Где может распространяться свет
Перейти к содержимому

Где может распространяться свет

Давайте разберемся: что такое свет?

Он вокруг нас и позволяет нам видеть мир. Но спросите любого из нас, и большинство не сможет объяснить, что такое на самом деле этот свет. Свет помогает нам понимать мир, в котором мы живем. Наш язык это отражает: во тьме мы передвигаемся на ощупь, свет мы начинаем видеть вместе с наступлением зари. И все же мы далеки от полного понимания света. Если вы приблизите луч света, что в нем будет? Да, свет движется невероятно быстро, но разве его нельзя применить для путешествий? И так далее и тому подобное.

Что такое свет с научной точки зрения? Давайте разбираться

Что такое свет?

Конечно, все должно быть не так. Свет озадачивает лучшие умы на протяжении веков, но знаковые открытия, совершенные за последние 150 лет, постепенно приоткрывали завесу тайны над этой загадкой. Теперь мы более-менее понимаем, что это такое.

Физики современности не только постигают природу света, но и пытаются управлять ей с беспрецедентной точностью — и значит, свет очень скоро можно заставить работать самым удивительным способом. По этой причине Организация Объединенных Наций провозгласила 2015 году Международным годом Света.

Свет можно описать всевозможными способами. Но начать стоит с этого: свет — это форма излучения (радиации). И в этом сравнении есть смысл. Мы знаем, что избыток солнечного света может вызвать рак кожи. Мы также знаем, что радиационное облучение может вызвать риск развития некоторых форм рака; нетрудно провести параллели.

Свет бывает разным, и иногда он может нанести вред

Но не все формы излучения одинаковы. В конце 19 века ученые смогли определить точную суть светового излучения. И что самое странное, это открытие пришло не в процессе изучения света, а вышло из десятилетий работы над природой электричества и магнетизма.

Как ученые изучали свет

Электричество и магнетизм кажутся совершенно разными вещами. Но ученые вроде Ганса Христиана Эрстеда и Майкла Фарадея установили, что те глубоко переплетаются. Эрстед обнаружил, что электрический ток, проходящий через провод, отклоняет иглу магнитного компаса. Между тем, Фарадей обнаружил, что перемещение магнита вблизи провода может генерировать электрический ток в проводе.

Математики того дня использовали эти наблюдения для создания теории, описывающей это странное новое явление, которое они назвали «электромагнетизм». Но только Джеймс Клерк Максвелл смог описать полную картину.

Вклад Максвелла в науку сложно переоценить. Альберт Эйнштейн, который вдохновлялся Максвеллом, говорил, что тот изменил мир навсегда. Среди прочих вещей, его вычисления помогли нам понять, что такое свет.

Джеймс Клерк Максвелл

Максвелл показал, что электрические и магнитные поля передвигаются в виде волн, и эти волны движутся со скоростью света. Это позволило Максвеллу предсказать, что свет сам по себе переносится электромагнитными волнами — и это означает, что свет является формой электромагнитного излучения.

В конце 1880-х, через несколько лет после смерти Максвелла, немецкий физик Генрих Герц первым официально продемонстрировал, что теоретическая концепция электромагнитной волны Максвелла была верной.

«Я уверен, что если бы Максвелл и Герц жили в эпоху Нобелевской премии, они бы точно одну получили», — говорит Грэм Холл из Университета Абердина в Великобритании — где работал Максвелл в конце 1850-х.

Максвелл занимает место в анналах науки о свете по другой, более практической причине. В 1861 году он обнародовал первую устойчивую цветную фотографию, полученную с использованием системы трехцветного фильтра, которая заложила основу для многих форм цветной фотографии сегодня.

Самая первая в мире цветная фотография

Свет — это спектр цветов

Сама фраза о том, что свет является формой электромагнитного излучения, многого не говорит. Но помогает описать то, что мы все понимаем: свет — это спектр цветов. Это наблюдение восходит еще к работам Исаака Ньютона. Мы видим цветовой спектр во всей его красе, когда радуга всходит на небе — и эти цвета напрямую связаны с максвелловским понятием электромагнитных волн.

Красный свет на одном конце радуги — это электромагнитное излучение с длиной волны от 620 до 750 нанометров; фиолетовый цвет на другом конце — излучение с длиной волны от 380 до 450 нм. Но в электромагнитном излучении есть и больше, чем видимые цвета. Свет с длиной волны длиннее красного мы называем инфракрасным. Свет с длиной волны короче фиолетового называем ультрафиолетовым. Многие животные могут видеть в ультрафиолетовом, некоторые люди тоже, говорит Элефтериос Гулильмакис из Института квантовой оптики Макса Планка в Гархинге, Германия. В некоторых случаях люди видят даже инфракрасный. Возможно, поэтому нас не удивляет, что ультрафиолетовый и инфракрасный мы называем формами света.

Почему рентгеновские лучи это не свет

Любопытно, однако, что если длины волн становятся еще короче или длиннее, мы перестаем называть их «светом». За пределами ультрафиолетового, электромагнитные волны могут быть короче 100 нм. Это царство рентгеновских и гамма-лучей. Вы когда-нибудь слышали, чтобы рентгеновские лучи называли формой света?

Ученый никогда не назовет рентгеновские лучи светом

«Ученый не скажет «я просвечиваю объект рентгеновским светом». Он скажет «я использую рентгеновские лучи», — говорит Гулильмакис.

Между тем, за пределами инфракрасных и электромагнитных длин волны вытягиваются до 1 см и даже до тысяч километров. Такие электромагнитные волны получили названия микроволн или радиоволн. Кому-то может показаться странным воспринимать радиоволны как свет.

«Нет особой физической разницы между радиоволнами и видимым светом с точки зрения физики, — говорит Гулильмакис. — Вы будете описывать их одними и теми же уравнениями и математикой». Только наше повседневное восприятие различает их.

Таким образом, мы получаем другое определение света. Это очень узкий диапазон электромагнитного излучения, которое могут видеть наши глаза. Другими словами, свет — это субъективный ярлык, который мы используем только вследствие ограниченности наших органов чувств.

Люди видят цвета по-разному

Если вам нужны более подробные доказательства того, насколько субъективно наше восприятие цвета, вспомните радугу. Большинство людей знают, что спектр света содержит семь основных цветов: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. У нас даже есть удобные пословицы и поговорки про охотников, которые желают знать место нахождения фазана. Посмотрите на хорошую радугу и попробуйте разглядеть все семь. Это не удалось даже Ньютону. Ученые подозревают, что ученый разделил радугу на семь цветов, поскольку число «семь» было очень важным для древнего мира: семь нот, семь дней недели и т. п.

Обычно люди видят в радуге пять цветов

Работа Максвелла в области электромагнетизма завела нас дальше и показала, что видимый свет был частью широкого спектра радиации. Также стала понятна истинная природа света. На протяжении веков ученые пытались понять, какую на самом деле форму принимает свет на фундаментальных масштабах, пока движется от источника света к нашим глазам.

Как движется свет?

Некоторые считали, что свет движется в форме волн или ряби, через воздух или загадочный «эфир». Другие думали, что эта волновая модель ошибочна, и считали свет потоком крошечных частиц. Ньютон склонялся ко второму мнению, особенно после серии экспериментов, которые он провел со светом и зеркалами.

Исаак Ньютон это один из тех людей, кто хотел понять, что такое свет

Он понял, что лучи света подчиняются строгим геометрическим правилам. Луч света, отраженный в зеркале, ведет себя подобно шарику, брошенному прямо в зеркало. Волны не обязательно будут двигаться по этим предсказуемым прямым линиям, предположил Ньютон, поэтому свет должен переноситься некоторой формой крошечных безмассовых частиц.

Проблема в том, что были в равной степени убедительные доказательства того, что свет представляет собой волну. Одна из самых наглядных демонстраций этого была проведено в 1801 году. Эксперимент с двойной щелью Томаса Юнга, в принципе, можно провести самостоятельно дома.

Возьмите лист толстого картона и аккуратно проделайте в нем два тонких вертикальных разреза. Затем возьмите источник «когерентного» света, который будет излучать свет только определенной длины волны: лазер отлично подойдет. Затем направьте свет на две щели, чтобы проходя их он падал на другую поверхность.

Вы ожидаете увидеть на второй поверхности две ярких вертикальных линии на тех местах, где свет прошел через щели. Но когда Юнг провел эксперимент, он увидел последовательность светлых и темных линий, как на штрих-коде.

Эксперимент с двойной щелью Томаса Юнга

Когда свет проходит через тонкие щели, он ведет себя подобно водяным волнам, которые проходят через узкое отверстие: они рассеиваются и распространяются в форме полусферической ряби.

Когда этот свет проходит через две щели, каждая волна гасит другую, образуя темные участки. Когда же рябь сходится, она дополняется, образуя яркие вертикальные линии. Эксперимент Юнга буквально подтвердил волновую модель, поэтому Максвелл облек эту идею в твердую математическую форму. Свет — это волна.

Но потом произошла квантовая революция.

Что такое фотоэффект

Во второй половине девятнадцатого века, физики пытались выяснить, как и почему некоторые материалы абсорбируют и излучают электромагнитное излучение лучше других. Стоит отметит, что тогда электросветовая промышленность только развивалась, поэтому материалы, которые могут излучать свет, были серьезной штукой.

К концу девятнадцатого века ученые обнаружили, что количество электромагнитного излучения, испускаемого объектом, меняется в зависимости от его температуры, и измерили эти изменения. Но никто не знал, почему так происходит. В 1900 году Макс Планк решил эту проблему. Он выяснил, что расчеты могут объяснить эти изменения, но только если допустить, что электромагнитное излучение передается крошечными дискретными порциями. Планк называл их «кванта», множественное число латинского «квантум». Спустя несколько лет Эйнштейн взял его идеи за основу и объяснил другой удивительный эксперимент.

Физики обнаружили, что кусок металла становится положительно заряженным, когда облучается видимым или ультрафиолетовым светом. Этот эффект был назван фотоэлектрическим.

Атомы в металле теряли отрицательно заряженные электроны. Судя по всему, свет доставлял достаточно энергии металлу, чтобы тот выпустил часть электронов. Но почему электроны так делали, было непонятно. Они могли переносить больше энергии, просто изменив цвет света. В частности, электроны, выпущенные металлом, облученным фиолетовым светом, переносили больше энергии, чем электроны, выпущенные металлом, облученным красным светом.

Если бы свет был просто волной, это было бы нелепо.

Обычно вы изменяете количество энергии в волне, делая ее выше — представьте себе высокое цунами разрушительной силы — а не длиннее или короче. В более широком смысле, лучший способ увеличить энергию, которую свет передает электронам, это сделать волну света выше: то есть сделать свет ярче. Изменение длины волны, а значит и света, не должно было нести особой разницы.

Эйнштейн понял, что фотоэлектрический эффект проще понять, если представить свет в терминологии планковских квантов.

Он предположил, что свет переносится крошечными квантовыми порциями. Каждый квант переносит порцию дискретной энергии, связанной с длиной волны: чем короче длина волны, тем плотнее энергия. Это могло бы объяснить, почему порции фиолетового света с относительно короткой длиной волны переносят больше энергии, чем порции красного света, с относительно большой длиной.

Также это объяснило бы, почему простое увеличение яркости света не особо влияет на результат.

Свет поярче доставляет больше порций света к металлу, но это не изменяет количество энергии, переносимой каждой порцией. Грубо говоря, одна порция фиолетового света может передать больше энергии одному электрону, чем много порций красного света.

Что такое фотоны света

Эйнштейн назвал эти порции энергии фотонами и в настоящее время их признали фундаментальными частицами. Видимый свет переносится фотонами, другие виды электромагнитного излучения вроде рентгеновского, микроволнового и радиоволнового — тоже. Другими словами, свет — это частица.

Свет — это частица

На этом физики решили положить конец дебатам на тему того, из чего состоит свет. Обе модели были настолько убедительными, что отказываться от одной не было никакого смысла. К удивлению многих нефизиков, ученые решили, что свет ведет себя одновременно как частица и как волна. Другими словами, свет — это парадокс.

При этом у физиков не возникло проблем с раздвоением личности света. Это в какой-то мере сделало свет полезным вдвойне. Сегодня, опираясь на работы светил в прямом смысле слова — Максвелла и Эйнштейна, — мы выжимаем из света все.

Оказывается, что уравнения, используемые для описания света-волны и света-частицы, работают одинаково хорошо, но в некоторых случаях одно проще использовать, чем другое. Поэтому физики переключаются между ними, примерно как мы используем метры, описывая собственный рост, и переходим на километры, описывая поездку на велосипеде.

Как ученые используют свет

Некоторые физики пытаются использовать свет для создания шифрованных каналов связи, для денежных переводов, к примеру. Для них имеет смысл думать о свете как о частицах. Виной всему странная природа квантовой физики. Две фундаментальные частицы, как пара фотонов, могут быть «запутаны». Это значит, что они будут иметь общие свойства вне зависимости от того, как далеки будут друг от друга, поэтому их можно использовать для передачи информации между двумя точками на Земле.

Еще одна особенность этой запутанности в том, что квантовое состояние фотонов изменяется, когда их считывают. Это значит, что если кто-то попытается подслушать зашифрованный канал, в теории, он сразу выдаст свое присутствие.

Другие, как Гулильмакис, используют свет в электронике. Им полезней представлять свет в виде серии волн, которые можно приручить и контролировать. Современные устройства под названием «синтесайзеры светового поля» могут сводить световые волны в идеальной синхронности друг с дружкой. В результате они создают световые импульсы, которые более интенсивные, кратковременные и направленные, чем свет обычной лампы.

За последние 15 лет эти устройства научились использовать для приручения света с чрезвычайной степенью. В 2004 году Гулильмакис и его коллеги научились производить невероятно короткие импульсы рентгеновского излучения. Каждый импульс длился всего 250 аттосекунд, или 250 квинтиллионных секунды.

Используя эти крошечные импульсы как вспышку фотоаппарата, они смогли сделать снимки отдельных волн видимого света, которые колеблются намного медленнее. Они буквально сделали снимки движущегося света.

«Еще со времен Максвелла мы знали, что свет — это осциллирующее электромагнитное поле, но никто даже и подумать не мог, что мы можем сделать снимки осциллирующего света», — говорит Гулильмакис.

Наблюдение за этими отдельными волнами света стало первым шагом по направлению к управлению и изменению света, говорит он, подобно тому, как мы изменяем радиоволны для переноса радио- и телевизионных сигналов.

Сто лет назад фотоэлектрический эффект показал, что видимый свет влияет на электроны в металле. Гулильмакис говорит, что должна быть возможность точно контролировать эти электроны, используя волны видимого света, измененные таким образом, чтобы взаимодействовать с металлом четко определенным образом. «Мы можем управлять светом и с его помощью управлять материей», — говорит он.

Как можно понять, свет это очень сложное явление

Это может произвести революцию в электронике, привести к новому поколению оптических компьютеров, которые будут меньше и быстрее наших. «Мы сможем двигать электронами как заблагорассудится, создавая электрические токи внутри твердых веществ с помощью света, а не как в обычной электронике».

Вот еще один способ описать свет: это инструмент.

Впрочем, ничего нового. Жизнь использовала свет еще с тех пор, когда первые примитивные организмы развили светочувствительные ткани. Глаза людей улавливают фотоны видимого света, мы используем их для изучения мира вокруг. Современные технологии еще дальше уводят эту идею. В 2014 году Нобелевская премия по химии была присуждена исследователям, которые построили настолько мощный световой микроскоп, что он считался физически невозможным. Оказалось, что если постараться, свет может показать нам вещи, которые мы думали никогда не увидим.

Источники света: какие бывают, явление тени и полутени, распространение света

В жизни вы сталкиваетесь с различными источниками света – солнцем, лампами накаливания и флуоресцентными лампами, иногда свечами и костром. Эти источники, которые вы видите – мы говорим, что они излучают свет. Как вы видите разные предметы? Люди, машины, здания? Как распространяется свет? Везде ли он проходит?

Почему мы видим?

Когда темно, мы не можем различать цвета и формы предметов. Чтобы увидеть мир красивым и красочным, нужен свет.

Чтобы мы могли что-либо увидеть, свет должен попасть в наш глаз и создать визуальное впечатление. Этот свет может исходить непосредственно от источника света. Мы также можем видеть объекты, от которых свет отразился.

Действия света.

Самое известное действие света — это освещение.

Когда мы подносим руку к лампочке, мы чувствуем ее тепло, и точно так же в прекрасный солнечный день, если мы слишком долго загораем на пляже, мы можем обгореть. Это доказывает, что свет передает энергию (это ничто иное как тепловое действие света).

Интересный факт! Тёмная поверхность лучше поглощает свет, чем светлая. Поэтому в жаркую погоду лучше носить светлую одежду [2].

Свет может производить также химическое действие, то есть вызывать химические реакции. Например, свет используется в том числе и растениями в процессе фотосинтеза.

Под действием света из вещества могут вылетать электроны, в результате чего возникает электрический ток. Это — электрическое действие света. Его используют, например, в цифровых фотоаппаратах [2].

Какие бывают источники света?

Мы говорим, что некоторые тела излучают (испускают) радиацию. Что это такое? Это может быть посланная волна или поток частиц. О природе радиации, ее свойствах и о том, вредна ли она, вы можете узнать из соответствующих статей на нашем сайте.

Свет – это определенный тип излучения, который мы можем воспринимать с помощью зрения. Все тела, являющиеся источником светового излучения, будем называть источниками света.

Помните! Источник света – это любое тело, которое испускает световое излучение.

Известные нам источники света можно разделить на две группы:

  1. Естественные источники света (созданы самой природой);
  2. Искусственные источники света (созданы человеком).

Источники естественного освещения включают:

  • звезды, в том числе Солнце;
  • атмосферные разряды;
  • некоторые живые организмы (светлячки, гнилушки).

Примеры искусственных источников света включают:

  • электрические лампочки;
  • нагретая сталь;
  • костер;
  • свеча;
  • светодиоды.

Любопытно знать.

Первичным источником света, связанным с открытием человеком способа добывания огня, было горение дерева (костер). Очень скоро наши предки научились сжигать растительные и животные жиры, благодаря чему были изобретены лампы на оливковом масле (масляные лампы).

Масляная лампа

Рис. 1. Масляная лампа (источник: wikipedia.org)

Спустя какое-то время человек научился делать свечи. Прорывом в технике искусственного освещения стала конструкция керосиновой лампы. Это сделал в 1853 году поляк Игнаций Лукасевич.

Его изобретение произвело революцию в технологии освещения. Игнатий Лукасевич руководил работой первых в мире нефтеперерабатывающих заводов, которые были созданы в Подкарпатском регионе недалеко от Кросно. Со временем керосиновую лампу начали постепенно заменять электрическим освещением. Появилась первая электрическая лампочка.

Современным источником света являются органические светодиоды (OLED), которые в настоящее время используются в производстве телевизионных матриц. В отличие от телевизоров на основе жидкокристаллической технологии (LCD), OLED-телевизоры не требуют подсветки матрицы, поскольку органические диоды сами излучают разноцветный свет. Кроме того, эти диоды очень гибкие, что, помимо прочего, позволяет скрыть выдвижной мини-экран, например, в шариковой ручке!

Что не является источником света?

Не все предметы и объекты, которые кажутся светящимися, являются источниками света.

Планета Венера часто видна на небе перед восходом или сразу после захода солнца. Это третий по яркости объект на небе (после Солнца и Луны). Свет Венеры иногда настолько силен, что освещенные ею объекты отбрасывают тень. Однако этот объект вовсе не является источником света! Венера отражает солнечный свет настолько сильно, что кажется звездой. На самом деле, каждая планета, которую мы можем наблюдать в небе, кажется, сияет своим собственным светом – но это отраженный солнечный свет. Мы не можем считать планеты источниками света, потому что они не излучают свет, а только отражают его.

То же самое можно сказать и о Луне, которая в полнолуние очень хорошо освещает окружающий ландшафт и предметы. Луна также не излучает свет, а только отражает солнечный свет.

Помните! Не все объекты, которые излучают свет, являются источниками света. Объекты такого типа светятся отраженным светом. К ним относятся Луна и планеты, которые не излучают свет, а только отражают солнечный свет.

Распространение света

Давайте теперь рассмотрим, как свет распространяется в пространстве. Свет – это излучение, которое распространяется в вакууме с максимально возможной в природе скоростью (скоростью света), которая составляет c ≈ 300 000 км/c.

Основные свойства света были известны еще в древности. Ещё Древние греки на основании своих наблюдений пришли к выводу, что при распространении света возникают явления тени и полутени – оба явления являются доказательством того, что свет в однородной среде распространяется по прямой линии (прямолинейно). Тени людей, деревьев, зданий и других предметов хорошо наблюдаются на Земле в солнечный день.

Эксперимент

Попробуйте провести эксперимент для подтверждения этого наблюдения.

Опыт. Доказательство прямолинейного распространение света.

Что вам понадобится?

  • коробка для копировальной бумаги A4;
  • калька или бумага для завтрака (тонкая) формата A4;
  • чёрная самоклеящаяся плёнка или краска;
  • ножницы или нож для резки обоев;
  • толстая игла.
  1. Вырежьте прямоугольник в крышке коробки, оставив около 1,5 см с каждой стороны.
  2. Приклейте лист кальки на внутреннюю сторону.
  3. Покройте внутреннюю часть второй части коробки черной матовой клейкой фольгой или покрасьте ее в черный цвет.
  4. Проделайте отверстие в центре дна коробки толстой иглой.
  5. Установите подготовленную крышку на коробку и плотно запечатайте ее по всему периметру.
  6. Поверните коробку с отверстием к какому-либо источнику света – что вы наблюдаете?

Опыт для подтверждения прямолинейного распространения света

Рис. 2. Распространение света в камере-обскуре

То, что мы построили, является прототипом камеры. Это устройство для проецирования трехмерного изображения на плоскую поверхность, с помощью которого можно наблюдать за миром. Если на место черной поверхности поместить фотопластинку или светочувствительную матрицу от цифровой камеры, то такое изображение можно было бы даже записать. Наш прибор, который носит латинское название “camera obscura” (камера-обскура), работает по принципу прямолинейного распространения света (см. рисунок 2 ниже).

Луч, выходящий из верхней части лампы, идет по прямой линии к отверстию в коробке. Он проходит через отверстие внутрь и попадает на экран, создавая изображение верхней части лампочки на нижней части экрана. Аналогично, луч, выходящий из нижней части лампы, направляется к отверстию в коробке, а затем в верхнюю часть экрана. Это создает перевернутое изображение лампы или других объектов.

Интересный факт! Древние египтяне использовали закон прямолинейного распространения света для установления колонн по прямой линии. Колонны располагались так, чтобы из-за ближайшей к глазу колонны не были видны все остальные.

[1]

Явление тени и полутени

Там, где есть непрозрачное препятствие, световые лучи останавливаются, и создается область тени, то есть область, куда световые лучи не могут достичь. Другими словами, тень – это область, до которой не доходят лучи света.

Как создается тень

Рис. 3. Образование тени

Посмотрите на свою тень, когда вас освещает солнечный свет. Имеет ли она резкие края, или вы видите область, где тень “слабее”, а края тени размыты?

Эффект «более светлой» тени называется полутенью. Как это проявляется?

Образование полутеней

Рис. 4. Образование полутеней

Полутень создается, когда есть непрозрачный объект, освещенный протяжённым источником света (то есть источником света который относительно велик по сравнению с расстоянием между этим источником и освещаемым объектом). Другими словами, полутень – это та область, в которую попадает свет от части источника света. Тень без полутени создается только при освещении непрозрачного объекта точечным источником света.

Если непрозрачный объект освещается протяженным источником света или если объект освещается несколькими точечными источниками, то в дополнение к тени создается область полутени, которая получает свет только от части источника света.

Когда мы говорим о протяженных источниках света, мы имеем в виду источники света, размер которых относительно велик по сравнению с расстоянием до освещаемого объекта. Например, Солнце достаточно велико по сравнению с расстоянием между ним и Землей, чтобы мы могли рассматривать его как протяженный источник света.

Светящаяся электрическая лампочка является примером источника света, который, в зависимости от расстояния до освещаемого объекта, может рассматриваться как протяженный источник – если он находится близко – или как точечный источник – если расстояние, отделяющее его от освещаемого объекта, достаточно велико.

Точечный источник света – это источник, размер которого значительно меньше расстояния до освещаемого объекта. Например, звезда, удаленная от нас на тысячи световых лет, несмотря на свои огромные размеры, может рассматриваться как точечный источник света, поскольку ее диаметр по сравнению с расстоянием до Земли очень мал.

За освещенным объектом создается тень. Поскольку протяжённый источник света освещает объект под разными углами, часть лучей может освещать область позади объекта и таким образом создавать тень, которая немного светлее той, что создается непосредственно за объектом. Эта чуть более светлая тень называется полутенью. Когда мы находимся в зоне полутени, мы видим часть поверхности источника света.

Явления полного или частичного затмения

При движении вокруг Земли Луна может оказаться между Землёй и Солнцем или Земля – между Луной и Солнцем. В этих случаях наблюдаются солнечные или лунные затмения.

Это обосновывается тем фактом, что из области тени мы вообще не можем наблюдать источник света. Такая ситуация возникает, как раз, во время солнечных затмений. Если вы находитесь в конусе тени Луны, вы будете наблюдать закрытый диск Солнца. То есть, во время солнечного затмения тень от Луны падает на Землю.

Если вы находитесь в области полутеневого конуса Луны, вы увидите так называемое частичное затмение – часть диска Солнца будет заслонена диском Луны. То есть, во время лунного затмения Луна попадает в тень, отбрасываемую Землёй.

На той части Земли, там, где падает тень, будет видно полное солнечное затмение. Там, где полутень, только часть Солнца будет заслонена Луной, т.е. произойдет частичное солнечное затмение. На остальной части Земли затмения не будет.

[1]

Поскольку движения Земли и Луны неплохо изучены, затмения предсказываются на годы вперед. Исследователи используют каждое затмение для различных научных наблюдений и измерений. Полное солнечное затмение дает возможность наблюдать внешнюю часть атмосферы Солнца (солнечную корону). В обычных условиях солнечная корона невидима из-за слепящего блеска поверхности Солнца.

Световые лучи.

Темы кодификатора ЕГЭ: прямолинейное распространение света.

Мы приступаем к изучению оптики — науки о распространении света. Нас ждут два раздела оптики: сравнительно простая геометрическая оптика и более общая волновая оптика.

Говоря о свете, мы всегда подразумеваем видимый свет, то есть электромагнитные волны в узком частотном диапазоне, непосредственно воспринимаемые человеческим глазом. Как вы помните, длины волн видимого света находятся в промежутке от 380 до 780 нм.

С точки зрения электродинамики Максвелла распространение света ничем не отличается от распространения других электромагнитных излучений — радиоволн, инфракрасного, ультрафиолетового, рентгеновского и гамма-излучения. В этом смысле оптика оказывается просто частью электродинамики.

Но ввиду той колоссальной роли, которую свет играет в жизни человека, оптические явления начали изучаться давным-давно. Все основные законы оптики были установлены задолго до создания электродинамики и открытия электромагнитных волн. И потому с тех давних пор оптика оформилась в самостоятельный раздел физики — со своими специфическими задачами, методами, экспериментами и приборами.

Главным природным источником света служит Солнце, и люди ставили много опытов с солнечными лучами. Отсюда в оптику вошло понятие светового луча. Впоследствии оно получило строгое определение.

Световой луч — это геометрическая линия, которая в каждой своей точке перпендикулярна волновому фронту, проходящему через эту точку. Направление светового луча совпадает с направлением распространения света.

Если данное определение осталось для вас не совсем понятным — ничего страшного: на первых порах вы можете представлять себе просто узкие пучки света наподобие солнечных лучей. Этого вполне хватит, чтобы уяснить все основные вещи и научиться решать задачи. Ну а время строгого определения придёт несколько позже — когда начнётся волновая оптика.

Законы геометрической оптики.

Геометрическая оптика изучает распространение световых лучей. Это исторически первый и наиболее простой раздел оптики. В основе геометрической оптики лежат четыре основных
закона.

1. Закон независимости световых лучей.
2. Закон прямолинейного распространения света.
3. Закон отражения света.
4. Закон преломления света.

Данные законы были установлены в результате наблюдений за световыми лучами и послужили обобщениями многочисленных опытных фактов. Они являются утверждениями, сформулированными на языке геометрии. Волновая природа света в них не затрагивается.

Законы геометрической оптики первоначально являлись постулатами. Они лишь констатировали: таким вот образом ведёт себя природа. Однако впоследствии оказалось, что законы геометрической оптики могут быть выведены из более фундаментальных законов волновой оптики.

Геометрическая оптика отлично работает, когда длина световой волны много меньше размеров объектов, присутствующих в данной физической ситуации. Можно сказать, что геометрическая оптика есть предельный случай волновой оптики при . Неудивительно поэтому, что сначала были открыты законы именно геометрической оптики: ведь размеры предметов, встречающихся нам в повседневной жизни, намного превышают длины волн видимого света.

Первый закон геометрической оптики совсем простой. Он говорит о том, что вклад каждого светового луча в суммарное освещение не зависит от наличия других лучей.

Закон независимости световых лучей.
Если световые лучи пересекаются, то они не оказывают никакого влияния друг на друга. Каждый луч освещает пространство так, как если бы других лучей вообще не было.

Закон прямолинейного распространения света также очень прост, и мы его сейчас обсудим. Законам отражения и преломления будут посвящены следующие разделы.

Закон прямолинейного распространения света. В прозрачной однородной среде световые лучи являются прямыми линиями.

Что такое «прозрачная однородная среда»? Среда называется прозрачной, если в ней может распространяться свет. Среда называется однородной, если её свойства не меняются от точки
к точке. Равномерно прогретый воздух, чистая вода, стекло без примесей — всё это примеры прозрачных и оптически однородных сред.

Таким образом, закон прямолинейного распространения света означает, что в прозрачной однородной среде понятие светового луча совпадает с понятием луча в геометрии.

Данный закон не требует каких-либо дополнительных пояснений — он хорошо вам известен. Вам неоднократно доводилось видеть прямолинейные солнечные лучи, пронизывающие облака, или тонкий прямой луч, пробивающийся в запылённой комнате через щель в окне. Находясь под водой, можно наблюдать прямые солнечные лучи, идущие сквозь воду.

При нарушении однородности среды нарушается и закон прямолинейного распространения света. Например, на границе раздела двух прозрачных сред световой луч может разделиться на два луча: отражённый и преломлённый. Если оптические свойства среды меняются от точки к точке, то ход световых лучей искривляется. В этом состоит причина миражей: слой воздуха вблизи раскалённой земной поверхности нагрет больше, чем вышележащие слои; он имеет иные оптические свойства, и его действие оказывается подобным зеркалу. Обо всём этом мы поговорим позднее.

Геометрическая тень.

Вам хорошо известно, что различные предметы отбрасывают тень. На рис. 1 изображён точечный источник света и непрозрачный предмет — красный треугольник. На экране мы видим тень этого предмета в виде серого треугольника.

Откуда берётся тень? Дело в том, что если на пути световых лучей оказывается непрозрачный предмет, то происходит следующее.

1.Луч, идущий мимо предмета, продолжает распространяться в прежнем направлении — как если бы данного предмета вообще не было.

2. Луч, попадающий на предмет, не проникает внутрь предмета. Дальнейший ход такого луча в прежнем направлении пресекается.

Так возникает геометрическая тень, края которой чётко очерчены. Поскольку свет распространяется прямолинейно, форма геометрической тени оказывается подобной контуру предмета. Так, на рис. 1 серый треугольник подобен красному.

Граница реальной тени имеет более сложный вид: вмешивается дифракция света на краях предмета. Дифракция — это отклонение света от первоначального направления; данное явление обусловлено волновой природой света и не описывается в рамках геометрической оптики.

Cвет. Скорость света. Элементы теории относительности.

В инерциальной системе отсчёта свет от неподвижного источника распространяется в вакууме со скоростью c. В этой системе отсчёта свет от неподвижного источника падает перпендикулярно на поверхность зеркала, которое приближается к источнику со скоростью υ (см. рисунок). Какова скорость отражённого света в инерциальной системе отсчёта, связанной с зеркалом?

Ответ:

  1. Выяснить условия, при которых распространяется свет и его отражение в данной задаче.
  2. Используя теорию относительности, установить, с какой скоростью отраженный свет может распространяться в данном случае относительно зеркала.

pазбирался: Алиса Никитина | обсудить разбор | оценить

В установке искровой разряд Р создаёт одновременно вспышку света и звуковой импульс, регистрируемые датчиком Д, расположенным на расстоянии 1м от разрядника. Время распространения света от разрядника к датчику (Т) и звука (τ) измеряется атомными часами в лаборатории. Проводя эксперименты с абсолютно одинаковыми установками 1 и 2, расположенными в космическом корабле, летящем со скоростью v = c/2 относительно Земли, как показано на рисунке, и измеряя время атомными часами в корабле, космонавты обнаружили, что:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *