Напряженность электрического поля
Заряды, находясь на некотором расстоянии один от другого, взаимодействуют. Это взаимодействие осуществляется посредством электрического поля, которое материально, существует независимо от нас и обладает определенными свойствами и характеристиками.
Напряженность электрического поля — силовая характеристика электрического поля, численно равная силе, действующей на единичный положительный заряд, помещенный в данную точку поля. Другая формулировка: отношение силы , действующей на помещенный в данную точку поля заряд, к этому заряду для каждой точки поля не зависит от заряда и может рассматриваться как силовая характеристика поля — напряженность электрического поля: .
Напряженность — векторная величина. С другой стороны, сила, действующая на заряд q со стороны электрического поля, равна .
Линии напряженности электрического поля (силовые линии) — это непрерывные линии, касательные к которым в каждой точке, через которую они проходят, совпадают с векторами напряженности. Эти линии называют силовыми линиями электрического поля, или линиями напряженности.
Густота силовых линий больше вблизи заряженных тел, где напряженность поля также больше. Напряженность электрического поля измеряется в ньютонах на кулон (Н/Кл).
Однородное электрическое поле — это поле, напряженность которого одинакова во всех точках пространства.
По закону Кулона заряд будет действовать на другой заряд с силой . Величина напряженности поля точечного заряда на расстоянии от него равна , или в скалярной форме .
Вектор напряженности точечного заряда в любой точке электрического поля направлен вдоль прямой, соединяющей эту точку и заряд.
Линии напряженности никогда не пересекаются, поскольку в каждой данной точке пространства вектор имеет лишь одно направление.
В случае точечного заряда линии напряженности – радиальные прямые, выходящие из заряда, если он положителен, и входящие в него, если заряд отрицателен.
В случае однородного поля (для него вектор напряженности в любой точке постоянен по модулю и направлению) линии напряженности параллельны вектору напряженности.
Электрическое поле напряженность которого одинакова во всех точках называется
509 дн. с момента
до конца учебного года
Электростатическое поле и его характеристики
Электростатическое поле существующий вокруг неподвижный заряженных тел, действует на заряд с некоторой силой, вблизи заряда – сильнее.
Электростатическое поле не изменяется во времени.
Силовой характеристикой электрического поля является напряженность
Напряженностью электрического поля в данной точке называется векторная физическая величина, численно равная силе, действующей на единичный положительный заряд, помещенный в данную точку поля.
Силовыми линиями (линиями напряженности электрического поля) называют линии, касательные к которым в каждой точке поля совпадают с направлением вектора напряженности в данной точке.
Силовые линии начинаются на положительном заряде и заканчиваются на отрицательном ( Силовые линии электростатических полей точечных зарядов. ).
Густота линий напряженности характеризует напряженность поля (чем плотнее располагаются линии, тем поле сильнее).
Электростатическое поле точечного заряда неоднородно (ближе к заряду поле сильнее).
Силовые линии электростатических полей бесконечных равномерно заряженных плоскостей.
Электростатическое поле бесконечных равномерно заряженных плоскостей однородно. Электрическое поле, напряженность во всех точках которого одинакова, называется однородным.
Принцип суперпозиции электрических полей.
Принцип суперпозиции (наложения) полей формулируется так:
Если в данной точке пространства различные заряженные частицы создают электрические поля, напряженности которых и т. д., то результирующая напряженность поля в этой точке равна:
.
Принцип суперпозиции полей справедлив для случая, когда поля, созданные несколькими различными зарядами, не оказывают никакого влияния друг на друга, т. е. ведут себя так, как будто других полей нет. Опыт показывает, что для полей обычных интенсивностей, встречающихся в природе, это имеет место в действительности.
Благодаря принципу суперпозиции для нахождения напряженности поля системы заряженных частиц в любой точке достаточно воспользоваться выражением напряженности поля точечного заряда.
На рисунке ниже показано, как в точке A определяется напряженность поля , созданная двумя точечными зарядами q1 и q2.
Силовые линии электрического поля.
Электрическое поле в пространстве принято представлять силовыми линиями. Понятие о силовых линиях ввел М. Фарадей при исследовании магнетизма. Затем это понятие было развито Дж. Максвеллом в исследованиях по электромагнетизму.
Силовая линия, или линия напряженности электрического поля, — это линия, касательная к которой и каждой ее точке совпадает с направлением силы, действующей на положительный точечный заряд, находящийся в этой точке поля.
На рисунках ниже изображены линии напряженности положительно заряженного шарика (рис. 1); двух разноименно заряженных шариков (рис. 2); двух одноименно заряженных шариков (рис. 3) и двух пластин, заряженных разными по знаку, но одинаковыми по абсолютной величине зарядами (рис. 4).
Линии напряженности на последнем рисунке почти параллельны в пространстве между пластинами, и плотность их одинакова. Это говорит о том, что поле в этой области пространства однородно. Однородным называется электрическое поле, напряженность которого одинакова во всех точках пространства.
В электростатическом поле силовые линии не замкнуты, они всегда начинаются на положительных зарядах и заканчиваются на отрицательных зарядах. Они нигде не пересекаются, пересечение силовых линий говорило бы о неопределенности направления напряженности поля в точке пересечения. Плотность силовых линий больше вблизи заряженных тел, где напряженность поля больше.
Поле заряженного шара.
Напряженность поля заряженного проводящего шара на расстоянии от центра шара, превышающем его радиус r ≥ R. определяется по той же формуле, что и поля точечного заряда . Об этом свидетельствует распределение силовых линий (рис. а), аналогичное распределению линий напряженности точечного заряда (рис. б).
Заряд шара распределен равномерно по его поверхности. Внутри проводящего шара напряженность поля равна нулю.
SA. Напряженность поля
Рассмотренный ранее закон Кулона устанавливает количественные и качественные особенности взаимодействия точечных электрических зарядов в вакууме. Однако этот закон не дает ответа на весьма важный вопрос о механизме взаимодействия зарядов, т.е. посредством чего передается действие одного заряда на другой. Поиск ответа на этот вопрос привел английского физика М. Фарадея к гипотезе о существовании электрического поля, справедливость которой была полностью подтверждена последующими исследованиями. Согласно идее Фарадея электрические заряды не действуют друг на друга непосредственно. Каждый из них создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой заряд, и наоборот.
Все сказанное позволяет дать следующее определение:
- электрическое поле – это особый вид материи, посредством которого осуществляется взаимодействие электрических зарядов.
Свойства электрического поля
- Электрическое поле материально, т.е. существует независимо от наших знаний о нем.
- Порождается электрическим зарядом: вокруг любого заряженного тела существует электрическое поле. Поле, созданное неподвижными электрическими зарядами, называется электростатическим. Электрическое поле может быть создано и переменным магнитным полем. Такое электрическое поле называется вихревым.
- Обнаружить электрическое поле можно по действию его на электрические заряды с некоторой силой.
Напряженность электрического поля
Недостаточно утверждать, что электрическое поле существует. Надо ввести количественную характеристику поля. После этого электрические поля можно будет сравнивать друг с другом и продолжать изучать их свойства. Электрическое поле обнаруживается по силам, действующим на электрический заряд. Можно утверждать, что мы знаем о поле все, что нужно, если будем знать силу, действующую на любой заряд в любой точке поля. Поэтому надо ввести такую характеристику поля, знание которой позволит определить эту силу.
Для изучения электрического поля будем использовать пробный заряд.
- Под пробным зарядом будем понимать положительный точечный заряд, не изменяющий изучаемое электрическое поле.
Пусть электрическое поле создается точечным зарядом q0. Если в это поле внести пробный заряд q1, то на него будет действовать сила \(
- Обратите внимание, что в данной теме мы используем два заряда: источник электрического поля q0 и пробный заряд q1. Электрическое поле действует только на пробный заряд q1 и не может действовать на свой источник, т.е. на заряд q0.
Согласно закону Кулона эта сила пропорциональна заряду q1:
Поэтому отношение силы, действующей на помещаемый в данную точку поля заряд q1, к этому заряду в любой точке поля:
не зависит от помещенного заряда q1 и может рассматриваться как характеристика поля. Эту силовую характеристику поля называют напряженностью электрического поля.
Подобно силе, напряженность поля – векторная величина, ее обозначают буквой \(
- Напряженность поля равна отношению силы, с которой поле действует на точечный заряд, к этому заряду:
- Сила, действующая на заряд q со стороны электрического поля, равна\[
Если в точке А заряд q > 0, то векторы \(
\vec F_A\) направлены в одну и ту же сторону; при q < 0 эти векторы направлены в противоположные стороны.
- От знака заряда q, на который действует поле, не зависит направление вектора \(
\vec E_A\), а зависит направление силы \(
- В СИ напряженность выражается в ньютонах на кулон (Н/Кл).
Значение напряженности электрического поля, созданного:
- точечным зарядомq, на расстоянии r от заряда в точке C (рис. 2) равно \(
E = k \cdot \dfrac<|q|>
E = 0\) , если l < R.
Принцип суперпозиции полей
А чему будет равна напряженность в некоторой точке электрического поля, созданного несколькими зарядами q1, q2, q3, …?
Поместим в данную точку пробный заряд q. Пусть F1 — это сила, с которой заряд q1 действует на заряд q; F2 — это сила, с которой заряд q2 действует на заряд q и т.д. Из динамики вы знаете, что если на тело действует несколько сил, то результирующая сила равна геометрической сумме сил, т.е.
\vec F = \vec F_1 + \vec F_2 + \vec F_3 + \ldots\) .
Разделим левую и правую часть уравнения на q :
Если учтем, что \(\dfrac< \vec F> = \vec E\), мы получим, так называемый, принцип суперпозиции полей
- напряженность электрического поля, созданного несколькими зарядами q1, q2, q3, …, в некоторой точке пространства равна векторной сумме напряженностей \(\vec E_1 , \, \vec E_2 , \, \vec E_3\), … полей, создаваемых каждым из этих зарядов:
\vec E = \vec E_1 + \vec E_2 + \vec E_3 + \ldots\) .
Благодаря принципу суперпозиции для нахождения напряженности поля системы точечных зарядов в любой точке достаточно знать выражение для напряженности поля точечного заряда. На рисунке 4, а, б показано, как геометрически определяется напряженность \(
\vec E\) поля, созданного двумя зарядами.
- Для определения напряженности поля, создаваемого заряженным телом конечных размеров (не точечных зарядов), нужно поступать следующим образом. Мысленно разделить тело на маленькие элементы, каждый из которых можно считать точечным. Определить заряды всех этих элементов и найти напряженности полей, созданных всеми ими в заданной точке. После этого сложить геометрически напряженности от всех элементов тела и найти результирующую напряженность поля. Для тел сложной формы это трудная, но в принципе разрешимая задача. Для ее решения нужно знать, как заряд распределен на теле.
Линии напряженности
Электрическое поле не действует на органы чувств. Его мы не видим. Тем не менее распределение поля в пространстве можно сделать видимым. Английский физик Майкл Фарадей в 1845 году предложил изображать электрическое поле с помощью силовых линий и получал своеобразные карты, или диаграммы поля.
- Силовая линия (или линия напряженности) — это воображаемая направленная линия в пространстве, касательная к которой в каждой точке совпадают с направлением вектора напряженности в этой точке (рис. 5).
По картине силовых линий можно судить не только о направлении вектора , но и о его значении. Действительно, для точечных зарядов напряженность поля увеличивается по мере приближения к заряду, а силовые линии при этом сгущаются (рис. 6). Где силовые линии гуще там напряженность больше и наоборот.
- Число силовых линий, приходящихся на поверхность единичной площади, расположенную нормально к силовым линиям, пропорционально модулю напряженности.
Картины силовых линий
Построить точную картину силовых линий заряженного тела – сложная задача. Нужно сначала вычислить напряженность поля Е(х, у, z) как функцию координат. Но этого еще мало. Остается непростая задача проведения непрерывных линий так, чтобы в каждой точке линии касательная к ней совпадала с направлением напряженности \(
\vec E\) . Такую задачу проще всего поручить компьютеру, работающему по специальной программе.
Впрочем, строить точную картину распределения силовых линий не всегда необходимо. Иногда достаточно рисовать приближенные картины, не забывая что:
- силовые линии — это незамкнутые линии: они начинаются на поверхности положительно заряженных тел (или в бесконечности) и оканчиваются на поверхности отрицательно заряженных тел (или в бесконечности);
- силовые линии не пересекаются, так как в каждой точке поля вектор напряженности имеет лишь одно направление;
- между зарядами силовые линии нигде не прерываются.
На рисунках 7–10 изображены картины силовых линий: положительно заряженного шарика (рис. 7); двух разноименно заряженных шариков (рис. 8); двух одноименно заряженных шариков (рис. 9); двух пластин, заряды которых равны по модулю и противоположны по знаку (рис. 10).
На рисунке 10 видно, что в пространстве между пластинами вдали от краев пластин силовые линии параллельны: электрическое поле здесь одинаково во всех точках.
- Электрическое поле, напряженность которого одинакова во всех точках пространства, называется однородным.
Не следует думать, что линии напряженности – это существующие в действительности образования вроде растянутых упругих нитей или шнуров, как предполагал сам Фарадей. Линии напряженности лишь помогают представить распределение поля в пространстве и не более реальны, чем меридианы и параллели на земном шаре.
Однако силовые линии можно сделать «видимыми». Для этого нужно металлические тела (электроды) соединить с полюсами электростатической машины и погрузить в вязкий диэлектрик (например, в касторовое или вазелиновое масло). В эту жидкость надо насыпать и хорошо перемешать продолговатые частицы изолятора (например, вискозы, асбеста, манной крупы, семян или мелко настриженный волос). При заряжении электродов в жидкости создается достаточно сильное электрическое поле. Под влиянием электрического поля частицы диэлектрика поляризуются: на их концах появляются заряды противоположного знака. Частицы поворачиваются во внешнем поле вдоль линий напряженности, и заряды на их концах взаимодействуют друг с другом. Разно именные заряды притягиваются, а одноименные отталкиваются. В результате частицы диэлектрика вы страиваются вдоль силовых линий (рис. 11).