, но работать он всё равно будет:

Электронный NSFW

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Мне настолько понравилось мотать катушки в процессе экспериментов, что и мелкие блокирующие индуктивности я изготовил самостоятельно, используя в качестве основы гильзы для обжима проводов. К сожалению, один из операционников у меня был только в мелком корпусе, отсюда такие страсти на обратной стороне платы. Кстати, она вышла эко-френдли, все компоненты кроме SMD я взял со старой сломанной техники.

А работать усилитель будет в полевых условиях. Поэтому желательно засунуть всё в какой-никакой корпус. Я распечатал вот такую коробочку из трёх частей с претензией на дизайн:

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Усилитель в сборе. Внутри платка и две батареи «крона». Кнопка просто выключатель для питания, чтобы не сажать батареи попусту.

Вход усилителя будет соединяться с переключателем поляризации и далее с катушкой при помощи коаксиальных кабелей, именно поэтому вы наблюдаете SMA разъём спереди. Коаксиальные кабели нужны чтобы защитить и так слабые сигналы от внешних наводок. В целом для этого сойдёт абсолютно любой антенный кабель и разъёмы к нему. Единственное, нельзя размещать никаких магнитных частей около катушки, а саму катушку расположить как минимум в метре от усилителя.

Вернёмся к катушке

Прерывать в катушке индуктивности ток — это очень нехорошо. Катушки такое не любят и в ответ выдают большое обратное напряжение на своих концах. Разумеется, в таких условиях ничего измерять нельзя. Чтобы избавиться от этого паразитного эффекта, достаточно воткнуть в схему ещё один диод, повесив его прямо на её выводы:

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Схема подключения катушки к диоду, переключателю поляризации и усилителю.

Катушка соединяется при помощи длинного кабеля к кнопке с батареей — переключателю режимов «поляризация» и «приём», а та — уже при помощи короткого коаксиала к усилителю.

Итак, если вы таки соберёте всё это дело вместе и включите, в наушниках вы должны услышать знакомое радиоприёмное «пшшш». Да, усилитель (будучи собран без ошибок) будет настолько чувствителен, что вы с его помощью сможете слышать вообще всё: статику от переливающейся воды в ёмкости с катушкой, трение коаксиального кабеля о пол, любые источники электромагнитного излучения, особенно всепроникающие 50 Герц и их гармоники. Даже узкополосные фильтры в нашей схеме увы не помогут это отфильтровать. В такой какофонии звуков пытаться расслышать жалкие сигналы атомных ядер просто невозможно физически. Чтобы прикоснуться к протонной магии, придётся отправится в путешествие подальше от людей. Только отринувши мирскую суету можно будет познать природу настолько глубоко.

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Чем дальше от цивилизации и металлических объектов — тем лучше.

Перед стартом позаботьтесь о подставке для катушки. Измерения лучше проводить в метре от поверхности земли или выше, там поле более однородное. Я использовал пластиковую палку и распечатал небольшой крепёж для бутылочки:

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Следы на катушке — это излишки суперклея.

Снизу крепления я сделал градуированную шкалу с шагом 22.5 градуса. Дело в том, что максимально эффективно процесс релаксации протонов будет происходить только когда бутылочка ориентирована в направлении на запад или восток. Нормального компаса у меня под рукой не было, и я решил сделать серию измерений, чтобы точно не ошибиться.

Вся установка в одном кадре:

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Итак, когда все условия будут соблюдены, после нескольких секунд поляризации вы услышите его:

Первый щелчок на аудио обозначает старт тока через катушку и начало поляризации, а второй возникает при переключении в режим приёма. Именно протяжный угасающий звук колокольчика после второго щелчка — это и есть далёкий чарующий голос протонов, доносящийся из глубокой бездны ядерных масштабов. Длится он целых пару секунд, так что перепутать его с чем-либо ещё будет сложно. Построим в matplotlib спектрограмму этого сигнала:

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Это спектры шестисекундного отрывка со стартом от второго щелчка.

Измеренная частота довольно близко оказалась к расчётной! Далее я провёл измерения сигнала в разных положениях поворота бутылочки, чтобы найти заветное направление запад-восток.

Что интересно, частота не сильно менялась от измерения к измерению.

Тут меня ждал сюрприз, так как по ожиданиям должно было быть два максимума за полный оборот, а вместо этого, я получил один. Я провёл два раунда таких измерений, поворачивая бутылку сначала по часовой стрелке, затем против неё, пока не заметил, что вода в ней заметно нагрелась от тока, периодически текущего по катушке, на чём я и решил остановиться. Результаты я представил в виде диаграммы направленности:

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

График зависимости максимальной амплитуды сигнала от угла поворота бутылочки. По идее тут должна была быть «восьмёрка», но что-то пошло не так.

Такой результат вышел очень занятным, в качестве варианта объяснения, я могу предположить, что бутылочка была слегка под наклоном, а из-за того, что её конструкция не позволяла наполнить её доверху, там был воздушный пузырь, который переходил из одного её конца в другой, меняя количество воды внутри катушки, а соответственно и протонов. На этом мои эксперименты подошли к концу, а вот возможные применения для приборчика — нет.

Ну и зачем это всё?

Итак, полученный девайс не зря называется магнитометром. В первую очередь, он позволяет точно измерить величину магнитного поля планеты, достаточно использовать формулу для расчёта рабочей частоты в обратную сторону (мой результат 50186 нанотесла). Поле Земли непостоянно, и можно следить за его сезонными и годовыми изменениями, чтобы, например не проворонить переполюсовку. Также такой магнитометр можно использовать в археологических изысканиях, чтобы находить следы древних строений и их фундаментов, а ещё строить всякие интересные карты, привязав измерения к координатам GPS.

Далее, можно сделать две такие бутылочки и повесить их на концы длинной палки. В таком случае мы получим металлоискатель, работающий за счёт разницы резонансных частот протонов. Если в магнитном поле будут локальные неоднородности, то такая конструкция позволит их отыскать. Она, кстати, была предложена впервые аж в 1967 году,

за много лет до этих всяких МРТ

Голос атомных ядер: собираем магнитно-резонансный магнитометр Наука, Научпоп, Познавательно, Эксперимент, IT, Исследования, НаукаPRO, Физика, Ядерная физика, МРТ, Усилители, Магнитное поле, Длиннопост, Гифка

Картинка из статьи с примером использования дифференциального ядерного магнитометра — металлоискателя.

Кроме того, никто не заставляет ставить эксперименты только над водой. Можно залить и любую другую жидкость, где есть протоны и измерить резонансные частоты ядер в ней. Кто-то даже строит в таких условиях целые спектры. Конструкцию приёмника, для этого правда, придётся доработать, так как в данной статье она узкополосная.

Если добавить к этой штуке градиентные обмотки и какую-нибудь ардуину, то можно получить простейший аппарат МРТ для применения в полях. Он, конечно, будет очень долгим и разрешение картинок будет оставлять желать лучшего, но зато не требует никакого гелия и записи на приём за неделю.

Вот такой получился рассказ. Я надеюсь, что вы, как и я оценили объём практической и теоретической работы, который стоит за этим маленьким «дзынь», еле слышимым в наушниках. Квантовый мир хоть и окружает нас повсюду, но в тоже время он такой же далёкий, как и космос. Сегодня мы немного побыли в роли астрономов, которые развернули свои телескопы в другую сторону шкалы масштабов. Мир вокруг нас интересен в каждой мельчайшей детали, и поразительно как при помощи бутылки с водой и мотка проволоки можно немного коснуться самой его сути.

Подписывайтесь на наш блог, чтобы не пропустить новые интересные посты!

Как работает «вечный двигатель» и примеры его конструкции

Вечный двигатель будоражит умы ученых и изобретателей всего мира. Сейчас многие одержимы им примерно так же, как в свое время алхимики были одержимы идеей получения золота из свинца. Все из-за того, что он — вечный двигатель — принесет очень много пользы не только в краткосрочной перспективе, но и на далекое будущее. Главное понимать, что вечный двигатель это не совсем то, что многие себе представляют. Это куда более продвинутая вещь, но в то же время более простая, чем принято считать. А еще есть несколько концепций такого двигателя. Давайте разберемся с некоторыми из них.

Вечный двигатель это то, что невозможно даже в теории. Он противоречит сам себе.

Можно ли запатентовать вечный двигатель

Прежде всего стоит определится, что запатентовать вечный двигатель невозможно. То есть, если вы найдете способ обмануть законы физики, вам, конечно, скажут спасибо, но коммерческих прав на свое изобретение вы иметь не будете. Максимум, вы получите Нобелевскую премию и сможете рассчитывать на всемирное уважение. Если вас это устраивает — стоит постараться и поработать в этом направлении.

Патенты на вечный двигатель перестали рассматриваться очень давно. Например, Патентное ведомство США не принимает такие заявки уже более ста лет, а Парижская академия наук с 1775 года не рассматривает проекты таких двигателей.

Что такое вечный двигатель

Если говорить о том, что такое вообще вечный двигатель, то все основные определения сводятся к тому, что это воображаемое устройство, которое работает неограниченно долго. А самое главное, у него должен быть КПД более 100%. То есть количество выдаваемой им энергии должно быть больше, чем та, которую он потребляет для работы. Это вечный двигатель первого рода.

На латыни вечный двигатель будет Perpetuum Mobile

Есть еще понятие вечного двигатель второго рода. Такой механизм должен получать тепло от одного резервуара и полностью превращать его в работу. Такой тип вечного двигателя невозможен по определению, так как это противоречит первому и второму закону термодинамики.

Может показаться, что космос в некотором роде можно назвать системой вечного двигателя, но это тоже не так. Светила рано или поздно погаснут, а планеты, спутники и галактики, которые движутся в пространстве, только кажутся вечными. На самом деле они постепенно рассеивают свою кинетическую энергию за счет сопротивления солнечного ветра, притяжения других объектов, теплового излучения и даже гравитационных волн.

Эта штука миллиарды лет крутится сама по себе, но она не может считаться вечным двигателем.

В космосе это почти незаметно, так как расстояние и размеры тел огромны, а силы сопротивления минимальны, но потеря энергии все равно есть. Проще говоря, если дать нашей планете бесконечное количество времени вращения, исключив изменения остальных факторов, рано или поздно она просто остановится. На самом деле все немного сложнее и в реальности ее притянет к Солнцу, но суть вы поняли.

Рев двигателей и комендантский час: как SpaceX вынудила жителей Техаса продать свои дома

Можно сказать, что двигатель тоже рано или поздно остановится, если дать ему бесконечно много времени (все равно мы не проверим), но именно для этого и есть требование, что вечный двигатель должен производить больше энергии, чем потреблять. Даже если он будет вырабатывать на ничтожную долю процента больше энергии, чем заберет, он сам сможет обеспечить себя ”топливом”.

Немного юмора на тему вечного двигателя. Вот он!

Как сделать вечный двигатель

В мире было предпринято бесчисленное количество попыток сделать вечный двигатель. Конструкции предлагались самые разные, но объединяло их одно — все они не прошли проверку и не стали настоящим вечным двигателем. Хотя, на первый взгляд может показаться, что некоторые предложенные ниже конструкции будут работать, но это ошибка. Максимально близко к настоящей концепции вечного двигателя может приблизиться конструкция магнитного двигателя.

Вечный двигатель на магнитах

Конструкция вечного двигателя на магнитах может показаться простой и гениальной одновременно, но в ней есть одно ”но”. Прежде всего, магнит, даже самый хороший, не может давать энергию бесконечно и его сила магнетизма со временем будет уменьшаться. В итоге, двигатель просто перестанет работать. Хотя изначально идея действительно не плохая.

Идея вечного двигателя стала активизироваться в умах изобретателей с появленим неодимовых магнитов. Их пытались применить где угодно, а Майкл Брэди даже сделал двигатель, который запатентовал, хоть и не как вечный.

Такие вещи немного завораживают:

Суть в том, что магнит притягивает расположенные на вращающемся колесе ответные части и проводит конструкцию в движение. Конструкция проста и незамысловата, но даже если не учитывать потери от трения или просто исключить их, поместив систему в вакуум, двигатель все равно не будет вечным. Как раз из-за того, что магниты со временем теряют свои свойства.

Первый вечный двигатель

В любом деле кто-то должен быть первым. Пионер был и в ”вечнодвигателестроении” — им стал индийский математик Бхаскара. Упоминание вечного двигателя встречается в его рукописях, которые датируются XII веком.

В этих рукописях математик описывает механизм, который приводится в движение за счет перетекания ртути или другой жидкости внутри трубочек, которые надо разместить по окружности колеса. Конструкция выглядит перспективной из-за того, что жидкость на одной стороне колеса всегда будет находиться дальше от его центра.

Примерно так выглядел концепт первого вечного двигателя.

В реальности такая система не работает. Если сделать только две трубочки на разных сторонах колеса, то его действительно перевесит, но когда их много, разное положение жидкости в каждом все равно уравновесит систему и вращения не будет.

У Бхаскара были последователи, которые предлагали вместо жидкости использовать меняющие свое положение грузы. Кончено, все эти проекты были обречены на провал и постепенно первоначальная идея конструкции вечного двигателя сменялась другими.

Одна из вариаций на тему вечного двигателя Бхаскара.

Вечный двигатель Архимеда

На самом деле сам Архимед не изобретал никакого вечного двигателя. Он только сформулировал закон, согласно которому и работает следующая система. С этим законом знаком каждый, кто хоть раз бросал в воду мяч, поплавок или другой надувной предмет.

Так как то, что весит меньше, чем вода, выталкивается ей, это тоже можно использовать в качестве вечного двигателя и подобные концепты были. Например, можно попробовать поместить в систему шарики, которые будут всплывать из воды и раскручивать двигатель.

В этой конструкции не учтено только то, что невозможно сдержать выду в резервуаре, а если и возможно, то она будет давить на входящие поплавки с такой силой, которую не смогут компенсировать всплывающие.

Проблема в том, что в замкнутой системе ”отработанные” шарики надо снова погружать в воду, а на это нужно больше энергии, чем появляется при всплывании. Именно поэтому система почти моментально придет в равновесие и перестанет двигаться. Если только не заставить жидкость находиться с одной стороны, то удержать ее без потерь будет невозможно. Если ее постоянно подливать, то такой механизм уже не будет соответствовать основным требованиям, предъявляемым к вечному двигателю.

Самая большая подводная лодка и история создания субмарин

Вечный двигатель на противовесах

Еще одна система вечного двигателя подразумевает использование смещенной системы, в которой подвешенные на цепь грузы должны тянуть за собой всю конструкцию.

Вот так должна выглядеть эта система и крутиться против часовой стрелки, но она очень быстро придет в состояние равновесия.

Такую конструкцию предложил нидерландский математик Симон Стевин. В цепочку должны быть объединены 14 шаров. Эту цепочку надо перекинуть через треугольную призму. Согласно задумке, с одной стороны будет в два раза больше шаров и они будут тянуть всю систему. При этом шары, которые висят снизу, не участвуют в процессе, так как уравновешены и не должны мешать работе на призме.

Звучит здорово и логично, но та часть системы, где шаров в два раза больше, имеет более пологую плоскость и составляющая силы тяжести шаров с этой стороны будет меньше. В итоге, система опять придет в равновесие и быстро остановится.

Это тоже не вечный двигатель, а просто игрушка, так как кинетическая энергия будет теряться.

Почему невозможно создать вечный двигатель

В первую очередь, создание вечного двигателя невозможно из-за того, что он нарушает многие сформулированные и проверенные столетиями (и тысячелетиями) законы физики. Выработать в результате движения больше энергии, чем затрачено на приведение системы в движение, просто невозможно.

С другой стороны, многое раньше считалось невозможным. Вдруг человечество так до сих пор и не смогло найти фундаментальную ошибку ученых прошлого? Если вы хотели попробовать — попробуйте! Если не хотели заниматься этим, но у вас есть идея, которой вы готовы поделиться, то сделайте это в нашем Telegram-чате или в комментариях к статье.

Вечный двигатель: возможно ли? Все попытки создать Perpetuum Mobile

Avatar photo

Представьте, что ваш телефон никогда не разряжается, автомобилисты не знают слова «заправка», а искусственные органы работают дольше настоящих… Конечно, сегодня даже дети знают, что за все нужно платить, а в школе учат, что ничто не возникает из ничего. Но несколько сотен лет назад ученые утверждали, что пассажиры поездов непременно умрут от удушья в разреженном воздухе, а при виде автомобилей у коров случатся выкидыши.

Времена меняются. Что такое вечность? Время существования Вселенной? Энергии в ней хоть отбавляй. Неужели нельзя построить двигатель, использующий скрытые резервы мироздания, с гарантийным сроком «до следующего Большого взрыва?»

Недостижимая мечта любого инженера. Философский камень механики. Инструмент ловких мошенников и атрибут множества фантастических произведений. Знакомьтесь: вечный двигатель.

Невозможное возможно

Вечный двигатель: возможно ли? Все попытки его создать 3

Игрушка «Пьющая птичка», наклоняющаяся к бокалу с водой. Действие основано на испарении жидкости в бокале и охлаждении головы птички. С высыханием бокала движение прекращается.

Вечное движение возможно. По крайней мере, оно не противоречит квантовой механике и первому закону Ньютона (материальная точка сохраняет состояние покоя или равномерного движения до тех пор, пока внешние воздействия не изменят этого состояния). Не так давно астрономы университета Миннесоты обнаружили в космосе «великое ничто» — пустое пространство протяженностью около миллиарда световых лет. Если представить себе, что в нем отсутствуют всякие взаимодействия, то камень, брошенный там, двигался бы с постоянной скоростью вплоть до смерти Вселенной. То есть фактически вечно.

Однако когда речь заходит о вечном двигателе, обычно имеется в виду система, вырабатывающая больше энергии, чем потребляющая (теряющая ее на трении, сопротивлении воздуха и т. п.), благодаря чему ее можно использовать для каких-либо бытовых нужд. До изобретения паровых или электрических приводов единственным универсальным и мобильным источником энергии были мускулы. Пружинные и маятниковые механизмы годились лишь для приложения малой силы в течении длительного времени (часы). Самыми мощными стационарными двигателями были водяные и ветряные мельницы.

Это сильно ограничивало механиков. Например, в средние века не составляло труда соорудить потолочный вентилятор или эскалатор, но кто бы смог безостановочно крутить их сутки напролет? Вполне логично, что люди мечтали о «халявном» источнике энергии. Их фантазия была ограничена технологиями того времени, поэтому по нынешним меркам вечные двигатели древности выглядели трогательно и примитивно.

Вечная история

Вечный двигатель: возможно ли? Все попытки его создать 14

Бхаскара II: ртуть в колесе.

Первый вечный двигатель был придуман почти 9 веков назад. Индийский математик и астроном Бхаскара II предложил крепить к колесу сосуды с ртутью, изогнутые таким образом, чтобы во время вращения она перетекала из одного конца емкости в другой. По его замыслу колесо крутилось бы постоянно. Вероятнее всего, для ученого это был лишь символ вечного круговорота бытия (сансары, «протекания»).

Бхаскара вряд ли считал свою философскую модель вечным двигателем, однако арабские и европейские исследователи отнеслись к этому вопросу абсолютно серьезно. Несбалансированное колесо стало классикой «вечного двигателестроения». В 13 веке французский архитектор Виллар де Оннекур воспользовался той же схемой, заменив ртуть молоточками. На практике такое колесо найдет точку равновесия и остановится, не сделав даже полного оборота.

Вечные двигатели да Винчи (кодекс Форстера II, стр.90-91) и их современные модели

Леонардо да Винчи заинтересовался идеей вечного двигателя, создал несколько чертежей… и объявил о том, что ни один такой аппарат работать не будет. Он критиковал все попытки изобретателей создать очередное «волшебное колесо», однако мысль о принципиальной невозможности вечного двигателя стала аксиомой лишь двести лет спустя — когда в 1775 году Парижская академия наук перестала принимать патентные заявки на подобные устройства.

О, исследователи вечного движения, сколько суетных планов создали вы при подобных исканиях! Станьте лучше алхимиками!

Леонардо да Винчи

Вместе с тем Леонардо оставил чертежи водяной мельницы, вращаемой поднимаемой ею же водой, не снабдив их критическими комментариями. Считал ли он возможным вечный двигатель на воде — неизвестно.

Вечный двигатель: возможно ли? Все попытки его создать 23

Увлечение несбалансированными колесами уступило место моде на замкнутые схемы «устройство А вращает устройство Б, которое двигает устройство А». Философ, астролог и алхимик Марк Антоний Зимара (1460—1523), незнакомый с водяной мельницей да Винчи, описал ветряную мельницу, на которую дули огромные меха, приводимые в движение вращением этой самой ветряной мельницы.

Вечный двигатель: возможно ли? Все попытки его создать 26

Марк Зимара, как и Дон Кихот, сражался с ветряными мельницами.

В 1610 году нидерландский изобретатель Корнелиус Дреббел построил первые механические часы с автоподзаводом от перепадов атмосферного давления. Машина, представлявшая собой золотой глобус и показывавшая не только часы, но и даты с временами года, по меркам того времени казалась настоящим «вечным двигателем». За Дреббелом закрепилась слава мага и алхимика.

Трудно сказать, насколько качественно она была исполнена (к примеру, часы Atmos разрабатывались лучшими швейцарским инженерами в течение нескольких десятков лет). Но, учитывая, что Дреббел был невероятно талантлив (построил микроскоп с двумя линзами, подводную лодку для английского флота, изобрел инкубатор для цыплят с термостатом, автоматически регулирующим температуру, а также пытался создать воздушный кондиционер), разумно предположить, что его часы могли работать без поломок многие месяцы, если не годы.

Конец вечности

Последний, самый яркий период классического вечного двигателестроения пришелся на середину 18 века, а именно — на жизнь Иоганна Эрнста Элиаса Бесслера (1680—1745), придумавшего себе псевдоним Orffyreus (криптограмма Bessler).

Это был очень странный человек — хвастливый, надоедливый, занудный, с дурным характером и замашками параноика. По дошедшим до нас свидетельствам, он работал часовщиком. В 1712 Бесслер заявил, что овладел секретом вечного движения. Вначале он попытался показать безостановочное колесо с небольшим грузом жителям маленького немецкого городка Гера, но провинциалов это зрелище не впечатлило.

Бесслер стал разъезжать по стране, публиковать научные трактаты и строить более крупные модели своего двигателя. По каким-то причинам он не хотел делать компактные модели, а конструировал деревянные колеса диаметром около 4 метров. Его кипучая деятельность привлекла интерес ученых. Демонстрационные образцы мега-колес тщательно исследовались, но никаких признаков шарлатанства не обнаружилось.

Вечный двигатель: возможно ли? Все попытки его создать 17

Колеса Бесслера, собранные им в замке Вайсенштайн.

Вечный двигатель: возможно ли? Все попытки его создать 18

Было решено провести полномасштабный эксперимент. 12 ноября 1717 года в присутствии представителей власти одно из вращающихся колес диаметром 3,5 метра было размещено в комнате замка Вайсенштайн, а все окна и двери наглухо заперты. Две недели спустя комнату открыли. Колесо все еще крутилось. Тогда помещение было запечатано вплоть до 4 января 1718 года. Год спустя люди вошли в комнату и увидели, что колесо продолжает вращаться с той же самой частотой.

Это было уже интересно. Лондонское королевское общество захотело купить изобретение. Бесслер с ходу запросил двадцать тысяч фунтов (гигантские по тем временам деньги). Колесо решили проверить еще раз, но Бесслер внезапно впал в ярость и разломал свое творение — якобы для того, чтобы другие ученые не смогли украсть его идеи.

Изобретатель продолжил путешествия по стране, демонстрируя различные модели колес: вращающиеся только в одну сторону и останавливаемые лишь с очень большим усилием, а также вращающиеся в любую сторону и останавливаемые без всякого труда. В 1727 году служанка Бесслера заявила, что его механизмы приводились в движение человеком из другой комнаты. Проверить эти показания так и не удалось, но репутация инженера была навсегда подорвана. Бесслер умер, свалившись с сооружаемой им ветряной мельницы. Он оставил после себя непонятные шифрованные заметки и вынудил потомков гадать — был ли он безумцем, эксцентричным гением или гениальным фокусником?

Великие комбинаторы

Вечный двигатель: возможно ли? Все попытки создать Perpetuum Mobile

Жульнический «двигатель» Редхеффера (современная уменьшенная копия)

В 19 веке увлечение вечными двигателями несколько спало — наука шла вперед, поэтому такие устройства все чаще становились инструментом обмана. Так, американец Чарльз Редхеффер из Филадельфии за 1 доллар показывал всем желающим сложную маятниковую машину вечного движения — правда, через зарешеченное окно. Местные жители подкупили одного механика, чтобы тот сделал копию двигателя Редхеффера — но с потайной пружиной внутри.

Увидев клон своего детища в действии, Чарльз запаниковал и бежал в Нью-Йорк, где его разоблачил знаменитый изобретатель Роберт Фултон. Последний заметил, что машина работает прерывисто и нашел ременной привод, ведущий от нее в соседнюю комнату с человеком, крутящим рычаг.

Вечный двигатель: возможно ли? Все попытки его создать 5

Машина Кили. Ему предлагали сотрудничать с Эдисоном или Тесла, но Кили, естественно, отказывался.

Еще один американец — Джон Кили (1827—1898) — заявил, что энергию можно извлекать из эфира за счет вибраций камертона. Его обвиняли в мошенничестве и даже в колдовстве, но ловкач умудрился 27 лет дурачить инвесторов, выманивая у них деньги на построение промышленного образца двигателя. Лишь после того, как Кили угодил под трамвай, выяснилось, что его макеты работали на сжатом воздухе. Мошенник нарушил много законов — но только не термодинамики.

На протяжении 19 и 20 веков подобные аппараты продолжали кормить своих «изобретателей» и работников желтой прессы — с той лишь разницей, что термины «космические флюиды» и «всепроникающий эфир» сменились на «холодный термояд» или «альтернативная физика». Иногда это заканчивалось не просто плохо, а очень плохо — например, в 1966 году американский венгр Джозеф Папп (самообъявленный создатель реактивной субмарины) испытал двигатель, работавший на смеси инертных газов. Взрыв унес жизнь одного человека и покалечил двоих.

Вечный двигатель: возможно ли? Все попытки его создать 13

Изобретение Морея. Он, как и Тесла, якобы смог получить энергию из ничего.

Но далеко не все такие случаи имели криминальный характер. Вполне серьезный ученый Томас Генри Морей (1892—1974) неоднократно демонстрировал всем желающим работу прибора, собиравшего «лучистую энергию из вакуума» и преобразовывавшего ее в электричество.

Машина работала несколько дней подряд. Эксперты изучали ее вдоль и поперек, но никто не мог найти источника энергии. Промышленники захотели купить ее, Морей отказался, и единственный рабочий экземпляр был уничтожен. Позднее ученый жаловался, что в него несколько раз стреляли, его семье угрожали, а лаборатории периодически громились. Секрет устройства, собиравшего космическую энергию (в чем бы он ни заключался), изобретатель унес с собой в могилу.

Вечный двигатель: возможно ли? Все попытки его создать 7

Изобретатель Джозеф Ньюман охотно продает свои машины. Они работают на батарейках и выдают больше электричества, чем получают. Замкнуть цикл (чтобы избавиться от необходимости в батареях) изобретатель почему-то не хочет.

Грань между гениальностью и помешательством провести очень сложно. Другой физик — болгарин Стефан Маринов заявил, что посетил коммуну христианской секты «Метернита» (Линден, Швейцария), члены которой получили «вдохновение свыше» и построили генератор бесконечной электрической энергии под названием «Тестатика». Он работает уже много лет, перекрывая энергетические потребности всей общины. Вскоре после этого откровения Маринов спрыгнул с лестницы в библиотеке университета Граца.

Любители теорий заговора часто вспоминают о Стэнли Мейере, попавшем под суд за попытки продать двигатель, работавший на воде. Если верить махинатору, слабые электрические импульсы особой частоты разлагают воду на водород и кислород, которые потом используются вместо паров бензина, а мощности автомобильного генератора достаточно для продолжения разложения воды. Сколотив на этой афере кое-какое состояние, Стэнли внезапно умер в ресторане в 1998 году. «Знающие люди» не сомневаются, что его отравили нефтяные магнаты и правительственные агенты.

А в 2006 году ирландская компания Steorn объявила о создании принципиально нового двигателя «бесплатной энергии» Orbo, главным элементом которого стали обычные магниты. Один из первых экземпляров пообещали установить на водяном насосе в некоей кенийской деревне. Демонстрация Orbo перед комиссией ученых, намеченная на июль 2007 года, не состоялась «по техническим причинам». Позже компания всё же пыталась выпустить своё чудо-творение на рынок, представляла его на суд учёных (которые объявили, что оно не работает) и закрылась в 2016 году. Многие считают, что эпопея с «вечным двигателем» была просто маркетинговым ходом.

Вечный двигатель: возможно ли? Все попытки его создать 27

EmDrive — ещё один пример «невозможного» двигателя, с медным резонатором в виде усечённого конуса и магнетроном. В большинстве исследований не удалось обнаружить заявленного эффекта

Подозрительные типы

Физики делят вечные двигатели на два типа.

Любая машина, получившая энергию, производит эквивалентную ей работу и (или) тепло. Если работы или тепла больше, чем энергии, мы имеем дело с вечным двигателем первого типа — самым популярным среди изобретателей. Представим, что какой-то мрачный гений поставил несбалансированное колесо на чудо-подшипник. Достаточно один раз толкнуть его — и оно должно крутиться, ускоряясь до тех пор, пока не разлетится на части. Это называется «нарушением закона сохранения энергии».

Двигатель второго типа полностью преобразует окружающее тепло в работу, игнорируя второе начало термодинамики. Сегодня высказываются предположения о том, что создание некоего подобия такого устройства все же возможно, если речь идет о преобразовании не просто тепла, а темной энергии или темной материи, из которой создана наибольшая часть нашей Вселенной.

Вечные двигатели в фантастике можно тоже поделить на четыре категории.

Вечный двигатель: возможно ли? Все попытки его создать 25

«Водопад» Эшера (1961). Вода вращает колесо, поднимается наверх и снова участвует в работе.

Самый простой вид вечного двигателя основан на неких магических эффектах. К примеру, в романах Уэллса упоминается чудо-материал «кейворит» с сильными антигравитационными свойствами. Если изготовить колесо, половина которого сделана из кейворита, оно будет крутиться с постоянным ускорением. В мирах фэнтези вечный двигатель не востребован, ведь вместо конструирования громоздкого механизма всегда можно сотворить перманентное заклинание (уборка помещения в диснеевском «Ученике волшебника», либо горшочек, варящий бесконечное количество каши в сказке Андерсена).

Вечный двигатель второго вида — «невозможный механизм» — действует с заведомым нарушением законов природы и имеет чисто умозрительный характер. Хорошим примером такой парадоксальной конструкции служит водяная мельница нидерландского художника Мориса Эшера (1898—1972).

К третьему — «субъективному» виду вечного двигателя относится агрегат, работающий так долго, что для практического опровержения его «вечности» не хватит даже нескольких человеческих жизней. Источником энергии здесь обычно служат какие-либо «вечные» природные явления.

Вечный двигатель: возможно ли? Все попытки его создать

«Атмос». Заплатите свыше тысячи долларов и сэкономьте на батарейках.

Этот вид возможен не только в фантастике. Например, часы «Атмос» швейцарской фирмы Jaeger-LeCoultre работают от суточных колебаний температуры воздуха. Они заполнены этилхлоридом, который расширяется при нагреве и заводит пружину. Для минимизации трения крутильный маятник совершает лишь 1 оборот в минуту (в 150 раз медленнее, чем у обычных часов). Перепада в 1 градус достаточно, чтобы часы шли два дня. Теоретически, эти часы могут пережить не одного владельца. Но на практике гарантийный срок обслуживания разных моделей «Атмоса» составляет 20—30 лет.

Ещё один вид устройств, которые можно принять за вечный двигатель, — преднамеренно усложненные механизмы длительного действия, выполняющие какую-либо примитивную задачу. Обывателю трудно понять цель и принципы их работы.

Столкнувшись с таким «вечным двигателем», можно на 99% быть уверенным, что его «изобретатель» — жулик. Чрезмерные усложнения конструкции нужны лишь для того, чтобы запутать наблюдателя и скрыть реальный источник движения (обычно — мощная пружина, спрятанная в пустотелой оси какой-либо шестеренки).

Вечный двигатель: возможно ли? Все попытки его создать 28

Бесконечное движение шарика по желобу «вибрационного механизма». «Изобретение» художника Рейдара Финсруда можно увидеть в его галерее в Осло.

Это интересно

Вечный двигатель: возможно ли? Все попытки его создать 1

Часы Артура Беверли.

В университете Отаго (г. Данидин, Новая Зеландия) находятся механические часы, построенные Артуром Беверли в 1864 году. Они заводятся от перепадов атмосферного давления и суточных температур. Часы работают уже 143 года. Этот эксперимент считается самым длительным в мире, однако термин «субъективный вечный двигатель» здесь неприменим. Их останавливали несколько раз для чистки, устранения поломок, а также в тех редчайших случаях, когда среднесуточная температура и давление были стабильны. Самыми старыми в мире работающими часами считаются куранты собора в Солсбери (Великобритания), установленные примерно в 1386 году.

Айзек Азимов не одобрял идею получения энергии из ничего. Он считал, что человечество будет развиваться, «сжигая» звезды. Вечно это длиться не может, однако писатель вышел из положения с присущей ему элегантностью: в рассказе «Последний вопрос» два пьяных техника задали суперкомпьютеру вопрос о том, как можно обратить энтропию вспять и продлить жизнь Вселенной (получив, таким образом, бесконечную энергию). Суперкомпьютер думал триллионы лет, постоянно эволюционируя, а в конце света, после тепловой смерти Вселенной, нашел ответ и сказал: «Да будет свет». Это можно понять следующим образом: энергия вечна, только вечно использовать ее нельзя. Рано или поздно все придется начинать с начала.

Существуют игры, позволяющие почувствовать себя сумасшедшим ученым, — например, The Incredible Machine (TIM) или Armadillo Run. Последняя якобы более реалистична, однако и в том, и в другом случае программы просчитывают физику таким образом, что умелый игрок может сконструировать вечный двигатель.

Вечный двигатель: возможно ли? Все попытки его создать 16

TIM и Armadillo Run.

Вечный двигатель: возможно ли? Все попытки его создать 15

Ничто не вечно, даже двигатели. Благородные безумцы древнего мира проектировали устройства, принципов действия которых они не понимали, и убеждали себя в том, что их машины будут работать вечно. Им на смену пришли ловкачи, проявлявшие чудеса изобретательности лишь в области сокрытия реальных источников энергии их двигателей. Сегодняшние непризнанные гении стремятся быть «ближе к народу», предлагая самый ходовой ресурс — бесконечное количество электроэнергии. А пока они доводят свои генераторы до ума, вы можете за несколько долларов купить на их сайте видеоролик, показывающий тестовую модель в работе. Раньше это было дешевле — посмотреть на колесо, крутящееся в амбаре, стоило лишь пару медных монет.

Наибольшая часть искренних попыток изобрести вечный двигатель приходится на людей без особых познаний в физике, но обладающих «золотыми руками» и страдающих от «творческого зуда». Интересно, что около трети из них — пенсионеры. В подавляющем большинстве случаев их проекты основаны на идеях вековой давности, причем авторы не ограничиваются одним «изобретением». Озарение приходит к ним чуть ли не каждый день, поэтому революционные чертежи поступают в патентное бюро не единицами, а килограммами.

В каком-то смысле вечный двигатель действительно существует — в виде его вечных поисков. Он работает по замкнутому циклу: то, на чем обожглись средневековые естествоиспытатели, сегодня вновь красуется на испытательных стендах. Но, может быть, это и к лучшему, ведь однажды именно так был придуман паровой насос, а Архимед перед тем, как крикнуть «Эврика!», собирался всего лишь помыться.

Термодинамика для «чайников»: первое начало, или почему невозможно построить вечный двигатель

термодинамика для чайников

В продолжение нашего курса «Физика для чайников» начнем рассматривать основы такого важнейшего раздела как термодинамика.

Активное развитие термодинамики началось в девятнадцатом веке. Именно тогда люди начали строить первые паровые машины, а потом активно внедрять их в производство. Началась промышленная революция, и, естественно, всем хотелось увеличить коэффициент полезного действия машин, чтобы произвести больше продукции, доехать подальше и в конце-концов получить больше денег. Все это очень хорошо стимулировало развитие науки и наоборот. Но давайте ближе к сути вопроса.

Парогенераторная прожекторная установка

Парогенераторная прожекторная установка

Термодинамика – раздел физики, изучающий макроскопические системы, их наиболее общие свойства, способы передачи и превращения энергии в таких системах.

Что такое макроскопические системы? Это системы, состоящие из очень большого числа частиц. Например, баллон с газом или воздушный шар. Описание таких систем методами классической механики просто невозможно – ведь мы не можем измерить скорость, энергию и другие параметры каждой молекулы газа в отдельности. Тем не менее, поведение всей совокупности частиц подчиняется статистическим закономерностям. По сути любой видимый нами (невооруженным глазом) предмет может быть определен как термодинамическая система.

Термодинамическая система

Термодинамическая система – реально или мысленно выделяемая макроскопическая физическая система, состоящая из большого числа частиц, не требующая для своего описания привлечения микроскопических характеристик отдельных частиц. Соответственно, для описания термодинамической системы используются макроскопические параметры, не относящиеся к каждой частице, но описывающие систему целиком. Это температура, давление, объем, масса системы и проч.

Важно отметить, что термодинамические системы могут быть замкнутыми и незамкнутыми. Замкнутая система – это такая система, которую при помощи реальной или воображаемой оболочки оградили от окружающей среды, при этом количество частиц в системе остается постоянным.

Замкнутая система

Система может находится в разных состояниях. Например, мы взяли баллон с газом и начали его нагревать. Тем самым мы изменили энергию молекул газа, они стали двигаться быстрее, и система перешла в какое-то новое состояние с более высокой температурой. Но что будет, если систему оставить в покое? Тогда система через какое-то время придет в состояние термодинамического равновесия.

Термодинамическое равновесие – это состояние системы, в котором ее макроскопические параметры (температура, объем и др.) остаются неизменными с течением времени.

Термодинамика стоит на трех своих столпах. Существуют три основных постулата или три закона термодинамики. Они называются соответственно первым, вторым и третьим началами термодинамики. Рассмотрим первое начало или первый закон термодинамики.

Первое начало термодинамики

Первое начало термодинамики гласит:

В любой изолированной системе запас энергии остается постоянным.

К слову, у данного постулата есть еще несколько эквивалентных формулировок. Приведем их ниже:

Количество теплоты, полученное системой, идет на изменение внутренней энергии системы, а также на совершение работы против внешних сил.

Невозможен вечный двигатель первого рода (двигатель, совершающий работу без затраты энергии).

Запишем также математическое выражение первого начала термодинамики:

Здесь Q — количество теплоты, дельта U — изменение внутренней энергии, A — работа против внешних сил. Для различных термодинамических процессов в силу их особенностей запись первого начала будет выглядеть по-разному.

Почему невозможен вечный двигатель первого рода?

Людей издревле привлекала ее величество Халява. Философский камень, превращающий любой металл в золото, скатерть самобранка, с которой не нужно готовить, джин, исполняющий любые желания. Еще одной такой идеей была идея вечного двигателя.

Если никто не пытался найти скатерть-самобранку, то вечный двигатель пытались изобрести очень много раз. На протяжении веков разные люди спрашивали себя: как построить вечный двигатель? Согласно историческим записям первым такую попытку предпринял в двенадцатом веке некий индийский ученый. Затем было еще множество попыток, в том числе плотно занимался вопросом и Леонардо да Винчи. Наконец, в девятнадцатом веке светлые головы Германа Гельмгольца и Джеймса Джоуля сформулировали первое начало динамики и подтвердили его опытами, чем развеяли все сомнения. В помощь также статья, о том, как делать презентацию в ворде и powerpoint.

Вечный двигатель Леонардо да Винчи

Вечный двигатель Леонардо да Винчи

Вечный двигатель невозможен, потому что так устроен мир. Об этом говорят нам законы термодинамики. Согласно первому началу термодинамики, количество теплоты, полученное системой, идет на изменение внутренней энергии системы, а также на совершение работы против внешних сил. Например, газ, помещенный в цилиндр с поршнем, получая определенное количество теплоты, увеличивает свою внутреннюю энергию, молекулы движутся быстрее, газ занимает больший объем и толкает поршень (работа против внешних сил). Иными словами, если работа совершается без внешнего притока энергии, она может совершаться лишь за счет внутренней энергии системы, которая рано иди поздно иссякнет, преобразовавшись в совершенную работу, на чем все закончится и система придет к состоянию термодинамического равновесия. Ведь энергия в мире никуда не уходит и не приходит, ее количество остается постоянным, а меняется лишь форма. Конечно, Вы обратили внимание на то, что речь идет о так называемом вечном двигателе первого рода (который может совершать работу без энергии). Спешим заверить, существование вечного двигателя второго рода также невозможно и объясняется вторым началом термодинамики, о котором мы поговорим в ближайшем будущем.

Энергия и ее формы

Энергия и ее формы

Надеемся, знакомство с термодинамикой прошло для Вас приятно и Вы полюбите ее всем сердцем. Если же этого не произойдет, Вы всегда можете поручить выполнение задач по термодинамике нашим авторам, пока сами занимаетесь более приятными делами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *