Почему конденсатор пропускает переменный ток, а постоянный — нет?
Что такое электрический ток? Это направленное движение заряженных частиц (носителей заряда, в частности, электронов) под действием электрического поля. Для того, чтобы в цепи шёл ток — цепь должна быть замкнутой. Что такое постоянный ток? Это движение электронов всё время в одну сторону, по кругу. Что такое переменный ток? Это движение электронов попеременно, то в одну, то в противоположную сторону. Что такое конденсатор? Грубо говоря, конденсатор — это две пластины (обкладки), между которым нет контакта, т.е. конденсатор разрывает цепь. Но конденсатор может заряжаться.
Когда конденсатор включён в цепь постоянного тока, то в первый момент после включения одна из его обкладок накапливает некоторое количество электронов и приобретает отрицательный заряд, а другая — отдав в цепь какое-то количество электронов, т.е. по сути лишившись их, приобретает положительный заряд. Через некоторое время конденсатор зарядится полностью, т.е. больше не может отдавать электроны из одной обкладки и накапливать их на другой. Поэтому направленное движение электронов прекращается, т.е. прекращается электрический ток.
Когда конденсатор включён в цепь переменного тока, то точно так же в первый момент после включения одна из его обкладок накапливает некоторое количество электронов и приобретает отрицательный заряд, а другая — отдав в цепь какое-то количество электронов, т.е. по сути лишившись их, приобретает положительный заряд. Через некоторое время конденсатор зарядится полностью, т.е. больше не может отдавать электроны из одной обкладки и накапливать их на другой. Но тут направление тока меняется. Теперь конденсатор отдаёт в цепь электроны с отрицательно заряженной обкладки, и принимает их на положительно заряженную обкладку. в конце концов конденсатор опять зарядится, но уже в противоположной полярности. Но тут опять направление тока изменяется, и конденсатор опять будет перезаряжаться. Таким образом, возможность перезаряда конденсатора приводит к тому, что он как бы "проводит" переменный ток.
Что такое конденсатор и для чего он нужен в схемах
Конденсатор — это вторая по популярности радиодеталь после резистора. Он важен и незаменим, участвует в формировании сигналов и фильтрации питания. А ведь изначально, самым первым конденсатором была лейденская банка, которая была изобретена в 1745 году. С тех пор конденсаторы стали неотъемлемой частью электроники.
Общая концепция
Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.
Обозначается на схеме двумя параллельными линиями.
Принцип работы
Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.
Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.
Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.
Чем больше емкость — тем больше может накопиться зарядов на обкладках конденсатора, т.е. электрического тока.
Основное свойство конденсатора — это емкость. Она зависит от площади пластин, расстояния между ними и материала диэлектрика, которым заполняют пространство между обкладками.
Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратится. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.
А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. Но если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.
Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.
Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.
Конденсатор и цепь постоянного тока
Добавим в схему лампочку. Она загорится только во время зарядки.
Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.
Лампочка затухает при полной зарядке.
Постоянный электрический ток не проходит через конденсатор только после его зарядки.
Цепь с переменным током
А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.
Электростатическая индукция возникает постоянно, если электрический ток переменный. Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.
Поэтому, конденсатор пропускает переменный электрический ток.
Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.
Назначение и функции конденсаторов
Конденсатор играет огромную роль как в аналоговой, так и цифровой технике. Они бывают электролитическими и керамическими, и отличаются своими свойствами, но не общей концепцией. Примеры использования:
- Фильтрует высокочастотные помехи;
- Уменьшает и сглаживает пульсации;
- Разделяет сигнал на постоянные и переменные составляющие;
- Накапливает энергию;
- Может использоваться как источник опорного напряжения;
- Создает резонанс с катушкой индуктивности для усиления сигнала.
Примеры использования
В усилителях обычно используются для защиты сабвуферов, фильтрации питания, термостабилизации и разделение постоянной составляющей от переменной. А электролитические в автономных схемах с микроконтроллерами могут долго обеспечивать питание за счет большой емкости.
В данной схеме транзистор VT1 постоянно открыт, чтобы усиливать звук без искажений. Но если вход замнется или на него поступи постоянный ток, то транзистор откроется, перейдет в насыщение и перегреется. Чтобы этого не допустить, нужен конденсатор. С1 позволяет отделить постоянную оставляющую от переменной. Переменный сигнал легко проходит на базу транзистора, а постоянный сигнал не проходит.
С2 совместно с резистором R3 выполняет функцию термостабилизации. Когда усилитель работает, транзистор нагревается. Это может внести искажения в сигнал. Поэтому, резистор R3 помогает удержать рабочую точку при нагреве. Но когда транзистор холодный и стабилизации не требуется резистор может уменьшить мощность усилителя. Поэтому, в дело вступает С2. Он проводит через себя усиленный сигнал шунтируя резистор, тем самым, не снижая номинальную мощность схемы. Если его емкость будет ниже расчетной, он начнет вносить фазовые искажения в выходной сигнал.
Чтобы схема качественно работала, обязательно хорошее питание. Когда схема в пиковые значения потребляет больше тока, то это всегда сильная нагрузка на источник питания. С3 фильтрует помехи по питанию и помогает снизить нагрузку. Чем больше емкость — тем лучше звук, но до определенных значений, все зависит от схемы.
А в блоках питания используется тот же принцип, как и в предыдущей схеме по питанию, но здесь емкость нужна гораздо больше. На этой схеме емкость элеткролита может быть как 1000 мкФ, так и 10 000 мкФ.
Еще на диодный мост можно параллельно включить керамические конденсаторы, которые будут шунтировать схему от высокочастотных наводок и шума сети 220 В.
Фазовые искажения
Конденсатор может искажать переменный сигнал по фазе. Это происходит из-за неверного расчета емкости, общего сопротивления и взаимодействия с другими радиодеталями. Не стоит забывать и о том, что любая радиодеталь имеет как реактивное, так и активное сопротивление.
Почему конденсатор не пропускает постоянный ток, но зато пропускает переменный ?
в чисто физическом плане: конденсатор — есть развыв цепи, т. к. его прокладки не соприкасаются друг с другом, между ними диэлектрик. а как мы знаем диэлектрики не проводят электричесний ток. поэтому постоянный ток через него и не идёт.
хотя.. .
Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора) , по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.
а для переменного тока конденсатор является частью колебательного контура. он играет роль накопителя электрической энергии и в сочетаниии с катушкой, они прекрасно сосуществуют, переобразовывая электрическую энегрию в магнитную и обратно со скоростью/частотой равной их собственной omega = 1/sqrt(C*L)
пример: такое явление как молния. думаю слышал. хотя плохой пример, там зарядка происходит через электризацию, изза трения атмосферного воздуха о поверхность земли. но пробой всегда как и в конденсаторе происходит только при достижении так называемого пробивного напряжения.
Почему постоянный ток не проходит через конденсатор?
Конденсаторы — это приборы, накапливающие электрическую энергию в виде зарядов. Аппараты не могут пропускать через себя постоянный ток. Будучи включёнными в цепь с переменным током, он уподобляется пружине, подвергающейся внешнему воздействию. Примечательно, что они не будет пропускать и ток, однако при его прохождении случится перезарядка накопителя, из-за чего покажется, что он проходит через обкладки. Если к ним в разряженном состоянии приложить постоянное напряжение, то по цепи пойдет ток, который снижается по мере зарядки накопителя. Когда достигается паритет значений напряжения на источнике питания и пластинах, он прекращает протекать, что приводит к разрыву.
Почему идет переменный ток через конденсатор
Конденсатор — это разрыв, поскольку его прокладки не касаются друг друга из-за нахождения между ними диэлектрика, не проводящего постоянный электроток. Однако будучи подключённым к постоянной цепи, он всё же может его проводить в момент подсоединения, поскольку происходит зарядка или перезарядка.
Когда завершается переходный процесс, ток перестаёт проходить через пассивный электронный компонент из-за разделения его обкладок диэлектриком. Будучи подключённым к такой цепи он проводит его колебания вследствие циклической перезарядки. Здесь прибор входит в колебательный контур и вместе с катушкой выполняет функцию накопителя энергии.
Такой симбиоз способствует преобразованию электричества в магнитную энергию или, наоборот, с равной их собственной частотной скоростью, которая рассчитывается по формуле: omega = 1 / sqrt(C × L).
Почему идёт переменный ток
Действительность такова, что конденсатор не способен пропускать через себя переменный ток. Сначала он его аккумулирует на обкладках. Возникает ситуация, в которой на одной из них имеет место переизбыток электронов, а на другой их, напротив, мало. В результате конденсатор отдаёт эти заряды, из-за чего электроны, находящиеся во внешней цепи, перемещаются в одну и в другую сторону от одной обкладки к другой.
К сведению! Результат выражается в том, что электроны перемещаются внутри внешней цепи, но не в самом пассивном компоненте. Энергия перераспределяется внутри поля между конденсаторными пластинками, что называют токами смещения, отличающимися от электротоков проводимости.
Конденсатор в цепях электрического тока
Итак, мы приблизительно поняли, что такое конденсатор, но как работает сей элемент, еще толком не разобрали.
Цепь постоянного тока
Если говорить простыми словами, то конденсатор, или «кондер», как его называют в народе – это небольшой элемент, который словно аккумулятор способен накапливать в себе некий заряд, который он готов разрядить за считанные доли секунды
Интересно знать! В отличие от аккумулятора в конденсаторе отсутствует источник ЭДС.
Чтобы кондеру разрядиться, ему нужно замкнуть контакты напрямую, либо через цепь. Вроде бы все ясно, но как происходит течение тока в конденсаторе при подключении его в сеть.
- Начнем с постоянного тока, и проведем один небольшой опыт. Для этого нам понадобятся сам конденсатор, источник постоянного тока на 12 Вольт и лампочка с проводами, тоже на 12 Вольт.
Все элементы собраны в цепь
- Подключаем все это вместе, как показано на фото выше, и видим, что ничего не происходит – лампочка не горит.
Подключение в обход конденсатора
- Меняем положение «крокодила» так, чтобы пустить ток в обход конденсатора. И, о чудо! Лампочка загорелась! Почему же так происходит?
- Все просто, достаточно помнить, что ток через конденсатор протекает, только когда он заряжается и разряжается, причем напряжение всегда будет отставать от тока.
- Разряженный конденсатор сродни короткому замыканию в цепи – при его подключении к источнику напряжения, в первый момент времени напряжения в нем нет, но зато имеется ток, который в этот момент времени является максимальным (вот вам и отставание).
- Ток течет через конденсатор, и тот начинает накапливать заряд, увеличивая свое внутреннее напряжение до тех пор, пока оно не сравняется с напряжением источника питания и кондер не заполнит всю свою емкость.
- В этот момент времени ток перестает течь, а так как конденсатор не может разрядиться, то, соответственно, и лампочка гореть не будет.
- Сравнить этот процесс можно с водяной системой в виде сообщающегося сосуда, разделенного заслонкой, при том, что одна часть пустая, а вторая полная. Уберите препятствие, и вода потечет во второй сосуд, пока давления не выровняются, то есть напор не спадет до нуля.
- А что было бы, если бы конденсатор отсоединился от цепи и закоротился? Да все то же самое! В первый момент времени ток будет максимальным при неизменном напряжении. Ток побежит вперед, а напряжение вслед за ним, пока весь заряд не уйдет.
- Снова в качестве примера берем водяную систему, состоящую из полного бачка, который будет играть роль конденсатора, и краника на нем, через который можно осуществить слив воды. Открывает кран и видим, что вода тут же потекла, при этом давление (напряжение) будет падать плавно, по мере опустошения емкости.
Эти же закономерности характерны и для синусоидального тока, о чем мы сейчас и поговорим.
Где и зачем применяются конденсаторы
Где и почему используются эти приборы, которые могут работать в радиотехнических, электронных и электротехнических устройствах? Накопители используются в электротехнике при включении асинхронных моторов для сдвига фаз, без чего двигатель в составе однофазной цепи не будет функционировать. Если ёмкость составляет несколько фарад, то их применяют в электромобилях для питания мотора.
Применение возможно в разных сферах
Правильное использование этих приборов позволит получить лучший результат. Понимание основных принципов физики упрощает эксплуатацию оборудования. Неправильное применение чревато негативными последствиями, вызванными несоблюдением техники безопасности.
Принцип работы конденсатора
Подключение прибора к постоянному источнику приводит к тому, что в начальный момент происходит аккумуляция в обкладках из-за электростатической индукции, а сопротивление в этот момент приравнивается нулю. Электрическая индукция провоцирует поле к притяжению разноимённых зарядов на разные обкладки, расположенные друг напротив друга.
Вам это будет интересно Электрогенератор Николы Тесла
Такое свойство получило название ёмкость, которая характерна для всех типов материалов, в том числе и диэлектриков, однако в случае с проводниками она существенно больше. Именно поэтому обкладки изготавливаются из проводника. Увеличение ёмкости способствует накоплению большего количества зарядок на обкладках.
Важно! Когда аккумулируются заряды, происходят ослабление поля и наращивание двухполюсника.
Принцип работы
Происходит это из-за уменьшения места в обкладках, воздействия одноимённых зарядов друг на друга. Одновременно с этим напряжение приравнивается к источнику тока. Прекращение электричества в цепи происходит после того, когда обкладки полностью заполнятся электричеством. Из-за этого пропадает индукция и остаётся только поле, удерживающее и не пропускающее заряды.
Диэлектрик между обкладками
Электротоку будет некуда деться, а на двухполюснике напряжение приравнивается к ЭДС. Когда ЭДС повышается, поле сильнее воздействует на диэлектрик из-за отсутствия места в обкладках. Если внутреннее конденсаторное напряжение будет выше предельных значений, тогда пробьёт диэлектрик.
Конденсатор преобразуется в проводник, и происходит освобождение зарядов, из-за чего электроток начинает идти. Чтобы применять двухполюсник при высоком напряжении повышают размер диэлектрика и наращивают расстояние, имеющееся между обкладками на фоне снижения ёмкости. Диэлектрик располагается между обкладками и не даёт проходить постоянному, выполняя в отношении него барьерную функцию.
Электрическая индукция
Обратите внимание! Именно постоянное напряжение способно формировать электростатическую индукцию, но только в случае замыкания в момент зарядки конденсатора. Благодаря этому механизму сохраняется энергия до момента подсоединения к нему потребителю.
Конденсатор в цепи постоянного тока
Чтобы понять, как работает накопитель в цепи постоянного тока, надо добавить в схему лампочку, которая станет загораться только при зарядке, в процессе которой от электротока остаётся напряжение, как бы догоняющее его из-за плавного нарастания. Заряды электричества затрачивают какое-то время для перемещения к обкладкам, именно это и есть время зарядки, продолжительность которого определяется частотой и ёмкостью напряжения. Когда зарядка завершается, лампочка тухнет, и постоянный электроток перестаёт проходить через пассивный электронный компонент.
Конденсатор в цепи переменного тока
Если у источника изменить полярность, то это приведёт к разрядке конденсатора в цепи переменного тока и его повторной зарядке. Формируется постоянная электростатическая индукция при переменном. Всегда при изменении электричеством своего направления запускается механизм зарядки и разрядки, из-за чего он и пропускает переменный. Увеличение частоты приводит к снижению ёмкостного сопротивления двухполюсника.
Вам это будет интересно Самодельный ионистор
Конденсатор в постоянной цепи
Формулы вычисления тока в конденсаторе
Ёмкость конденсатора, включенного в цепь переменного тока, рассчитывается по формуле: C = q / U, где:
- С — ёмкость;
- q — заряд одной из пластин;
- U — напряжение внутри.
Ёмкость
Конденсаторы бывают разной формы, поэтому и их расчёт осуществляется по нескольким формулам:
- плоский — C = E × E0 × S / d;
- цилиндрический — С=2 π × E × E0 × l / ln(R2 / R1);
- сферический — C = 4 π ×E × E0 × R1 × R2 / R2 — R.
Обратите внимание! Сопротивление в переменной цепи, которое может оказывать резистор, включённый в электрическую цепь, вычислить нельзя, так как она считается бесконечно большим. Однако в данном случае, это можно сделать по формуле: Хс = 1 / 2πvC = 1 / wC.
Вам это будет интересно Все о бесперебойном питании
Напряжение конденсатора в цепи переменного тока вычисляется по следующей формуле: Wp = qd E / 2.
Напряжение рассчитывается по определенной формуле
Чтобы рассчитать напряжение на конденсаторе в цепи переменного тока, необходимо воспользоваться актуальными формулами.
Назначение и функции конденсаторов
Конденсатор играет огромную роль как в аналоговой, так и цифровой технике. Они бывают электролитическими и керамическими, и отличаются своими свойствами, но не общей концепцией. Примеры использования:
- Фильтрует высокочастотные помехи;
- Уменьшает и сглаживает пульсации;
- Разделяет сигнал на постоянные и переменные составляющие;
- Накапливает энергию;
- Может использоваться как источник опорного напряжения;
- Создает резонанс с катушкой индуктивности для усиления сигнала.
Примеры использования
В усилителях обычно используются для защиты сабвуферов, фильтрации питания, термостабилизации и разделение постоянной составляющей от переменной. А электролитические в автономных схемах с микроконтроллерами могут долго обеспечивать питание за счет большой емкости.
В данной схеме транзистор VT1 постоянно открыт, чтобы усиливать звук без искажений. Но если вход замнется или на него поступи постоянный ток, то транзистор откроется, перейдет в насыщение и перегреется. Чтобы этого не допустить, нужен конденсатор. С1 позволяет отделить постоянную оставляющую от переменной. Переменный сигнал легко проходит на базу транзистора, а постоянный сигнал не проходит.
С2 совместно с резистором R3 выполняет функцию термостабилизации. Когда усилитель работает, транзистор нагревается. Это может внести искажения в сигнал. Поэтому, резистор R3 помогает удержать рабочую точку при нагреве. Но когда транзистор холодный и стабилизации не требуется резистор может уменьшить мощность усилителя. Поэтому, в дело вступает С2. Он проводит через себя усиленный сигнал шунтируя резистор, тем самым, не снижая номинальную мощность схемы. Если его емкость будет ниже расчетной, он начнет вносить фазовые искажения в выходной сигнал.
Чтобы схема качественно работала, обязательно хорошее питание. Когда схема в пиковые значения потребляет больше тока, то это всегда сильная нагрузка на источник питания. С3 фильтрует помехи по питанию и помогает снизить нагрузку. Чем больше емкость — тем лучше звук, но до определенных значений, все зависит от схемы.
А в блоках питания используется тот же принцип, как и в предыдущей схеме по питанию, но здесь емкость нужна гораздо больше. На этой схеме емкость элеткролита может быть как 1000 мкФ, так и 10 000 мкФ.
Еще на диодный мост можно параллельно включить керамические конденсаторы, которые будут шунтировать схему от высокочастотных наводок и шума сети 220 В.
Принцип работы
Конденсатор может быть выполнен по-разному, но суть работы и основные его элементы остаются неизменными в любом случае. Чтобы понять принцип работы, необходимо рассмотреть самую простую его модель.
У простейшего устройства имеются две обкладки: одна из них заряжена положительно, другая — наоборот, отрицательно. Заряды эти хоть и противоположны, но равны. Они притягиваются с определенной силой, которая зависит от расстояния. Чем ближе друг к другу располагаются обкладки, тем больше между ними сила притяжения. Благодаря этому притяжению заряженное устройство не разряжается.
Однако достаточно проложить какой-либо проводник между двумя обкладками и устройство мгновенно разрядится. Все электроны от отрицательно заряженной обкладки сразу же перейдут на положительно заряженную, в результате чего заряд уравняется. Иными словами, чтобы снять заряд с конденсатора, необходимо лишь замкнуть две его обкладки.