Damper diodes что это
Перейти к содержимому

Damper diodes что это

Что такое защитный диод и как он применяется

Для защиты электронных схем и радиоаппаратуры от перенапряжения и скачков напряжения используются такие эффективные радиоэлементы, как диодный предохранитель (ПОН или TVS). Также защитный компонент известен под названиями супрессор и защитный диод. Такой эффективный прибор впервые был создан в 1968 году, в США, с целью защитить промышленное оборудование от электрических импульсов природного характера (молний).

Основанием для разработки целого класса полупроводниковых ограничителей напряжения послужили большие убытки из-за частого выхода из строя бытовой электроники, вызванного скачками напряжения. Примечательно, что супрессоры (от англ. Suppresor – «подавитель») обладают ярко выраженной нелинейной вольт-амперной характеристикой (ВАХ) и огромным быстродействием.

защитные диоды

Принцип работы и устройство

Защитные диоды состоят из двух пластинок, выполненных из германия или кремния, обладающих разной электропроводимостью. Проволочные выводы электродов, как правило, припаиваются к металлическим слоям, нанесенным на внешние поверхности пластинок. Конструкция заключена в пластиковый, металлостеклянный или керамический корпус.

Принцип работы защитного диода основан на применении обратимого пробоя. Пока напряжение не превышает номинальное значение, ограничитель никакого существенного влияния на работу схемы не оказывает, но прибор перейдет в режим лавинного пробоя, как только электроимпульсная амплитуда превысит базисное напряжение. Таким образом, размер амплитуды нормируется, а все излишнее напряжение при этом уходит на землю через сам ограничитель.

Виды и обозначение

Существует два основных вида защитных диодов TVS:

  • симметричные (двунаправленные) – активно эксплуатируются в цепях с двуполярным напряжением, что позволяет использовать их в сетях переменного тока;
  • несимметричные (однонаправленные) – эффективно защищают цепи с напряжением одной полярности, что позволяет использовать их в сетях постоянного тока.

На схемах супрессоры обозначаются как VD1, VD2 (двунаправленные) и VD3 (несимметричные). Номинальное напряжение таких диодных предохранителей варьируется от 6.8 до 440 вольт. А рабочая температура колеблется от -65 до +175 градусов по Цельсию. Высокая скорость срабатывания надежно защищает оборудование от перенапряжения. Корпус диодного предохранителя снабжается маркировочным кодом, отображающим все важные параметры изделия.

Маркировка защитных диодов позволяет выбрать наиболее подходящий радиоэлемент для сетей постоянного или переменного тока. Несимметричные изделия имеют на корпусе цветное маркировочное кольцо. Цифры и буквы, как правило, сообщают о мощности, напряжении пробоя, а также допустимом отклонении напряжения.

обозначение защитных диодов

Основные параметры защитных диодов

Диоды супрессоры имеют целый ряд основных электрических параметров:

  • PPP или P имп. (измеряется в Ваттах) – максимальная импульсная мощность изделия показывает, какую мощность способен подавить полупроводниковый ограничитель;
  • IR или I обр. (измеряется в микроамперах) – значение постоянного обратного тока утечки, который, как правило, не оказывает существенного влияния на работу схемы;
  • VCL, VC или U огр. имп. (измеряется в Ваттах) – значение максимально допустимого импульсного ограничения напряжения;
  • VBR или U проб. (измеряется в Ваттах) – обозначает напряжение пробоя, при котором супрессор напряжения отводит опасный импульс тока на общий провод;
  • VRWM или U обр. (измеряется в Ваттах) – обозначает параметр постоянного обратного напряжения;
  • IPP или I огр. мах. (измеряется в амперах) – параметр предоставляет информацию о максимальном пиковом импульсном токе. То есть, о том, какое значение способен выдержать лавинный диод.

Чтобы определить значение максимальной импульсной мощности, потребуется перемножить значение максимального пикового импульсного тока со значением максимального импульсного напряжения ограничения. Важно понимать, что все характеристики супрессора являются таковыми только в конкретных температурных условиях, поскольку при более высоких температурах токи, а также допустимая пиковая мощность будут непременно уменьшаться.

Особенности защитных диодов

Среди особенностей защитных диодов выделяют ряд пунктов:

  • предоставляется максимально возможный показатель по уровню рассеиваемой мощности;
  • возможность стабильного функционирования в условиях воздействия обратного напряжения;
  • должен соблюдаться минимально возможный уровень скорости реакции на быстрое критическое воздействие;
  • чтобы не оказывать влияния на функциональность прибора, обратные токи должны соответствовать действительно минимальным показателям.

Несмотря на высокую эффективность, супрессор нельзя назвать стопроцентным защитным ограничителем. Во-первых, в положении «выключено» такие приборы характеризуются значительными обратными токами. Во-вторых, в ограничивающем режиме в прямую зависимость от силы тока попадает уровень напряжения. В-третьих, нельзя забывать о сильной зависимости максимальной импульсной мощности от продолжительности импульса (длительности).

Для усовершенствования схемы существует практика последовательного соединения нескольких полупроводников, что дает увеличение мощности. Защитные диоды TVS часто используют совместно с самовосстанавливающимися предохранителями либо в специальных сборках, в которые уже включены предохранители такого типа.

Области применения диодов

Такие радиоэлементы активно применяются в различных направлениях:

  • средства связи и телекоммуникации;
  • цифровые интерфейсы;
  • различная силовая электроника;
  • бытовые электроприборы;
  • разнообразные схемы управления.

Лавинные диоды широко применяются для защиты бортовой электроники транспортных средств. Например, система зажигания любого автомобиля является одной из самых сильных источников электрических импульсов. Отечественные защитные диоды (Кремний, СЗТП, Фотон, НТЦ СИТ, Саранск, ТОР, Россия и другие) не уступают по качеству, эффективности и доступности зарубежным аналогам.

Как проверить защитный диод

Данный ограничитель может выполнять функцию стабилитрона, но перед использованием очень важно проверить два определенных параметра: динамический ток и рассеиваемую мощность. Целостность проверяется при помощи компактного измерительного прибора – мультиметра. При такой проверке рекомендуется использовать устройство исключительно в режиме прозвонки (со звуковым сигналом).

Как проверить защитный диод

Положительный (красный) щуп соединяем с анодом супрессора, а отрицательный (черный), соответственно, с катодом. Число на дисплее будет обозначать пороговое напряжение проверяемого диода. В зависимости от типа ограничителя напряжение может составлять от 100 до 1000 милливольт. Если смена полярности дает бесконечную величину, то элемент можно считать исправным и готовым к работе. Утечка свидетельствует о необходимости замены защитного компонента.

Если не знаете, как и чем заменить защитный диод, всегда можно обратиться в сервисный центр или пункт ремонта различной электроники. В интернете множество советов и инструкций по замене диодного предохранителя стабилитроном и быстродействующим диодом, но, не имея необходимых знаний и практического опыта, не рекомендуется совершать такие операции самостоятельно. Проверку следует выполнять осторожно, поскольку создание условий срабатывания приведет к выходу защитного компонента из строя.

Как правильно подобрать супрессор

Чтобы не ошибиться в выборе данного прибора, следует придерживаться простых рекомендаций:

  • установить уровень номинального напряжения на линии;
  • определить, как именно будет осуществляться монтаж элемента;
  • определить тип напряжения, а также установить, что обратное напряжение превышает номинальное напряжение схемы;
  • выявить допустимые пределы рабочих температур;
  • решить, какой именно тип диода потребуется (симметричный или несимметричный);
  • определиться с наиболее подходящей серией и вариантом изделия.

Кроме того, перед покупкой рекомендуется дополнительно удостовериться в том, что габариты и параметры радиоэлемента соответствуют требованиям и нюансам монтажа.

Применение современных защитных диодов на схемах отличается высокой эффективностью защиты любого электрооборудования, которое подключено к воздушным линиям.

Другие специальные типы диодов

специальные типы диодов

Диод с переменной емкостью известен как варикап или варактор. Если диод смещен в обратном направлении, между двумя полупроводниковыми слоями образуется изолирующая обедненная область. Во многих диодах толщина обедненной области может быть изменена путем изменения обратного смещения. Это меняет и емкость. Этот эффект усилен в варикапах. Условные графические обозначения показаны на рисунке ниже, одно из них соответствует сдвоенному диоду с общим катодом.

Варикап: вместе с обратным смещением меняется емкость. Это изменяет частоту резонансного контура. Варикап: вместе с обратным смещением меняется емкость. Это изменяет частоту резонансного контура.

Если варикап является частью резонансного контура, как показано на рисунке выше, то резонансную частоту можно изменять с помощью управляющего напряжения, Vупр. Конденсатор большой емкости с низким XC, включенный последовательно с варикапом, предотвращает замыкание Vупр через индуктивность L на корпус. Так как этот конденсатор имеет большую емкость, он оказывает минимальное влияние на частоту резонансного контура. Cдополн может использоваться для установки центральной резонансной частоты. Vупр может затем изменять частоту относительно этой точки. Обратите внимание, что на рисунке не показана активная схема, необходимая для генерации сигнала на резонансной частоте. Пример схемы настройки AM радиоприемника с помощью варикапа приведен в главе 9 («электронная настройка на варикапе»).

Некоторые варикапы при изменении обратного смещения очень резко изменяют емкость перехода. Эти диоды обеспечивают относительно большое изменение емкости. Это полезно, когда генераторы или фильтры перестраиваются в большом диапазоне частот. Изменение смещения в номинальном диапазоне у таких «резких» варикапов изменяет емкость в соотношении 4:1, у «гиперрезких» варикапов – 10:1, у «супер гиперрезких» варикапов – 20:1.

Варакторы могут использоваться в схемах умножителей частоты.

Диоды с накоплением заряда

Диоды с накоплением заряда (ДНЗ), также известные как SRD (step recovery diode) диоды, предназначены для использования в умножителях частоты с большими коэффициентами умножения на частотах до 20 ГГц. Когда диод смещен в прямом направлении, заряд сохраняется в PN переходе. Этот заряд вытекает, когда диод смещен в обратном направлении. При прямом смещении SRD диод выглядит как источник тока с низким внутренним сопротивлением. Когда прикладывается обратное смещение, он всё еще выглядит как источник с низким сопротивлением до тех пор, пока весь заряд не будет снят. Затем SRD диод «защелкивается» в состояние высокого импеданса, вызывая импульс напряжения, богатый гармониками. Применение SRD диодов – это генератор «гребенки», большого количества гармоник, и модифицированные умножители 2x и 4x.

PIN диоды

PIN диод представляет собой быстродействующий переключающий диод с низкой емкостью. Не путайте переключающий PIN диод с PIN фотодиодом. PIN диод изготавливается подобно переключающему кремниевому диоду с областью из собственного полупровдника, добавленной между слоями PN-перехода. Это дает более толстую обедненную область, изолирующий слой в переходе диода, к которому приложено обратное смещение. Это приводит к более низкой емкости, чему у переключающего диода с обратным смещением.

PIN диод: поперечное сечение и соответствующее ему условное обозначение PIN диод: поперечное сечение и соответствующее ему условное обозначение

PIN диоды используются в качестве коммутирующих диодов в радиочастотных приложениях. Сообщается, что диод общего назначения 1n4007, 1000 В, 1 А можно использовать в качестве коммутирующего PIN диода. Высокое номинальное напряжение этого диода достигается за счет включения внутреннего слоя из собственного полупроводника, разделяющего PN-переход. Этот собственный слой делает 1n4007 PIN диодом. Другое применение PIN диода – антенный переключатель.

PIN диоды при изменении прямого смещения служат в качестве переменных резисторов. Одних из таких применений является аттенюатор переменного напряжения. Низкая емкость PIN диодов расширяет частотный диапазон аттенюатора до СВЧ диапазона.

Лавинно-пролетные диоды (IMPATT диоды)

Лавинно-пролетный диод (IMPATT, IMPact Avalanche Transit Time) – это мощный радиочастотный генератор, работающий на частотах от 3 до 100 ГГц. IMPATT диоды изготавливаются из кремния, арсенида галлия или карбида кремния.

К лавинно-пролетному (IMPATT) диоду прикладывается обратное смещение выше напряжения пробоя. Высокие уровни легирования дают тонкую обедненную область. Полученное высокое электрическое поле быстро ускоряет носители заряда, освобождающие других носителей заряда при столкновениях с кристаллической решеткой. Дырки попадают в область P + . Электроны дрейфуют в сторону N областей. Каскадный эффект создает лавинный ток, который увеличивается, даже когда напряжение на переходе уменьшается. Импульсы тока отстают от пиков напряжения на переходе. Эффект «отрицательного сопротивления» в сочетании с резонансным контуром создает колебания на высоких уровнях мощности (высоких для полупроводников).

Лавинно-пролетный (IMPATT) диод: схема генератора и сильно легированные P и N слои Лавинно-пролетный (IMPATT) диод: схема генератора и сильно легированные P и N слои.

Резонансный контур на принципиальной схеме, изображенной на рисунке выше, представляет собой эквивалентную схему секции волновода, в которой установлен лавинно-пролетный (IMPATT) диод. Обратное смещение постоянным напряжением подается через дроссель, который предотвращает потери радиочастотного сигнала в источнике смещения. Это может быть секция волновода, известная как тройник смещения. Маломощные передатчики радаров могут использовать лавинно-пролетный (IMPATT) диод в качестве источника сигнала. Для использования в приемниках эти диоды слишком шумны.

Диод Ганна

Диод Ганна состоит исключительно из полупроводника N-типа. Таким образом, он не является настоящим диодом. На рисунке ниже показан слабо легированный слой N – , окруженный сильно легированными слоями N + . Напряжение, прикладываемое к диоду Ганна из арсенида галлия N-типа, создает сильное электрическое поле в слабо легированном слое N – .

Диод Ганна: схема генератора и поперечное сечение диода из полупроводника только N-типа. Диод Ганна: схема генератора и поперечное сечение диода из полупроводника только N-типа.

По мере увеличения напряжения проводимость возрастает из-за электронов в низкоэнергетической зоне проводимости. Когда напряжение превысит порог, примерно равный 1 В, электроны начнут перемещаться из нижней зоны проводимости к более высокоэнергетической зоне проводимости, где они больше не способствуют провдимости. Другими словами, по мере увеличения напряжения ток уменьшается, явление отрицательного сопротивления. Частота колебаний определяется временем прохождения электронов проводимости, которое находится в обратной зависимости от толщины N – слоя.

Частоту в некоторой степени можно контролировать, поместив диод Ганна в резонансный контур. Эквивалентная схема, показанная на рисунке выше, на самом деле является коаксиальной линией передачи или волноводом. Диоды Ганна из арсенида галлия способны работать в диапазоне от 10 до 200 ГГц при мощностях от 5 до 65 мВт. Диоды Ганна также могут служить в качестве усилителей.

Диод Шокли

Диод Шокли представляет собой четырехслойный тиристор, используемый для запуска больших тиристоров. Он проводит ток только в одном направление, когда он открыт напряжением, превышающим напряжение включения, около 20 В. Для более подробной информации смотрите главу 7 «Тиристоры», раздел «Диод Шокли». Двунаправленная версия называется динистором, диак.

Диоды постоянного тока (SRD диоды)

Диод постоянного тока, также известный как токоограничивающий диод, или токорегулирующий диод, или SRD диод, делает именно то, что подразумевает его название: он ограничивает протекающий через него ток до некоторого максимального уровня. Диод постоянного тока представляет собой двухвыводную версию полевого (JFET) транзистора. Если мы попытаемся увеличить ток, протекающий через этот диод, выше его точки регулирования, он будет просто «сдерживать» его, увеличивая падение напряжения. Если бы мы собрали схему на рисунке ниже (a) и построили бы график зависимости тока диода от напряжения на нем, то получили бы график, который сначала поднимается, а затем выравнивается в точке регулирования тока, как показано на рисунке ниже (b).

Диод постоянного тока (SRD диод): (a) тестовая схема, (b) вольт-амперная характеристика. Диод постоянного тока (SRD диод): (a) тестовая схема, (b) вольт-амперная характеристика.

Применение диодов постоянного тока (SRD диода) заключается в автоматическом ограничении тока, протекающего через светодиод или лазерный диод, в широком диапазоне напряжения питания, как показано на рисунке ниже.

Применение SRD диода (токоограничивающего диода): управление питанием лазерного диода. Применение SRD диода (токоограничивающего диода): управление питанием лазерного диода.

Конечно, точка регулирования токоограничивающего (SRD) диода должна быть выбрана так, чтобы соответствовать оптимальному прямому току светодиода или лазерного диода. Это особенно важно не для светодиодов, а для лазерных диодов, поскольку обычные светодиоды более терпимы к изменениям прямого тока.

damper diode

Damper — A damper is a device that deadens, restrains, or depresses. Damper may refer to: Dashpot, a type of hydraulic or mechanical damper, Shock absorber (British or technical use: damper), a mechanical device designed to dissipate kinetic energy In… … Wikipedia

List of vacuum tubes — This is a list of vacuum tubes or thermionic valves. Before the advent of semiconductor devices, hundreds of tube types were used in consumer and industrial electronics; today only a few types are still used in specialized applications. Contents… … Wikipedia

Furnace — For other uses, see Furnace (disambiguation). Industrial Furnace from 1907 A furnace is a device used for heating. The name derives from Latin fornax, oven. In American English and Canadian English, the term furnace on its own is generally used… … Wikipedia

Business and Industry Review — ▪ 1999 Introduction Overview Annual Average Rates of Growth of Manufacturing Output, 1980 97, Table Pattern of Output, 1994 97, Table Index Numbers of Production, Employment, and Productivity in Manufacturing Industries, Table (For Annual… … Universalium

Thermostat — This article is about the temperature regulating device. For the French cooking oven temperature scale, see Gas Mark#Other cooking temperature scales. Honeywell s iconic The Round model T87 thermostat, one of which is in the Smithsonian … Wikipedia

Демпфер рыскания (Yaw Damper)

Для улучшения характеристик бокового движения самолета и недопущения незатухающих колебаний типа «голландский шаг» в системе управления рулем направления установлен демпфер рыскания.

«Голландский шаг» (Dutch roll) появляется в результате относительно слабой путевой устойчивости и чрезмерной поперечной устойчивости самолета. Когда самолет вращается относительно продольной оси, самопроизвольно возникает скольжение в сторону опускающегося крыла, за счет возникающей боковой составляющей силы тяжести. Это сразу же приводит к возникновению момента поперечной устойчивости Mx β , который стремится уменьшить возникший крен. На самолетах с высокой поперечной устойчивостью он может быть значительным.

В то же время возникает и момент путевой устойчивости My β , стремящийся развернуть нос самолета в сторону возникшего скольжения. Поскольку на многих самолетах путевая устойчивость значительно слабее поперечной, то восстановление скольжения отстает от восстановления крена. Самолет по инерции проскакивает положение без крена и начинает крениться в противоположную сторону. Таким образом, самолет без вмешательства в управление будет совершать незатухающие колебания по крену и скольжению.

Демпфер рыскания искусственно увеличивает путевую устойчивость и таким образом предотвращает колебания.

Чувствительным элементом демпфера рыскания является двухстепенной гироскоп, реагирующий на угловую скорость ωy , относительно нормальной оси Y. Этот сигнал фильтруется и усиливается в зависимости от скорости полета по сигналу от компьютера, рассчитывающего высотно-скоростные параметры (Air Data Computer). Далее сигнал поступает на управляющий золотник демпфера (см. схему главного рулевого привода РН в разделе «Путевое управление»). Золотник управляет перемещением исполнительного привода демпфера, что смещает центр вращения первичного и вторичного суммирующих рычагов и, таким образом, суммируется с перемещением педалей от летчиков и приводит к перемещению штока главного рулевого привода руля направления.

При этом перемещения исполнительного привода демпфера на педали не передаются, и летчик не может тактильно ощущать работу демпфера. Для контроля за его работой выведен индикатор, показывающий отклонения исполнительного привода демпфера.

Удобный контроль на рулении: планка первоначально должна отклониться в сторону противоположную развороту. Затем планка может возвращаться в нейтраль или даже отклоняться в сторону разворота. Это объясняется сложным законом отклонения руля направления, когда руль реагирует на быстроизменяющуюся составляющую угловой скорости разворота и не реагирует на постоянную её составляющую.

При нормальной работе демпфера в полёте отклонения планки индикатора практически незаметны.

На самолетах новой комплектации с установленным интегрированным узлом связи (IFSAU) между САУ и самолетом (см. Система автоматического управления), при выпущенных закрылках сигнал демпфера усиливается на 29% для противодействия усиливающейся поперечной устойчивости. Кроме того, на 50% гасятся сигналы с частотой 8 герц для уменьшения вибраций и улучшения комфорта пассажиров.

Координированное скольжение

Координированное скольжение – это контрольный маневр, выполняемый при летных испытаниях самолета. Он позволяет выявить особенности боковой устойчивости и управляемости самолета, в частности взаимную эффективность поперечного и путевого управления. При его выполнении выдерживают прямолинейный полет на постоянной высоте и скорости с постепенным ступенчатым отклонением руля направления. Чтобы возникающее при этом скольжение не уводило самолет с прямолинейной траектории, создают крен в противоположную сторону. Таким образом, боковая составляющая силы тяжести будет компенсировать боковую силу от скольжения. В данном маневре путевой канал как бы борется с поперечным. Если нет прочностных ограничений, то отклонения рулей выполняются до полного расхода. Как правило, первыми становятся на упор педали, а поперечное управление ещё имеет запас. Но бывает и наоборот.

В отчете по расследованию катастрофы Боинга 737-200 3 марта 1991 года в районе Colorado Springs NTSB опубликовало результаты выполненных координированных скольжений на скорости 150-160 узлов в различной конфигурации закрылков от 40 до 10 градусов.

Рассматривался случай полного отклонения (непроизвольного увода) руля направления вправо на 25 градусов.

Угол отклонения руля направлен. Угол отклонения закрылков Угол скольжения Угол отклонения колеса штурвала Угол крена
25 прав 14 прав 35 лев 18 лев
25 прав 15 прав 44 лев 17 лев
25 прав 15 прав 68 лев 16 лев
23 прав 17 прав 107 лев 23 лев
21 прав 16 прав 107 лев 19 лев
25 прав* 13 прав 107 лев 40 прав

Таким образом, из таблицы видно, что увод руля направления в крайнее положение не опасен при закрылках, выпущенных в положение от 40 до 25 градусов. Кренящий момент от возникшего скольжения можно будет парировать отклонением штурвала на угол, соответственно от 35 до 68 градусов. Объясняется это резко возросшей эффективностью отклоняемых в полете интерцепторов (flight spoilers), которые срывают поток с закрылка на той половине крыла, которая должна опускаться.

При угле выпуска закрылков менее 25 градусов полного отклонения штурвала не хватает для парирования увода руля направления (на скорости эксперимента – 150-160 узлов). Так при закрылках 15 балансировка была достигнута только при dРН=23 градуса, при закрылках 10 — при dРН=21 градус.

Нижняя строчка таблицы не относится к координированному скольжению. В данном случае балансировка была достигнута при выполнении виража вправо с креном 40 градусов. Штурвал при этом был отклонен влево на полный угол, а уменьшение угла скольжения с 16 до 13 градусов достигается за счет появления демпфирующего путевого момента М Y wy от угловой скорости разворота.

Также в этом отчете есть информация о том, что поведенные исследования показали, что при уменьшении скорости до определенной величины, эффективности поперечного управления, с закрылками, выпущенными на 1 градус, становится недостаточно для парирования увода руля направления в крайнее положение. Данная скорость названа «скорость критической точки»(crossover airspeed).

Система автоматического управления

Система автоматического управления самолетом (AFCS) состоит из трех независимых систем: цифровой системы управления полетом (DFCS), демпфера рысканья (см. Боковая устойчивость и управляемость) и автомата тяги. Эти системы обеспечивают автоматическую стабилизацию самолета по тангажу, крену и скольжению и управление самолетом по сигналам радионавигационных средств, бортового навигационного компьютера (FMC), компьютера высотно-скоростных параметров (ADC) и стабилизацию курса.

Связь между цифровой системой управления и самолетом осуществляет в зависимости от комплектации самолета узел связи (AFC) или интегрированный узел связи (IFSAU). В зависимости от этого несколько меняется работа демпфера рысканья.

Автоматическое управление самолетом осуществляется посредством руля высоты и элеронов. На самолётах модификации «NG» может быть установлено автоматическое управление рулём направления.

Также происходит автоматическое снятие усилий со штурвала в продольном канале (с возвращением штурвальной колонки в нейтральное положение) путем перестановки стабилизатора. Автоматического снятия усилий в поперечном канале не происходит, поэтому запрещено пользоваться механизмом триммерного эффекта элеронов при включенном автопилоте. В этом случае рулевая машина автопилота будет пересиливать пружину загрузочного механизма (aileron feel and centering unit) и, при отключении автопилота, самолёт начнёт неожиданно для лётчика крениться.

Похожий случай произошел 6 сентября 2011 года в авиакомпании ANA, правда там лётчик непроизвольным отклонением механизма триммерного эффекта руля направления разбалансировал путевой канал, что привело к отключению автопилота и резкому кренению самолёта.

В полёте, при включенном автопилоте, штурвальная колонка и рулевое колесо должны стоять нейтрально. Это говорит об отсутствии усилий в проводке руля высоты и элеронов. Отклонение штурвальной колонки от нейтрали является признаком отказа управления стабилизатором или его ухода (runaway).

Отклонение рулевого колеса свидетельствует о поперечной (путевой) несимметрии самолета, неравномерной выработке топлива или несимметричной тяге двигателей. Техника триммирования бокового канала описана в разделе «боковая устойчивость и управляемость».

В случае полета с несимметричной тягой двигателей пилот должен отклонением педалей самостоятельно управлять путевым каналом. В противном случае точность выдерживания заданных параметров полета не гарантирована.

Отключение автопилота (DFCS) индицируется миганием красных ламп-кнопок «A/P P/RST» и звуком сирены, а отключение автомата тяги – только красными лампами-кнопками «A/T P/RST». Согласно отчета AAIB (Air Accidents Investigation Branch) о расследовании инцидента с Боингом 737-300 авиакомпании Thomsonfly, произошедшего в Bournemouth (Великобритания) 23 сентября 2007 года, отсутствие звуковой сигнализации отключения автомата тяги явилось причиной, способствующей инциденту. Во время захода на посадку при работе двигателей на режиме «Малый газ» автомат тяги отключился, что осталось незамеченным экипажем. На глиссаде снижения самолет потерял скорость до 82 узлов (на 20 км/час ниже VREF) и вышел на режим сваливания.

Кроме управления самолётом цифровая система управления полетом (DFCS) выдаёт на индикацию лётчикам отклонения директорных планок по крену и тангажу. Эти отклонения эквивалентны командам на рулевые машины автопилота. Поэтому, когда автопилот выключен, а лётчик пилотирует самолёт по директорным планкам, то он выполняет работу рулевой машины автопилота. Пилотирование по директорам значительно повышает точность выдерживания заданных режимов, но отучает лётчика от сканирования и анализа показаний приборов, то есть способствует деградации лётных навыков. Этому способствует политика авиакомпаний, которые во имя комфорта пассажиров запрещают своим пилотам летать с выключенными директорами даже в простых метеоусловиях. Проблема потери лётным составом навыков управления самолётом при выключенных средствах автоматизации неоднократно поднималась на международных конференциях по безопасности полётов, но воз и ныне там.

Полет самолета при несимметричной тяге

Рассмотрим поведение самолета сразу после отказа одного из двигателей и потребное управление (балансировку) для обеспечения прямолинейного полета с одним остановленным двигателем.

Пусть отказал левый двигатель. На самолет начнет действовать момент рыскания МУ ДВ, разворачивающий его влево. Возникнет скольжение на правое крыло, следовательно, и момент крена Мх b в сторону крыла с остановленным двигателем. На рисунке показано примерное изменение углов скольжения и крена при остановке левого двигателя.

Поскольку поперечная устойчивость велика (особенно с выпущенными закрылками), то накренение будет происходить энергично, так что требуется немедленное вмешательство пилота. Для парирования кренящего момента, при работе двигателя на взлетном режиме, полного отклонения штурвала по крену недостаточно. Необходимо убрать скольжение рулем направления.

Рассмотрим, каковы условия балансировки в длительном полете с одним неработающим двигателем. Проанализируем два специфических случая балансировки в прямолинейном полете с остановленным двигателем: 1) без крена, 2) без скольжения, а также рекомендацию фирмы Боинг.

1. Полет без крена.

Для балансировки без крена требуется создать скольжение на левое крыло. Тогда к моменту от несимметричной тяги Му двиг прибавится момент от скольжения Му b. Их уравновешивание требует большого отклонения руля направления. Боковые силы от руля направления Z рн и от скольжения Z b будут действовать в противоположные стороны и при некотором угле скольжения уравновесятся. Поперечный момент Мх b будет компенсироваться моментами от руля направления Мх рн и элеронов Мх элер.

Казалось бы, для пилота прямолинейный полет без крена является наиболее приемлемым, но из-за большого потребного угла отклонения руля направления возрастает сопротивление самолета. Это ухудшает возможности самолета, особенно при отказе двигателя на взлете с большой массой и при высоких температурах.

Заметим, что хотя полет происходит здесь со скольжением, но шарик указателя скольжения расположится строго по центру. Дело в том, что аэродинамические силы в этом случае располагаются в плоскости симметрии самолета. Вообще говоря, данный прибор не является указателем скольжения, а является указателем боковой перегрузки. Боковая перегрузка возникает от нескомпенсированной аэродинамической силы Z, которая уравновешивается боковой составляющей силы тяжести G*sing при полете с креном или центробежной силой при развороте самолета.

2. Полет без скольжения.

Разворачивающий момент от двигателя Му двиг балансируется моментом от руля направления Му рн. Боковая сила Z рн уравновешивается боковой составляющей силы тяжести G*sing, при создании крена на правое крыло. Поперечный момент от руля направления Мх рн уравновешивается моментом от элеронов Мх элер. Заметим, отклонение элеронов в противоположную сторону, по сравнению с балансировкой без крена. Шарик в данном случае будет отклонен в сторону опущенного крыла, хотя скольжение будет отсутствовать.

Данный режим балансировки наиболее выгоден для энергетики самолета, поскольку обеспечивается минимальное сопротивление. Но точное выдерживание режима проблематично. Во-первых, у пилотов нет индикации угла скольжения, во-вторых, при изменении тяги работающего двигателя меняется разворачивающий момент, значит меняется потребное отклонение руля направления, соответственно меняется боковая сила руля направления, а значит и требуемый угол крена для его компенсации. Руководства по летной эксплуатации советских самолетов давали пилотам приблизительную цифру крена 3 — 5° на работающий двигатель.

Боинг дает другой критерий управления. Рассмотрим балансировочную диаграмму при отказе левого двигателя.

На ней цифрами 1 и 2 показаны рассмотренные случаи балансировки без крена и без скольжения. Вместе с тем существует бесконечное множество других балансировочных положений. Боинг рекомендует пилотам балансировать самолет с нулевым отклонением элеронов (level the control wheel). Пишется, что при этом наблюдается небольшой крен на работающий двигатель и шарик немного отклонен в ту же сторону. Как видно из балансировочной диаграммы, это положение является чем-то средним между двумя рассмотренными случаями балансировки. Его удобно выдерживать, поскольку для контроля «горизонтальности» штурвала необязательно даже смотреть в кабину и можно контролировать правильность положения руля направления тактильными ощущениями руки. Какая половинка штурвала опускается, значит в такую же сторону надо отклонить педали для балансировки. Точно такая же техника пилотирования при включенном автопилоте, поскольку педали от автопилота не управляются.

Отказобезопасность

Отказобезопасностью называется анализ влияния неисправностей на поведение самолета и возможность безопасного завершения полета.

При расследовании катастрофы 3 марта 1991 года NTSB оценил требуемые отклонения штурвала по крену для парирования следующих неисправностей системы управления:

1. Секция выдвижного предкрылка или предкрылок Крюгера не выпустились. В условиях турбулентности данный отказ, скорее всего, останется незамеченным.

2. Отказ демпфера рысканья с уводом руля направления на 2 градуса. (Максимальный угол отклонения руля направления от демпфера рысканья на сериях (300-500) — 3 градуса). Парирование требует отклонения штурвала на 20 градусов.

3. «Всплывание» интерцептора-элерона.

(Опущенный интерцептор удерживается в полете гидросистемой. Если система удержания интерцептора отказывает, то он, за счет разрежения над крылом, может приподняться над поверхностью крыла. Это называется «всплыванием».)

Парирование такого отказа требует отклонения штурвала на 25 градусов.

4. Заедание золотника рулевого привода руля направления, приведшее к отклонению руля на 10,5 градусов. Требует отклонения штурвала на 40 градусов.

5. Парирование асимметричной тяги двигателей с уводом руля направления на 8 градусов требует 30 градусов отклонения штурвала.

Общий вывод был сделан, что данные отказы не могут являться причиной потери управляемости самолета.

Недостатки самолета

С точки зрения вопросов, касающихся аэродинамики самолет имеет следующие недостатки:

1. Несмотря на то, что самолет оборудован флюгарками, информация о текущем угле атаки пилотам не выдается (за исключением некоторых комплектаций самолетов серий 600 и далее). Подача такой информации значительно бы помогла в случаях ненадежной работы компьютера высотно-скоростных параметров, ошибочного ввода информации о весе самолета в навигационный компьютер (FMC), выводе самолета из сложного положения, заходе на посадку с различными отказами механизации и т. п.

2. В законе управления двигателя отсутствует прямое ограничение режима двигателя при достижении максимально допустимой температуры газов за турбиной. Поэтому в процессе роста скорости на взлёте температура газов за турбиной непрерывно увеличивается и, при взлетах в жаркую погоду с большими взлетными весами, может превысить максимально допустимое значение. Это накладывает дополнительную нагрузку на экипаж по дополнительному контролю и ручной корректировке режима двигателей на разбеге и в процессе первоначального набора высоты. Что не способствует безопасности полета.

3. Самолет имеет чрезмерную поперечную устойчивость, особенно при выпущенных закрылках. Это усложняет его пилотирование и причиняет неудобства пассажирам на взлёте и посадке в условиях порывистого бокового ветра и при полете в неспокойной атмосфере.

В качестве примера по данному пункту подходит инцидент с Боингом 737-500, авиакомпании Международные авиалинии Украины 13 февраля 2008 года.

Выполняя посадку в Хельсинки при сильном порывистом боковом ветре, командир экипажа чрезмерно энергично парируя крен, возникший от порыва ветра, допустил касание законцовкой крыла о ВПП.

На самолётах модификации NG с winglet данный недостаток ещё более усилился.

По этой же причине самолет резко реагирует креном на возникающее скольжение при отказе двигателя на взлете. При этом полного отклонения штурвала по крену не достаточно для парирования кренящего момента и необходимо без задержки отклонить руль направления для парирования возникающего скольжения. В условиях видимости естественного горизонта эта задача решается, как правило, без проблем. Но в облаках или при ограниченной видимости решение этой задачи требует специальной тренировки и достаточно непросто для пилотов привыкших пилотировать по советской системе индикации – вид с земли на самолет.

4. Согласно отчета AAIB (Air Accidents Investigation Branch) о расследовании инцидента с Боингом 737-300 авиакомпании Thomsonfly, произошедшего в Bournemouth (Великобритания) 23 сентября 2007 года, полного отклонения руля высоты не хватило для парирования кабрирующего момента от двигателей. Выводя самолет из режима сваливания, экипаж вывел двигатели на режим, превышающий полную взлетную мощность. При этом тангаж самолета увеличился до 44 градусов, несмотря на то, что командир полностью отклонил штурвальную колонку от себя. В данном случае необходима помощь стабилизатора.

5. На самолётах модификации NG крейсерское число М полёта увеличилось и вплотную приблизилось к MMO. Однако повышенная инертность самолёта (за счёт большей массы) и алгоритм работы автомата тяги таковы, что возникает реальная угроза непреднамеренного превышения MMO в крейсерском полёте в неспокойной атмосфере при усилении встречной составляющей скорости ветра.

6. Сервокомпенсатор руля высоты (elevator tab), предназначенный для уменьшения усилий на штурвале при прямом (безбустерном) управлении самолётом, может провоцировать автоколебания проводки управления. Данные случаи отмечались 1 марта 2010 года http://aviacom.ucoz.ru/publ/boeing_737/nedavnie_incidenty_s_boingom_737/1_marta_2010_goda_brjussel/8-1-0-17

и 2 апреля 2010 года

Также вибрация сервокомпенсатора рассматривается, как одна из возможных причин катастрофы Боинга 737-800 в Бейруте 25 января 2010 года

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *