ПРОЦЕСС РАСТЕКАНИЯ ЭЛЕКТРИЧЕСКОГО ТОКА В ГРУНТЕ ЗЕМЛИ
В электроустановках в силу различных причин может происходить нарушение изоляции фазных проводников относительно земли и, как следствие этого, — электрическое замыкание на землю (например, через заземлённый металлический корпус). При этом в грунте возникает процесс растекания электрического тока, сопровождающийся соответствующим распределением электрических потенциалов в некоторой окрестности вокруг электрода-заземлителя.
Наиболее простым в математическом отношении является случай, когда ток замыкания IЗ стекает в землю через полусферический заземлитель с радиусом rз. В данном случае можно считать, что ток IЗ будет растекаться в грунте от заземлителя по всем направлениям равномерно (рис. 4.4).
Рассмотрим величину разности потенциалов (напряжения), которая может возникнуть между произвольной точкой грунта с координатой x, расположенной в окрестности заземлителя, и бесконечно удалённой точкой (с координатой x ® ∞): Uх = φх – φ∞ . Потенциал бесконечно удалённой точки принято считать равным нулю, поэтому Uх = φх .
Для определения величины Uх проведём через точку x полусферическую поверхность Sx вокруг заземлителя. Ток замыкания, растекающийся в однородном грунте равномерно по всем направлениям, создаёт стационарное электрическое поле, напряжённость которого на поверхности Sx определяется согласно закону Ома в дифференциальной форме:
где: jx = Iз / Sx – плотность тока через полусферическую поверхность Sx= 2πx 2 , A/м 2 ;
ρ – удельное электрическое сопротивление грунта, Ом∙м.
Измеряемый параметр грунта ρ зависит от вида грунта, его структуры, влажности и температуры.
Задавая элементарное приращение координаты, можно определить величину падения напряжения на слое грунта толщиной dx:
Интегрируя полученное выражение по всему расстоянию от данной точки x до бесконечно удалённой точки, получаем зависимость напряжения (или потенциала) от расстояния до центра заземлителя:
Полученная зависимость носит гиперболический характер и определяет распределение напряжения (или потенциала) в окрестности заземлителя относительно бесконечно удалённой точки. Для заземлителей с геометрической формой, отличной от полусферической, распределение напряжения в окрестности заземлителя описывается более сложными математическими формулами, но, тем не менее, оказывается “похожим” на данное распределение.
Область грунта вокруг заземлителя, в пределах которой возникает практически заметный градиент величины напряжения или потенциала, называется зоной растекания электрического тока. Условно считают, что нулевой потенциал имеет точка грунта, бесконечно удалённая от заземлителя. В большинстве случаев область нулевого потенциала начинается на расстоянии 20 м от заземлителя. Эту область грунта называют электротехнической землёй ( ! ).
При стремлении координаты x к нулю величина напряжения (потенциала) неограниченно увеличивается. Практически же подобного не происходит. Данный факт объясняется тем, что удельное электрическое сопротивление металлических заземлителей очень мало, поэтому потенциалы всех точек металлической среды заземлителя оказываются практически одинаковыми и равными величине потенциала, образующегося на границе раздела металлической среды заземлителя и грунта (рис. 4.4). Таким образом, максимальная величина напряжения (потенциала) в зоне растекания электрического тока через полусферический заземлитель ограничивается на уровне, определяемом значением координаты x = rз (т. е. геометрическими размерами заземлителя):
Для характеристики максимального напряжения в зоне растекания введён очень важный параметр – сопротивление заземлителя растеканию тока
которое практически полностью определяется свойствами грунта (ρ) и геометрическими размерами заземлителя (rз). Таким образом, при данном токе IЗ уменьшить уровень максимального напряжения (потенциала) в зоне растекания можно за счёт уменьшения сопротивления заземлителя, которое, в свою очередь, может быть уменьшено за счёт увеличения его геометрических размеров. Знание тока замыкания на землю и сопротивления заземлителя позволяет определить напряжение заземлителя относительно точки грунта, находящейся вне зоны растекания.
Если человек находится в зоне растекания электрического тока, то он может оказаться под действием напряжения шага. Напряжение шага (Uш) – это разность потенциалов между двумя точками грунта, с которыми контактируют ступни ног человека:
где xл и xп – координаты точек грунта, с которыми контактируют ступни левой и правой ног человека.
Напряжение шага зависит от местоположения человека в зоне растекания и от расстояния между точками расположения ступней его ног (т. е. от длины шага). По мере удаления человека от заземлителя напряжение шага уменьшается и за пределами зоны растекания оно практически равно нулю. Максимальное напряжение шага соответствует случаю, когда ступня одной ноги человека расположена на заземлителе, а другая — на расстоянии шага.
196. Определение терминов: «электротехническая земля», «поле растекания»
Замыкание на землю — это случайное электрическое соединение находящихся под напряжением частей электроустановки с землей (контакт токоведущих частей с заземленным корпусом, падение оборванного провода на землю и т.д., при этом ток проходит через электрод, непосредственно касающийся земли (форма электродов может быть самая разнообразная).
Специальный металлический электрод для соединения с землей называется заземлителем. Для упрощения представления картины замыкания на землю, представим одиночный заземлитель в виде полусферы. По мере удаления от заземлителя общее сопротивление от заземлителя до рассматриваемой точки грунта будет увеличиваться, а сила тока снижаться. В цепи замыкания на землю наибольшим потенциалом обладает заземлитель, а точки поверхности грунта имеют тем меньший потенциал, чем дальше они расположены от заземлителя и далее изменяются по гиперболическому закону.
Область поверхности грунта, потенциал которой равен нулю, называется электротехнической землей; практически эта земля начинается с расстояния 10-20 метров от заземлителя.
Область грунта, лежащая вблизи заземлителя, где потенциал не равен нулю, называется полем растекания.
198. Напряжение прикосновения. Напряжение шага.
В. Прикосновение к заземленным нетоковедущим частям, оказавшимся под напряжением.
Указанные части электроустановок (корпуса, оболочки, кабеля) могут оказаться под напряжением лишь случайно в результате повреждения изоляции. При случайном касании этих частей человек будет находиться под воздействием напряжения прикосновения.
Напряжение прикосновения — это напряжение между двумя точками цепи тока, которых одновременно касается человек (ГОСТ 12.1.009-76). При прикосновении человека к заземленному корпусу, имеющему контакт с одной из фаз, часть тока замыкания на землю проходит через человека, а если корпус не заземлен, то через человека проходит весь ток замыкания на землю (однополюсное прикосновение).
Величина напряжения прикосновения для человека, стоящего на грунте и коснувшегося оказавшегося под напряжением заземленного корпуса может быть определена как разность потенциалов руки (корпуса) и ноги (грунта) с учетом коэффициентов:
1 — учитывающего форму заземлителя и расстояния от него до точки, на которой стоит человек;
2 — учитывающего дополнительное сопротивление цепи человека (одежда, обувь) Uпр = Uз12 ,
а ток, проходящий через человека
Наиболее опасным для человека является прикосновение к корпусу, находящемуся под напряжением и расположенному вне поля растекания.
Г. Включение на напряжение шага.
Напряжением шага (шаговым напряжением) называется напряжение между двумя точками цепи тока, находящихся одна от другой на расстоянии шага, на которых одновременно стоит человек (ГОСТ 12.1.009-76).
где 1 — коэффициент, учитывающий форму заземлителя;
2 — коэффициент, учитывающий дополнительное сопротивление в цепи человека (обувь, одежда).
Наибольшее напряжение шага будет вблизи заземлителя и особенно, когда человек одной ногой стоит над заземлителем, а другой — на расстоянии шага от него. Если человек находится вне поля растекания на одной эквипотенциальной линии, то напряжение шага равно нулю.
Необходимо иметь в виду, что максимальные значения 1 и 2 больше таковых соответственно 1 и 2 , поэтому шаговое напряжение значительно меньше напряжения прикосновения. Кроме того, путь тока «нога-нога» менее опасен чем путь «рука-рука». Однако имеется много случаев поражения людей при воздействии шагового напряжения, что объясняется тем, что при воздействии шагового напряжения в ногах возникают судороги и человек падает. После падения человека цепь тока замыкается через другие участки тела, а также человек может замкнуть точки с большими потенциалами.
По территории завода был проложен временный гибкий кабель. Кабель лежал на пути перемещения ручной тележки, поэтому в этом месте он был прикрыт железным листом, при перемещении груженой тележки кабель был поврежден и одна из его жил была в соприкосновении с листом. В результате вокруг листа возникло шаговое напряжение.
Двое рабочих, толкавших тележку, получили электрический удар, от которого один упал, а второй с криком отскочил от тележки. Оба отделались испугом. Третий рабочий, шедший рядом и не касавшийся тележки, получил удар от шагового напряжения. Вначале он стал медленно приседать и затем, скорчившись, упал и умер.
199. Защитные меры в электроустановках.
Согласно ГОСТ 21.1.019-79* элетробезопасность электроустановок обеспечивается:
техническими способами и средствами защиты;
организационными и техническими мероприятиями.
Все меры обеспечения электробезопасности сводятся к трем путям:
недопущение прикосновения и приближения на опасное расстояние к токоведущим частям, находящимся под напряжением;
снижение напряжения прикосновения;
уменьшение продолжительности воздействия электрического тока на пострадавшего.
К техническим способам относятся следующие, предусмотренные ПУЭ:
применение надлежащей изоляции и контроль за ее состоянием;
обеспечение недоступности токоведущих частей;
автоматическое отключение электроустановок в аварийных режимах — защитное отключение;
заземление или зануление корпусов электрооборудования;
применение разделительных трансформаторов;
защита от опасности при переходе напряжения с высокой стороны на низкую;
компенсация емкостной составляющей тока замыкания на землю;
применение низких напряжений.
200. Применение надлежащей изоляции. Термин «участок сети».
Для предупреждения электропоражений применяется рабочая изоляция токоведущих частей, кроме того применяется двойная изоляция — это изоляция металлических частей электрооборудования нормально не находящихся под напряжением. Этот метод защиты имеет недостаток — при пробое на корпусе из-за повреждения рабочей изоляции возможна работа с таким оборудованием, а при повреждении второго слоя изоляции открывается доступ к металлическим частям (корпусу), находящимся под напряжением.
Таким образом надежность работы электроустановок в большой степени зависит от состояния изоляции токоведущих частей.
Повреждение изоляции является основной причиной многих несчастных случаев. Надежность изоляции достигается:
1) правильным выбором ее материала и геометрии (толщина, форма).
2) правильными условиями эксплуатации.
3) надежной профилактикой в процессе работы. Изоляция исключает возможность прохождения тока через тело человека при прикосновении к токоведущим частям или ограничивает этот ток до безопасных значений для человека (до 100 млА).
В последнее время наблюдается широкое внедрение новых видов изоляционных материалов (пластмасс и пр.) заменяющих каучуковую, хлопчатобумажную и т.п. виды изоляции.
Для поддержания высокого уровня надежности изоляции необходимо проводить ее до испытания повышенным напряжением и контроль изоляции.
Испытания проводятся при приеме-сдаче электроустановок и периодически во время их эксплуатации.
Объем испытаний изоляции регламентируется ПУЭ, ПТЭ и ПТБ. При испытании повышенным напряжением дефекты изоляции обнаруживаются в следствии пробоя и прожигания изоляции.
Под контролем изоляции понимается измерение ее активного сопротивления ч целью обнаружения ее дефектов и предупреждения коротких замыканий на землю. Измерения проводятся при снятом рабочем напряжении. Измерения проводятся на каждом участке сети, при этом измеряется величина сопротивления изоляции каждой фазы относительно земли и между каждой парой фаз.
Под участком сети понимается сеть между двумя последовательно установленными предохранителями, аппаратами защиты и т.п. или за последним предохранителем.
Допустимая величина сопротивления изоляции устанавливается ПУЭ и ПТЭ. Сопротивление изоляции участка сети в сетях напряжением до 1000 В должно быть не менее 0,5 мОм на фазу. Сопротивление изоляции для различных электроаппаратов устанавливается различным от 1 до 25 мОм.
Величина сопротивления изоляции некоторых электроаппаратов (напр. силовых трансформаторов) вообще не нормируется.
Однако путем сравнения величины сопротивления изоляции аппарата измененной при пуско-сдаточных испытаниях и в данный момент можно судить о надежности изоляции. Изоляция считается недостаточной , если установлено снижение сопротивления изоляции по отношения к первоначальным значениям — на 30 и более процентов.
Седельников Ф.И. Безопасность жизнедеятельности — файл n109.htm
Замыкание на землю — это случайное электрическое соединение находящихся под напряжением частей электроустановки с землей (контакт токоведущих частей с заземленным корпусом, падение оборванного провода на землю и т.д.), при этом ток проходит через электрод, непосредственно касающийся земли ( форма электродов может быть самая разнообразная).
Специальный металлический электрод для соединения с землей называется заземлителем. Для упрощения представления картины замыкания на землю представим одиночный заземлитель в виде полусферы (рис. 59).По мере удаления от заземлителя общее сопротивление от заземлителя до рассматриваемой точки грунта будет увеличиваться, а сила тока снижаться .
В цепи замыкания на землю наибольшим потенциалом обладает заземлитель, а точки поверхности грунта имеют тем меньший потенциал, чем дальше они расположены от заземлителя и далее изменяются по гиперболическому закону.
Область поверхности грунта, потенциал который равен нулю, называется электротехнической землей, практически эта земля начинается с расстояния 10 — 20 м от заземлителя.
Область грунта, лежащая вблизи заземлителя, где потенциал не равен нулю, называется полем растекания.
Земля в электротехнике
Землей называют точку цепи, электрический потенциал которой считается равным нулю. Такую точку можно выбирать условно. Землей ее называют традиционно, поскольку один из проводников электрических генераторов соединяли с землей при помощи зарытого в землю проводника. Электрикам-профессионалам и тем, кто имеет дело с электричеством необходимо знать, что такое фаза и что такое ноль.
Ток в цепи
Электрический ток может протекать только в замкнутом контуре. Электрическая цепь состоит из источника Э. Д. С. – электродвижущей силы и замыкающего этот источник сопротивления нагрузки, которое может быть очень разветвленным. Если говорить о бытовой электросети, то здесь источником ЭДС является вторичная обмотка трансформатора ближайшей подстанции, или еще проще, таким источником является ввод в здание.
Один из проводов источника заземлен, этот провод (или шина) называется нейтралью, N, в современной электротехнике. Потенциал этой шины относительно земли равняется нулю, поэтому этот провод называют землей.
Другие три провода называют фазами. Эти провода находится под переменным потенциалом, который меняется от 311 до -311 Вольт относительно земли в сети 220 В 50 Гц (50 раз в секунду). 220 Вольт – это, так называемое, действующее напряжение. Для тока и напряжения синусоидальной формы это среднеквадратичное значение. Это напряжение называют фазным.
Напряжение между двумя фазами называют линейным и оно выше: 380-400 В. Таким образом, размах напряжения в трехфазной сети может достигать величины 760-800 В. Поэтому электроинструмент должен уверенно выдерживать испытательное напряжение не менее 1 кВ = 1000 Вольт.
При замыкании фазы на ноль через какое-либо сопротивление в цепи течет ток. Еще больший ток через то же сопротивление потечет, если оно будет подключено между двумя фазами. В трехфазной цепи у конечных потребителей обычно действующее напряжение между фазами 380 В, а фаза и ноль образуют пару, напряжение на которой всегда равно напряжению между фазами, деленному на квадратный корень из числа 3. Это один из результатов теоретической электротехники. Отсюда и получается известная всем величина 220.
История заземления
В самых старых системах бытового электроснабжения переменного тока, которых теперь уже не найдешь, у конечного потребителя заземления не было (система TT, заземлялась только нейтраль на подстанции, если вторичная обмотка трансформатора соединялось звездой).
Это была однофазная сеть, распределяющаяся ток от понижающей обмотки трансформатора подстанции. Здесь вопрос о том, что такое фаза или нулевой провод даже не возникал – оба провода по отношению к земле были равноправными. Человек мог стоять на земле и держаться за любой из проводов по отдельности. При этом он ничего не чувствовал.
Наиболее старые трансформаторы, питающие однофазную сеть, имели схему, показанную на следующем рисунке. Первичные обмотки соединялись треугольником, нейтрали не было, и заземлялся только корпус трансформатора на месте установки. Теперь таких уже давно нет или они применяются где-то для полевых условий в сельском хозяйстве.
Поражение током происходило, если человек дотрагивался до двух проводов одновременно или, если один из проводов был кем-либо заземлен, а человек дотрагивался до другого. Старые электроплитки делались с открытой спиралью, люди готовили в металлической посуде и касались токоведущих частей. Старые телевизоры, например, изготавливались с автотрансформатором ради простоты конструкции и человек, дотрагиваясь до металлического шасси такого аппарата, фактически находился под напряжением сети.
Проблема возникла, когда жилой сектор стал снабжаться промышленным способом подключения (как на первом рисунке). Это произошло потому, что мощность, потребляемая частным сектором, значительно выросла, а в городах он фактически был перемешан с промышленностью (дома-хрущевки).
Тогда человек, стоящий на влажном полу, или держащийся за батарею, получал сильное поражение током с вероятностью 50%, в зависимости от того, как он включил вилку электроприбора в розетку. Если фаза тока попадала на шасси такого старого телевизора или радиоприемника, то прикосновение к нему было опасно для жизни.
Промышленность в области ширпотреба быстро перешла на производство нагревательных приборов с закрытым и изолированным нагревательным элементом (ТЭНы), а бытовые радио и телевизионные приборы стали производить исключительно с трансформаторами, где первичная обмотка была полностью изолирована от остальной части прибора, что сделало их безопасными для людей.
Но почему появилось заземление в промышленности? Нам надо рассмотреть и этот вопрос. В принципе, ни для работы потребителей, ни для транспортировки электроэнергии ничего заземлять не требуется.
Трехфазная система переменного тока была принята только потому, что это упрощало конструкцию электродвигателей, так необходимых станкам и машинам в промышленности. По трехфазной схеме в треугольник можно соединять и нагревательные приборы, пример тому – тэны, рассчитанные на 380 В.
Трехфазные системы могут соединяться звездой (первый рисунок). Такое соединение стало очень распространенным, так как оно позволяет без больших проблем питать трехфазные потребители напряжением 380 В, и в то же время, без лишних расходов устроить однофазные сети 220 В. Это хороший способ сэкономить на трансформаторах.
Так появился проводник, который назвали нейтралью (N). Его также называют – нулевой провод. При равном токе по всем фазам ток в нулевом проводе равен нулю. Энергетики стараются распределить нагрузку равномерно. Но это не всегда получается. Вот простой пример. Пусть на заводе был запитан офисный корпус. Для этого была выделена одна фаза.
Затем к этой же фазе подключили жилой дом недалеко. Остальные две фазы оказываются неуравновешены и в нейтрали появляется значительный ток. Это приводит ко всякого рода неопределенностям при измерениях. К тому же, как бы ровно не распределили нагрузку, на корпусах электрооборудования появляются опасные напряжения, если нейтраль оборвана.
Начало TN
В 1913 году немецкий концерн AEG предложил систему с заземленной нейтралью, позже названную TN-C. Здесь электрики стали использовать понятия фаза и ноль. Позже, в 1930-х годах появилась система TN-S, в которой заземление и нейтраль были разделены. Это дополнительно увеличивало безопасность, так как теперь, если нулевой провод оборван с очень высокой вероятностью оставался целым другой проводник. Но такая система оказывалась неоправданно дорогой.
Поэтому, со временем было предложено еще одно решение: нулевой провод от подстанции (PEN – защитная земля и нейтраль) расщеплялся на две части перед вводом в здание. Одна часть шла как нейтраль N, а другая получила название защитной земли PE. Если происходил обрыв нейтрали то фаза переменного тока, в случае попадания на корпус электрооборудования, пропускала свой ток в землю. Такая система получила название TN-C-S (заземленная нейтраль комбинированная, с разделением на месте).
Система TN-C-S имеет всего один недостаток – местное заземление должно быть повышенной надежности так как при обрыве нейтрали фазное напряжение, попавшее на корпус, будет заземлено только по цепи PE. Поэтому, при сооружении этой цепи принимают все меры по ее механической прочности и снижению электрического сопротивления.
Для этого используют металлические части зданий, трубопроводы и т.д. Однако все эти части соединяются всего в одной точке при помощи шин. Существует точка (шина) где ноль и земля соединяются, она называется шина уравнивания потенциалов. С ней соединяется и шина контура заземления.
В настоящее время TN-C-S является основной в городах и на предприятиях. В сельской местности еще много систем TT. Это связано с тем, что в сельской местности еще много деревянных домов и TT, при всех прочих недостатках имеет положительную сторону: она безопаснее в отношении грозы.