Как измерить напряжение прикосновения
Перейти к содержимому

Как измерить напряжение прикосновения

Напряжение прикосновения: что это такое, особенности, меры защиты, расчет

Напряжение прикосновения (touch voltage) — это напряжение между проводящими частями при одновременном прикосновении к ним человека или животного (определение согласно СП 437.1325800.2018 [1]).

Примечание к определению: на значение напряжения прикосновения может существенно влиять полное сопротивление тела человека или животного, находящегося в электрическом контакте с этими проводящими частями.

Согласно ГОСТ Р МЭК 61557-1-2005 для рассматриваемого термина установлено следующее краткое обозначение: Ut

Харечко Ю.В., проведя, на мой взгляд, основательный анализ нормативной документации, в своей книге [2] описал особенности понятия “напряжение прикосновения” следующим образом:

« При одновременном прикосновении человека или животного к проводящим частям, находящимся под разными электрическими потенциалами, он попадает под напряжение, которое в нормативной документации называют напряжением прикосновения. В этих условиях через тело человека (животного) будет протекать электрический ток, который может вызвать смертельное поражение электрическим током, привести к серьезной электрической травме или спровоцировать механическую травму. Если человек (животное), имея электрическую связь с землей, прикоснется к какой-либо проводящей части, находящейся под напряжением, то он также окажется под напряжением прикосновения. Через тело человека (животного) также будет протекать электрический ток, величина которого зависит от напряжения прикосновения и полного сопротивления его тела. »

[2]

« Прикосновение человека (животного) к проводящим частям, находящимся под напряжением, обычно происходит в условиях единичного или множественных повреждений. Например, когда из-за повреждения изоляции частей, находящихся под напряжением, они становятся доступными для прикосновения. Однако наиболее вероятным является прикосновение к открытой проводящей части электрооборудования класса 0 или I, которая оказалась под напряжением из-за повреждения основной изоляции какой-то опасной токоведущей части. Возможно, но менее вероятно прикосновение человека к проводящей оболочке электрооборудования класса II, оказавшейся под напряжением при повреждении двойной или усиленной изоляции опасной части, находящейся под напряжением. »

[2]

Меры защиты.

О том какие меры защиты необходимо использовать, для того, чтобы уменьшить напряжение прикосновение в электроустановках зданий, писал Харечко Ю.В. в своем кратком терминологическом словаре [2]:

« С целью уменьшения напряжения прикосновения в электроустановках зданий выполняют защитное уравнивание потенциалов. При его осуществлении посредством защитных проводников соединяют между собой открытые проводящие части электрооборудования класса I, а с помощью защитных проводников уравнивания потенциалов соединяют сторонние проводящие части. В условиях повышенной вероятности поражения электрическим током, когда электрооборудование класса I используют, например, в помещениях здания, имеющих проводящие полы и стены, характеризующихся повышенной влажностью, температурой и другими неблагоприятными условиями, осуществляют дополнительное уравнивание потенциалов. При его выполнении с помощью защитных проводников дополнительного уравнивания потенциалов открытые проводящие части электрооборудования класса I соединяют со сторонними проводящими частями. »

[2]

Защитное уравнивание потенциалов обычно применяют в совокупности с другими мерами предосторожности, например – с автоматическим отключением питания. В этом случае посредством системы защитного уравнивания потенциалов, во-первых, создают искусственный проводящий путь для протекания тока замыкания на землю. Во-вторых, уменьшают напряжение прикосновения до момента срабатывания защитного устройства, которое отключает распределительную или конечную электрическую цепь с аварийным электрооборудованием класса I.

Ожидаемое напряжение прикосновения

Ожидаемое напряжение прикосновения (prospective touch voltage) — это напряжение между одновременно доступными проводящими частями, когда человек или домашний скот их не касается (определение согласно ГОСТ Р 58698-2019).

Ожидаемым напряжением прикосновения является напряжение между проводящими частями, доступными одновременному прикосновению, когда этих частей не касается ни человек, ни животное. Термин «ожидаемое напряжение прикосновения» характеризует максимальное значение напряжения между указанными проводящими частями. В случае прикосновения человека (животного) к этим проводящим частям величина напряжения прикосновения может уменьшиться по сравнению со значением ожидаемого напряжения прикосновения.

Для уменьшения ожидаемого напряжения прикосновения в электроустановках зданий выполняют защитное уравнивание потенциалов, а в помещениях здания, характеризующихся повышенной вероятностью поражения электрическим током, например в ванных комнатах, осуществляют также дополнительное уравнивание потенциалов.

Напряжение между открытой проводящей частью, оказавшейся под напряжением из-за повреждения основной изоляции опасной токоведущей части, и землей или проводящей поверхностью, на которой может находиться человек, также является ожидаемым напряжением прикосновения. Его значение зависит от типа заземления системы, которому соответствует электроустановка здания.

Расчет

Оценим значения ожидаемых напряжений прикосновения для наиболее распространенной системы распределения электроэнергии, которая представляет собой электроустановку здания, подключенную к низковольтной распределительной электрической сети, состоящей из понижающей трансформаторной подстанции и воздушной или кабельной линии электропередачи.

Если произошло повреждение основной изоляции какой-либо опасной токоведущей части электрооборудования класса I и возникло ее замыкание на открытую проводящую часть, то в электроустановке здания, соответствующей типу заземления системы TT, ток замыкания на землю из токоведущей части протекает в открытую проводящую часть. Далее из открытой проводящей части по защитному проводнику, главной заземляющей шине, заземляющим проводникам и заземлителю электрический ток протекает в локальную землю. Через землю ток замыкания на землю протекает к заземлителю заземляющего устройства нейтрали трансформатора, установленного в трансформаторной подстанции 10/0,4 кВ. (см. рис. 1 статьи «Ток замыкания на землю»).

Рассмотрим упрощенную схему замещения системы TT, представленную на рис. 1. Ток замыкания на землю протекает в
замкнутом контуре, образованном полными сопротивлениями фазного проводника линии электропередачи, фазных и защитных проводников электрических цепей электроустановки здания, заземляющих устройств источника питания и электроустановки здания, а также источником питания.

Упрощенная схема замещения системы TT

Рис. 1. Упрощенная схема замещения системы TT (рисунок заимствован из книги [2] Харечко Ю.В)

На рисунке 1 обозначено:

  • ZL ЛЭП – полное сопротивление фазного проводника линии электропередачи от низковольтного распределительного устройства трансформаторной подстанции до вводных зажимов электроустановки здания;
  • ZL ЭЗ – полное сопротивление фазных проводников распределительных и конечных электрических цепей от вводных зажимов электроустановки здания до места замыкания на землю;
  • ZPE ЭЗ – полное сопротивление защитных проводников распределительных и конечных электрических цепей от главной заземляющей шины заземляющего устройства электроустановки здания до места замыкания на землю;
  • ZЗУ ИП – полное сопротивление заземляющего устройства источника питания;
  • ZЗУ ЭЗ – полное сопротивление заземляющего устройства электроустановки здания;
  • IEF – ток замыкания на землю;
  • UTp ЭЗ – ожидаемое напряжение прикосновения в электроустановке здания;
  • UTp E – ожидаемое напряжение прикосновения относительно земли;
  • 1 – открытая проводящая часть аварийного электрооборудования класса I;
  • 2 – земля;
  • 3 – главная заземляющая шина заземляющего устройства электроустановки здания.

Значение ожидаемого напряжения прикосновения в электроустановке здания UTp ЭЗ равно падению напряжения на защитных проводниках электрических цепей ZPE ЭЗ от места замыкания на землю 1, расположенного в открытой проводящей части аварийного электрооборудования класса I, до главной заземляющей шины 3:

где IEF – ток замыкания на землю, А.

Ожидаемое напряжение прикосновения в электроустановке здания будет небольшим по двум причинам:

  1. Во-первых, полное сопротивление защитных проводников электроустановки здания обычно менее 1 Ом.
  2. Во-вторых, ток замыкания на землю в системе TT, как правило, не превышает нескольких ампер.

Значение ожидаемого напряжения прикосновения относительно земли UTp E равно сумме падения напряжения на защитных проводниках электрических цепей электроустановки здания ZPE ЭЗ и падения напряжения на заземляющем устройстве электроустановки здания ZЗУ ЭЗ от главной заземляющей шины 3 до земли 2:

Поскольку сумма полных сопротивлений фазного проводника линии электропередачи, фазных и защитных проводников электрических цепей электроустановки здания существенно меньше суммы полных сопротивлений заземляющего устройства источника питания и электроустановки здания, ожидаемое напряжение прикосновения относительно земли можно приблизительно определить так:

где Uo – номинальное напряжение фазного проводника относительно земли, В.

Например, если номинальное напряжение электроустановки здания равно 230/400 В, полное сопротивление заземляющего устройства нейтрали трансформатора трансформаторной подстанции равно 4 Ом, а полное сопротивление заземляющего устройства электроустановки здания – 10 Ом, то значение ожидаемого напряжения прикосновения относительно земли будет приблизительно равно:

UTp E ≈ 230 В × 10 Ом / (4+10) Ом ≈ 164 В,

где 230 В – номинальное фазное напряжение.

Значение ожидаемого напряжения прикосновения относительно земли зависит от соотношения полных сопротивлений заземляющих устройств источника питания и электроустановки здания. При уменьшении полного сопротивления заземляющего устройства источника питания, а также при увеличении полного сопротивления заземляющего устройства электроустановки здания ожидаемое напряжение прикосновения относительно земли возрастает.

Согласно требованиям ГОСТ Р 50571.3-2009 в электроустановках зданий, имеющих тип заземления системы TT, в качестве защитного устройства в составе автоматического отключения питания обычно применяют устройства дифференциального тока. Поэтому полное сопротивление заземляющего устройства электроустановки здания может быть больше 100 Ом. Если полное сопротивление заземляющего устройства нейтрали трансформатора равно 4 Ом, а полное сопротивление заземляющего устройства электроустановки здания – 100 Ом, то значение ожидаемого напряжения прикосновения относительно земли будет приблизительно равно фазному напряжению:

UTp E ≈ 230 В × 100 Ом / (4+100) Ом ≈ 221 В.

В отличие от системы TT в системе TN-C-S ток замыкания на землю в основном протекает не в земле, а по PEN-проводнику линии электропередачи (см. рис. 2 статьи «Ток замыкания на землю»).

То есть преобладающая часть тока замыкания на землю протекает в замкнутом контуре, образованном полными сопротивлениями фазного проводника и PEN-проводника линии электропередачи, фазных и защитных проводников электрических цепей электроустановки здания, а также источником питания (рис. 2). Сумма полных сопротивлений заземляющих устройств источника питания и электроустановки здания многократно превышает полное сопротивление PEN-проводника линии электропередачи, параллельно которому они включены. Поэтому через эти два сопротивления протекает незначительная часть тока замыкания на землю.

Фазный проводник и PEN-проводник линии электропередачи от трансформаторной подстанции до электроустановки здания обычно имеют одинаковые протяженности и сечения. Протяженности и сечения фазных и защитных проводников распределительных и конечных электрических цепей от вводных зажимов электроустановки здания до места замыкания на землю также, как правило, равны. Следовательно, равны между собой полные сопротивления фазного проводника и PEN-проводника линии электропередачи, а также фазных и защитных проводников электроустановки здания. Поэтому при замыкании на землю падение напряжения на полных сопротивлениях PEN-проводника линии электропередачи и защитных проводников электроустановки здания будет приблизительно равно половине фазного напряжения – 115 В.

Упрощенная схема замещения системы TN-C-S

Рис. 2. Упрощенная схема замещения системы TN-C-S (рисунок заимствован из книги [2] Харечко Ю.В)

На рисунке 2 обозначено:

  • ZL ЛЭП – полное сопротивление фазного проводника линии электропередачи от низковольтного распределительного устройства трансформаторной подстанции до вводных зажимов электроустановки здания;
  • ZL ЭЗ – полное сопротивление фазных проводников распределительных и конечных электрических цепей от вводных зажимов электроустановки здания до места замыкания на землю;
  • ZPEN ЛЭП – полное сопротивление PEN-проводника линии электропередачи от низковольтного распределительного устройства трансформаторной подстанции до вводных зажимов электроустановки здания;
  • ZPE ЭЗ – полное сопротивление защитных проводников распределительных и конечных электрических цепей от вводных зажимов электроустановки здания до места замыкания на землю;
  • ZЗУ ИП – полное сопротивление заземляющего устройства источника питания;
  • ZЗУ ЭЗ – полное сопротивление заземляющего устройства электроустановки здания;
  • IEF – ток замыкания на землю;
  • UTp ЭЗ – ожидаемое напряжение прикосновения в электроустановке здания;
  • UTp E – ожидаемое напряжение прикосновения относительно земли;
  • 1 – открытая проводящая часть аварийного электрооборудования класса I;
  • 2 – земля;
  • 3 – вводной зажим электроустановки здания, на котором выполняют разделение PEN-проводника линии электропередачи на защитный и нейтральный проводники электроустановки здания фазного проводника и PEN-проводника линии электропередачи, а также фазных и защитных проводников электроустановки здания.

Значение ожидаемого напряжения прикосновения в электроустановке здания, соответствующей типу заземления системы TN‑C‑S, равно падению напряжения на защитных проводниках распределительных и конечных электрических цепей от места замыкания на землю 1, расположенного в открытой проводящей части аварийного электрооборудования класса I, до вводного зажима 3, на котором выполняют разделение PEN-проводника линии электропередачи на защитный и нейтральный проводники электроустановки здания:

Значение ожидаемого напряжения прикосновения в электроустановке здания зависит от соотношения полных сопротивлений PEN-проводника линии электропередачи и защитных проводников электрических цепей электроустановки здания. При равенстве этих сопротивлений значение ожидаемого напряжения прикосновения в электроустановке здания приблизительно составляет одну четвертую часть фазного напряжения:

UTp ЭЗ ≈ Uo × 0.5 × 0.5 ≈ 230 × 0.25 ≈ 57,6 В.

Если полное сопротивление PEN-проводника линии электропередачи в 2 раза меньше полного сопротивления защитных проводников электроустановки здания, значение ожидаемого напряжения прикосновения в электроустановке здания будет приблизительно равно двум шестым частям фазного напряжения:

UTp ЭЗ ≈ Uo × 1/2 × 2/3 ≈ 230 × 2/6 ≈ 76,7 В.

В пределе оно может достигнуть половины фазного напряжения – 115 В, если полное сопротивление PEN-проводника линии электропередачи равно нулю, например, когда электроустановка здания подключена непосредственно к трансформаторной подстанции, встроенной в здание:

UTp ЭЗ ≈ Uo × 1/2 × 1 ≈ 230 × 1/2 ≈ 115 В.

Ожидаемое напряжение прикосновения относительно земли равно сумме падения напряжения на защитных проводниках электрических цепей электроустановки здания и падения напряжения на заземляющем устройстве электроустановки здания от главной заземляющей шины до земли 2. Последнее зависит от падения напряжения на PEN-проводнике линии электропередачи и соотношения полных сопротивлений заземляющих устройств источника питания и электроустановки здания. Ожидаемое напряжение прикосновения относительно земли можно определить так:

Значение ожидаемого напряжения прикосновения относительно земли, с одной стороны, зависит от соотношения полных сопротивлений PEN-проводника линии электропередачи и защитных проводников электроустановки здания. С другой стороны, оно зависит от соотношения полных сопротивлений заземляющих устройств источника питания и электроустановки здания. При равенстве полных сопротивлений PEN-проводника линии электропередачи и защитных проводников электроустановки здания, с одной стороны, и полных сопротивлений заземляющих устройств источника питания и электроустановки здания, с другой стороны, ожидаемое напряжение прикосновения относительно земли будет приблизительно равно трем восьмым частям фазного напряжения:

UTp E ≈ Uo × 1/2 × (1/2 ×1/2 +1/2) ≈ 230 × 3/8 ≈ 86,3 В.

Если полное сопротивление PEN-проводника линии электропередачи равно половине полного сопротивления защитных проводников электроустановки здания, а полное сопротивление заземляющего устройства источника питания также равно половине полного сопротивления заземляющего устройства электроустановки здания, ожидаемое напряжение прикосновения относительно земли будет больше:

UTp E ≈ Uo × 1/2 × (1/3 × 2/3 + 2/3) ≈ 230 × 8/18 ≈ 102,2 В.

Максимальное значение ожидаемого напряжения прикосновения относительно земли равно половине фазного напряжения – 115 В, если электроустановка здания подключена непосредственно к трансформаторной подстанции, которая встроена в здание. В этом случае ожидаемое напряжение прикосновения относительно земли равно ожидаемому напряжению прикосновения в электроустановке здания. Такое же значение ожидаемого напряжения прикосновения относительно земли будет в том случае, когда произошло замыкание на землю на вводе в электроустановку здания. Ожидаемое напряжение прикосновения в электроустановке здания при этом равно нулю. Ожидаемое напряжение прикосновения относительно земли может достигнуть половины фазного напряжения также, если в электроустановке здания нет заземляющего устройства.

Условный предел напряжения прикосновения

Условный предел напряжения прикосновения (conventional touch voltage limit) — это максимальное значение ожидаемого напряжения прикосновения, продолжительность воздействия которого не ограничивается при определенных внешних условиях. Это определение на основе ГОСТ Р МЭК 60050-195-2005. В этом стандарте данный термин назван иначе – “допустимое напряжение прикосновения”. Обозначается как UL .

Условный предел напряжения прикосновения устанавливает значение максимального ожидаемого напряжения прикосновения, которое может иметь место в электроустановке здания в течение неограниченного промежутка времени. Значение этого напряжения, как правило, не должно превышать верхней границы сверхнизкого напряжения, равной 50 В переменного тока и 120 В постоянного тока. Однако, если электрооборудование применяют в условиях, характеризующихся повышенной опасностью поражения электрическим током, указанные максимальные значения ожидаемого напряжения прикосновения обычно уменьшают, чтобы уменьшить вероятность поражения электрическим током.

Определение напряжения прикосновения и напряжения шага при эксплуатации электрооборудования

Напряжение прикосновения в эксплуатационных условиях определяется по методу амперметра-вольтметра. Напряжение прикосновения по этому метолу измеряется как разность потенциалов между доступными прикосновению заземленными металлическими частями оборудования или конструкций и потенциальным электродом, представляющим собой металлическую квадратную пластину размером 25*25 см 2 , имитирующую подошвы человека, стоящего в контрольной точке на земле или на полу.

Определение напряжения прикосновения и напряжения шага при эксплуатации электрооборудования

Сопротивление тела человека имитируется эквивалентным сопротивлением параллельно включенных вольтметра U и резистора R . В качестве источника питания схемы обычно используют трансформатор собственных нужд, включаемый через электронный короткозамыкатель (ЭКЗ) (рис. 2, а). При отсутствии ЭКЗ используют метод амперметра-вольтметра с длительным приложением напряжения к испытываемому заземлителю. Значение напряжения при этом выбирают доходя из длительно допускаемого тока, проходящего по токовой цепи.

В случаях, если вторичная обмотка трансформатора собственных нужд имеет изолированную от земли нейтраль или соединение по схеме треугольник применяют разделяющий трансформатор со вторичным напряжением — до 500 В (рис. 2, б).

Схема измерения напряжения прикосновения по методу амперметра - вольтметра

Рис. 1. Схема измерения напряжения прикосновения по методу амперметра — вольтметра: R з — заземляющее устройство; ЗО заземленное оборудование; R — резистор, имитирующий сопротивление тела человека; R п -потенциальный электрод (зонд); Rв — вспомогательный электрод

Схемы токовых цепей при измерениях напряжений прикосновения по методу амперметра-вольтметра

Рис. 2. Схемы токовых цепей при измерениях напряжений прикосновения по методу амперметра-вольтметра: а с непосредственным использованием трансформатора собственных нужд (ТСН); б с использованием трансформатора собственных нужд (ТСН), включенного через разделяющий трансформатор

Измеренные значения напряжений прикосновения должны быть приведены к расчетному току замыкания на землю и к сезонным условиям, при которых напряжения прикосновения имеют наибольшее значение.

U п = ( U изм х I з)(1000 + R п)/ I изм(1000 + R п2),

где Uизм — измеренное значение напряжения прикосновения при токе в измерительной цепи, равном I изм; 1% расчетный для заземляющего устройства, I з — ток замыкания на землю (стекающий с испытуемого заземлителя в землю); Rп сопротивление потенциального электрода, измеренное по схеме, приведенной на рис. 3, и условиях, в которых проводилось измерение Uп (сухой грунт увлажнялся под электродом R п на глубину 2 — 3 см); Rп2 минимальное значение сопротивление потенциального электрода, полученное путем измерения по той же схеме, но при искусственно увлажненном грунте на глубину 20 — 30 см (если во время измерений грунт увлажнен на глубину 30 — 40 см, то вместо поправочного коэффициента 1000 + Rп /1000 + Rп2 (применяют коэффициент, равный 1,5).

Схема измерения сопротивления потенциального электрода

Рис. 3. Схема измерения сопротивления потенциального электрода

При определении напряжения прикосновения в схемах с использованием трансформатора собственных нужд ток измерения может достигать слишком больших значений. Поэтому измерения в токовой цепи необходимо выполнять в так называемом повторно-кратковременном режиме. Для этой цели в токовую цепь включают электронный короткозамыкатель, например ИТК-1, а в качестве измерителя напряжения применяют импульсный вольтметр (см. рис. 2).

Кроме метода амперметра-вольтметра напряжение при косновення может быть измерено специальными приборами — т. н. «измерителями напряжения прикосновения».

Напряжение шага может быть определено по методу амперметра-вольтметра с использованием сварочного трансформатора (рис. 4).

Схема измерения напряжений шага с двумя вольтметрами и амперметром с использованием сварочного трансформатора

Рис. 4. Схема измерения напряжений шага с двумя вольтметрами и амперметром с использованием сварочного трансформатора: 1 — трансформатор подстанции; 2 — однополюсный выключатель; 3 — автотрансформатор; 4 — сварочный трансформатор; 5 силовой распределительный шкаф; 6, 7 — измерительные пластины; 8 — резистор; 9 — транзисторный вольтметр; 10 — металлоконструкция

Схема измерения содержит два потенциальных электрода, представляющих собой металлические квадратные пластины размером 25×25 см2 каждая. Пластины имитируют подошвы человека, стоящего на земле или на полу. Расстояние между пластинами должно соответствовать расчетному шагу человека, равному 0,8 м. Поверхность земли в расчетных точках увлажняют на глубину 2 — 3 см. Для лучшего контакта с землей на каждую пластину кладут груз массой не менее 50 кг.

Напряжение шага определяют по формуле:

U ш = ( U пп х U ф)/ U т

где U пп — напряжение, измеренное вольтметром между двумя пластинами, В; U ф — фазное напряжение сети, В; U т — напряжение на вторичной обмотке сварочного трансформатора.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Методика измерения напряжения прикосновения

Электричество – одно из наиболее важных открытий человечества, достаточно сказать, что большинство промышленных и бытовых предприятий на сегодняшний день завязаны на энергосистемы. Но в то же время электросети опасны для человека. Опасность, в основном, заключается в аварийных и повреждённых отдельных узлах и элементах сети. Так, обычный пробой в изоляции провода может привести к опасным последствиям для жизни здоровья.

Нарушение изоляции

Нарушение изоляции

Электронапряжение, возникающее в организме человека в момент его контакта с проводником под током одновременно в двух точках, называют напряжением прикосновения. Возникнуть такая ситуация может при касании аварийного электрооборудования или кабеля с повреждённой изоляцией.

Фактически же это явление привязано к двум контактным площадкам на проводнике либо к проводнику и к поверхности грунта или пола, где стоит человек, «включившийся» в электросистему.

Что такое напряжение прикосновения

При аварии электрооборудования, повреждении его заземляющей шины или просто нарушении изоляции проводника существует вероятность того, что в месте такого пробоя появится определённое напряжение.

Как пример можно привести человека, который случайно прикоснулся к корпусу повреждённой электроустановки. В этом случае значением напряжения прикосновения будет разность потенциалов в точке касания проводника и на поверхности пола или грунта. При этом напряжение может быть безопасным, при численном значении до 65В переменного тока, и не случится ничего страшного. Но при превышении этого значения напряжение прикосновения может быть крайне опасным. При большем значении параметров этого явления уже стоит использовать защитную спецодежду.

При удалении человека от места заземления установки значение напряжения прикосновения возрастает. Так как за пределами зоны растекания место с положительным значением потенциала при замыкании, значение его будет фактически равно напряжению на приборе.

Напряжение прикосновения

Напряжение прикосновения

Интересно. Многим знаком гонор опытных электриков, которые при определённых условиях могут трогать оголённые провода голой рукой или вставлять металлические стержни в бытовую розетку. Дело в том, что при достаточном сопротивлении тела и при наличии проводимого пола напряжение прикосновения крайне невелико, но нужно отметить, что оценить на глаз параметры тока и разницы потенциалов, а также учесть сопротивление тела человека в определённых условиях крайне сложно, повторять такие «фокусы» нельзя!

Измерения напряжения прикосновения

Главная СтатьиИзмерения напряжения прикосновения

  1. Цель проведения измерения:

Измерения напряжения прикосновения проводятся после монтажа, переустройства и капитального ремонта заземляющего устройства, но не реже 1 раза в 6 лет. Измерения производятся на присоединенных естественных заземлителях и тросах ВЛ.

2.Применяемые средства защиты и измерения, приборы, приспособления:

Для измерения напряжения прикосновения используются:

— стальная пластина 25х25 см;

— медная сетка 25х25 см;

— мегаомметр MIC-2500.

  1. Подготовка рабочего места и основные меры безопасности при проведении испытаний и измерений:

— ознакомление со схемой и проектной документацией (тех. документация предприятия изготовителя, проект, cогласованный с УГЭН, протоколы предыдущих испытаний и т.п.);

— выполнение организационных и технических мероприятий, обеспечивающих безопасность работ в электроустановках.

Примечание:

— Работы ОРУ производятся со снятием напряжения, по наряду — допуску.

  1. Подготовка приборов к работе.

Подготовка прибора MIC-2500 к работе:

— проверка клейма поверки СИ и отсутствия видимых повреждений корпуса и измерительных проводов;

— проверка напряжения источника питания.

При измерении напряжения прикосновения на территории ОРУ 110 кВ и выше, питание которого осуществляется от одной или нескольких ВЛ, токовый электрод переносится от края заземлителя не менее чем на 2Д.

Если подстанция располагается на территории промышленного предприятия, на застроенной территории, то для уменьшения наводки напряжения на токовую цепь рабочим током ВЛ токовый электрод переносится не менее чем на 200 м от подстанции и примерно на 100 м в сторону от питающих ВЛ.

Если измерения выполняются на ОРУ 110 кВ, с шин которого осуществляется питание нагрузки, а питание шин в свою очередь осуществляется от автотрансформатора с высшим напряжением 220-1150 кВ, токовый электрод можно присоединять к нейтрали питающего автотрансформатора.

Проводники токовой и потенциальной цепей должны подключаться к заземленному оборудованию отдельными струбцинами, при этом проводник токовой цепи присоединяется к заземляющему проводнику. Проводник потенциальной цепи может быть подсоединен к этому же заземляющему проводнику или к любой точке металлоконструкции, т.е. к месту возможного прикосновения.

При измерении на нерабочем месте токовый вывод Т2 прибора присоединяется к заземляющей шинке корпуса ближайшего оборудования, по которой может протекать ток КЗ.

Потенциальная цепь от вывода П1 прибора подсоединяется к пластине, имитирующей стопы ног человека, размером 25 см × 25 см, которая располагается примерно в 1 м от оборудования. Основание под пластиной должно быть выровнено и увлажнено 250 мл воды. Пластина должна быть выполнена таким образом, чтобы при измерениях на ней мог располагаться человек, создающий необходимое давление, которое должно быть не менее 50 кгс/см2.

Напряжения прикосновения необходимо измерять в контрольных точках, в которых эти значения определены расчетом при проектировании. Кроме того, рекомендуется производить измерения на всех рабочих и нерабочих местах.

При измерениях на подстанциях 110 кВ и выше выводы П1 и П2 измерительного прибора должны быть шунтированы резистором 1 кОм, как это показано на рис. 1. В приборах ПИНП и ЭКО-200 этот резистор встроен.

Для определения сопротивления основания собирается схема, показанная на рис. 2. Определение сопротивления основания рекомендуется производить у каждой точки измерения. Сопротивление Rосн измеряется мегомметром либо с помощью прибора ОНП-1 (в этом случае к заземляющему проводнику присоединяются выводы П1 и Т1, а к основанию П2, Т2).

При измерении значений напряжений прикосновения Uпр изм на частоте, отличной от промышленной (прибор КДЗ-1), необходимо производить пересчет измеренных значений на истинные значения. При этом значение напряжения прикосновения на частоте 50 Гц (Uпр50) определяется по формуле

где Kп – коэффициент пересчета значений напряжения прикосновения с частоты 400 Гц на частоту 50 Гц.

В табл. 1 приведены значения Kп в зависимости от длины заземляющего оборудование проводника L.

Таблица 1
Коэффициент пересчета Kп Длина проводника L, м
1 0-5
1,05 5-10
1,1 10-15
1,15 15-20
1,2 20-25
1,25 25-30

Полученные значения Unp50 сопоставляются с нормами на напряжение прикосновения.

  1. Оформление результатов измерений.

Результаты измерений оформляются протоколом в соответствии ГОСТ ИСО/МЭК 17025-2009 и РД 34.43.105-89.

7. Оформление заключения о состоянии электроустановки и соответствии или несоответствии ее требованиям НТД.

Заключение о соответствии или не соответствии результатов измерений принимается на основании сравнения величины напряжения прикосновения, предусмотренного проектом, и величины полученной в результате замеров и последующих расчетов.

Измерение

Для измерения значений потенциалов используются стандартные измерительно-контрольные приборы: амперметр и вольтметр. Оценке подлежит возможное место касания человека с проводником, также измеряются значения на имитации живого организма – металлической пластине с подключённым резистором. Площадь пластины – 625 см2, резистор имитирует организм человека, его сопротивление должно быть эквивалентно сопротивлению тела человека. Для создания тока к проводнику подключается трансформатор, создающий ток критических величин, максимально возможный на данном участке энергосистемы. Так рассчитываются параметры на опасных участках.

Ток прикосновения

Ток прикосновения

Важно! При измерении нельзя нарушать правила техники безопасности, так как используются критические величины тока, опасные для жизни и здоровья человека.

Нормы для проведения замеров

При выборе методики измерений специалисты электролаборатории опираются на следующие нормативные документы и постановления:

  1. Сроки, объемы и особенности проведения замеров для всех типов объектов регламентируются ПТЭЭП (приложение №3; пункт 28.10). Измерения могут проводиться в установках с системой TN и TT, свольтажом до 1 кВ, при этом обязательным условием является наличием системы уравнивания/выравнивания потенциалов, предотвращающих возможность поражения током.
  2. Выбор контрольных точек для замеров осуществляется с учетом требований п. 1.8.39 ПУЭ (издание 7). Для различных типов электрооборудования с вольтажом до 1 кВ, выполненного в соответствии со всеми действующими нормами на прикосновение напряжения, контрольные точки определяются во время проектирования, при присоединении естественных заземлителей.
  3. Предельно допустимые значения величин для установок с различным типом реализации нейтрали приведены в таблицах ГОСТ-а 12.1.0380-82 отдельно для различных режимов и разных токов.

При замерах напряжения сопротивление тела человека моделируется резисторами различных номиналов, с помощью металлических пластин или других моделей.

Электробезопасность

Универсального и абсолютно надёжного способа борьбы с током прикосновения не существует. Оградить человека от возможного поражения, в том числе и со смертельным исходом, призваны следующие меры:

  • надежная изоляция токопроводящих линий и корпусов оборудования;
  • удаление зоны вероятного появления явления и ограничение доступа к ней;
  • расположение формально опасных частей оборудования на высоте;
  • информационное ограждение потенциально опасных мест.

Если разбирать эти способы более подробно, то основным и наиболее приоритетным методом борьбы с поражением током прикосновения является обеспечение надёжной изоляции проводников. Сопротивление изоляции обычных проводов подлежит определению по нормам ПУЭ. Так, для кабеля, который работает на значениях до 1 тыс. Вольт, сопротивление изоляционного покрытия должно быть не ниже определенного значения, минимальным из них будет 0,5 МОм. Это создаёт надёжную защиту. Все дело в совокупности сопротивления – если коснуться оголённого провода под током, то величина сопротивления будет определяться лишь собственным сопротивлением организма человека или животного. При наличии изоляции организм человека подключается к проводнику последовательно, сопротивление тела человека в этом случае суммируется с сопротивлением изоляции энергоносителя.

Напряжение прикосновения и шага

Напряжение прикосновения – разность потенциалов между двумя точками цепи тока, которых одновременно касается человек.

Степень опасности зависит от типа прикосновения и вида сети. Прикосновения могут быть 1- и 2-фазными в 3-фазных сетях а также 1- 2-полюсными в однофазных сетях. Все 2- прикосновения опасны, т.к. в данном случае человек попадает под полное ном. напряжение источника тока.

Возникает в результате эл. замыкания на землю. Эл. замыкание на землю – случайное эл. соединение токоведущей части непосредственно с землей или нетоковедущими непроводящими конструкциями неизолированными от земли.

В случае замыкания на землю происходит растекание тока в земле с образованием зоны растекания тока (зона земли, за пределами которой электропотенциал, обусловленный током замыкания на землю может быть условно принят равным нулю). В зоне растекания человек может оказаться под разностью потенциалов на расстоянии шага.

Напряжение между точками цепи тока, находящихся одна от другой на расстоянии шага, на которых одновременно стоит человек, называется «напряжением шага», величина которого зависит от величины шага прямо пропорционально и обратно пропорционально от расстояния до места замыкания.

Нормирование напряжения прикосновения и токов

Согласно нормативным документам установлены предельно допустимые уровни напряжений прикосновения и токов. Их значения определены исходя из реакции ощущения. Предельно допустимыми уровнями для переменного тока: по напряжению не более 2 В, по току не более 0,3мА. Для постоянного тока – 8В, 1мА.

Для работников выполняющих работу при повышенной температуре и влажности указанные значения нормируются в 3 раза меньше. При чем суммарное время воздействия этих величин в течении суток не должно превышать 10 минут.

Основные меры защиты

1. Изоляция токоведущих частей с устройствами непрерывного контроля

Различают виды изоляции:

рабочая – обеспечивает нормальную работу электроустановок и защиту от поражения током

дополнительная – предусматривается на случай повреждения рабочей золяции, рабочая+дополнительная=двойная изоляция

усиленная – улучшенная изоляция, которая обеспечивает ту же степень защиты, что и двойная изоляция.

Нормирование изоляция: характеристика – сопротивление изоляции. Предельно допустимые уровни – для катушек контакторов, пускателей, щитов управления, световых и осветительных установок не менее 0,5МОм; для вторичных цепей (рызъединителей и др.) не менее 1МОм.

Контроль изоляции: периодически осуществляется мегаомметрами, при приемосдаточных испытаниях электроустановок после монтажа, ремонта, при обнаружении дефекта, а также в установленные нормативные сроки. Постоянный контроль осущ. приборами, включенными в цепь электроустановки, они подают сигнал о снижении сопративлении изоляции.

2. Ограждение и недоступность токоведущих частей

Оградительные устройства применяются с целью исключения возможности прикосновения к токоведущим цепям. Выполняются в различном исполнении.

3. Эл. разделение сетей

Сети большой протяженности имеют значительные емкости, и даже однофазное прикосновение в таких сетях опасно. Поэтому их разделяют разделительными трансформаторами на отдельные участки, что уменьшает их емкостную составляющую и опасность поражения тока.

4. Применение малых напряжений

Малое напряжение – до 42 В, которое используется для питания инструментов, а также для переносных светильников и местного освещения на станках в помещениях с особой и повышенной опасностью.

5. Электрозащитные средства

Служат для выполнения ремонтных и пусконаладочных работ в действующих электроустановках. По назначению они делятся на изолирующие, ограждающие и вспомогательные. Изолирующие служат для изоляции человека от токоведущих деталей. Бывают основными (изоляция длительно выдерживают рабочее напряжение, для установок до 1000В – изолирующие штанги, изолирующие клещи, диэлектрические перчатки, слесарно-монтажный инструмент, боты, указатели напряжения; свыше 1000В – изолирующие штанги, указатели напряжения, клещи) и дополнительные (применяются совместно с основными – коврики, галоши, изолирующие подставки). Ограждающие средства служат для ограждения токоведущих частей и ошибочных операций в каммутационном оборудовании – переносные ограждения, переносные заземления. Вспомогательные служат для защиты от падений с высоты, вспышек света, механических повреждений – пояса, канаты, когти, очки, рукавицы, противогазы.

6. Защитные заземления

8. Защитное отключение

Сигнализация, плакаты и знаки безопасности

Сигнализация предназначена для предупреждения персонала об отсутствии или наличии напряжении.

Плакаты могут быть предупреждающие, запрещающие, предписывающие, указательные.

Блокировка: механическая (самозапирающиеся замки) и электрическая (включает контакты в цепи).

Защитное заземление – преднамеренное соединение с землей или ее эквивалентом металлических нетоковедущих частей электроустановок, которые могут оказаться под напряжением.

Заземлению подлежат корпуса приборов, станков, станины, опоры и др.

Принцип действия: снижение уровней напряжений прикосновения относительно земли до допустимых пределов.

Причины оказания корпусов под напряжением:

(рисунок 1 – схема заземления)

В случае пробоя на корпус ток пойдет по двум направлениям: по человеку и защитному заземлению. Сопротивление человека принимается 1 кОм. Сопротивление заземление <=4 Ом либо <=10 Ом. Человек получит удар, но он не будет смертельным.

Нормируемая характеристика – сопротивление. Согласно нормативным документам оно зависит от напряжения в сети и мощности заземляемых установок. Для установок напряжением до 1000 В и мощностью до 100 кВА это сопротивление не должно превышать 10 Ом. Для установок более 1000 В и 100 кВА – 4 Ом.

Чем больше мощность установок, тем меньше должно быть сопротивление защитного заземляющего контура.

Падение напряжения на заземленном оборудовании объясняется тем, что в силу того, что потенциал земли бесконечно велик, то любая заземленная часть, имеющая контакт с землей, на которую наведено напряжение, приведет к его падению отн. земли.

Заземление состоит из защитного заземляющего устройства ( стержневые электроды, которые размещаются по контуру или в линию), к которому подключены все производственные помещения, а к ним крепится оборудование. Все параметры заземления рассчитываются специальными методами. (л.р. №1)

Зануление

Зануление – преднамеренное эл. сопротивление с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

(Рисунок 2 – схема зануления)

Принцип действия: зануление превращает замыкание на корпус в однофазное короткое замыкание, в результате которого срабатывает защита (автомат или предохранитель или реле), которая селективно отключает поврежденный участок сети.

Нулевой защитный проводник нельзя путать с нейтралью, который служит для питания потребителя.

Для надежного отключения и срабатывания защита проводимость проводов выбирается такой, чтобы ток короткого замыкания был как минимум в 3 раза больше номинального тока ближайшего реле, автомата или предохранителя.

Нулевой провод через 20-30 метров повторно заземляется с целью уменьшения напряжения на корпусе в момент кз.

Зануление контролируется аналогично заземлению мегаомметрами.

Защитное отключение

Это быстродействующая защита, применяемая в тех случаях, когда все другие виды защиты трудноосуществимы, ненадежны или когда к электроустановке предъявляются повышенные требования безопасности.

Особенности – быстродействие, чувствительность, помехоустойчивость.

Электротравмы

Электрические системы – это место повышенного риска, любая аварийная ситуация, повреждение изоляции или нарушение правил техники безопасности грозит электротравмой. Это различного рода повреждения организма, нанесённые в ходе воздействия на него электрического тока.

Существуют травмы двух видов:

  • местные электротравмы;
  • общее поражение электротоком.

К местным электротравмам относят локальные повреждения поверхностных участков кожи: ожоги, металлизация эпидермиса от текущего металла и другие малоприятные вещи. Общие – это обычные удары током, без негативных для организма последствий.

Электричество опасно само по себе. При работе с ним необходимо соблюдать элементарные меры безопасности, более того, стоит полностью следовать нормам ПУЭ при монтаже и обслуживании токоведущих проводников и электрооборудования. При работе в месте, где возможно возникновение напряжения прикосновения обязательно использовать защитную спецодежду и средства. Неаккуратная работа и халатное отношение к энергосети может привести к негативным последствиям, как для здоровья человека, так и для электрооборудования.

Измерения напряжения прикосновения

Когда человек или животное касается своим телом оголенных токоведущих частей, корпуса прибора, который почему-то оказался под потенциалом, кабеля с поврежденной изоляцией и т.п, а сам, при этом стоит на земле – то разность потенциалов между точкой касания и землей называется напряжением прикосновения.

Иначе говоря, это то напряжение, под которым находятся две оголенные проводящие части не соединенные между собой.

Условия возникновения таковы — корпуса электроприборов обычно заземлены, но повреждения изоляции электрооборудования внутри этих корпусов вызывает появление напряжения прикосновения, когда вы возьметесь рукой за металлическую часть корпуса и связанных с ним металлических частей.

Безопасно ли напряжение прикосновения

Начнем с того, что именно опасно? Напряжение само по себе не представляет особой опасности. Разрушающие и опасные воздействия оказывает электрический ток. Однако от величины напряжения зависит вероятность получить удар током. Безопасным считается напряжение переменного тока 42 Вольта, ранее считали 36 В. Оно применяется для обустройства переносных светильников и для питания электроинструмента, при работе в труднодоступных местах, в гаражах, подвалах, влажных помещениях, а также в местах временных работ. Но напряжение прикосновение и безопасное напряжение для человека это немного разные вещи.

Действие электрического тока на человека губительно, он может вызвать фибриляционное сокращение сердца и смерть, поэтому величины допустимых напряжений и токов прописаны в нормативных документах. Согласно нормам, описанным в ГОСТ 12.1.038-82 напряжение прикосновения в нормальных условиях (без аварий) не должно быть больше:

  • при переменном токе с частотой 50 Гц – 2 В (ток – 0,3 мА);
  • при переменном токе с частотой 400 Гц – 3 В (ток – 0,4 мА);
  • при постоянном токе – 8 В (ток – 1 мА);

Это предельно допустимые значения при воздействии до 10 минут в сутки. Стоит отметить, что для людей, которые работают при температурах больше чем 25°С и относительной влажности более 75% эти значения уменьшают в 3 раза.

Так как напряжение прикосновения измеряется между местом положения человека на земле (его контакта с проводящей поверхностью) и местом касания электрооборудования – из этого следует, что оно зависит от места расположения в помещении, точнее относительно точки заземления. Чем дальше вы стоите в момент, когда коснулись опасного прибора, на чьем корпусе оказался потенциал (от точки заземления), тем больше величина напряжения прикосновения.

Стоит отметить еще несколько определений:

  1. Зона растекания. Такая площадь на земле, за пределами которой потенциал, возникший, при протекании тока замыкания на землю, равен нулю. За пределами зоны растекания напряжение прикосновения численно равняется величине потенциала на поверхности, которой касаетесь.
  2. Шаговое напряжение. Это напряжение между двумя точками на земле (грунте) вокруг места замыкания токоведущей части на землю. Смысл состоит в том, что если возле вас упал высоковольтный кабель, двигаться от него нужно мелкими приставными шагами, не отрывая ноги друг от друга и от земли, таким образом уменьшая расстояния между шагами. Потенциал от точки замыкания на землю убывает по экспоненте. Это значит, что в месте замыкания на землю – он равен потенциалу замыкаемого проводника, а за пределами зоны растекания нулю. Тогда напряжение между этими двумя точками равняется напряжению замкнутого кабеля.

Вы должны были заметить, что напряжение прикосновения, зона растекания и шаговое напряжение связаны между собой.

Напряжение прикосновения

Поражение током возможно при прикосновении к заземленному корпусу электрооборудования, на которое произошло замыкание. В этом случае, когда человек касается одновременно корпуса, оказавшегося под напряжением, и земли, на которой стоит, он может оказаться под напряжением прикосновения Uпр.

Напряжение прикосновения – разность потенциалов между двумя точками цепи тока, которых одновременно касается человек.

Потенциалы на поверхности грунта при замыкании тока на корпус потребителя распределяются по гиперболической кривой. Напряжение прикосновения равно разности потенциалов корпуса электрооборудования и точек почвы, на которых находятся ноги человека. Чем дальше электродвигатель находится от заземления, тем под большее напряжение прикосновения человек попадает, и наоборот, чем ближе к заземлителю, тем меньше напряжение прикосновения Uпр. За пределами зоны растекания тока напряжение прикосновения равно напряжению на корпус оборудования относительно земли.

Силу тока Ih, протекающего через тело человека, находящегося под напряжением прикосновения, определяют по формуле:

ток замыкания на корпус оборудования, А;

сопротивление системы защитного заземления, Ом (сопротивление системы защитного заземления д.б.

£ 4 Ом);

удельное сопротивление грунта, Ом × м;

расстояние от места стекания тока в землю до человека, м.

Из формулы видно, что чем дальше от заземлителя находится человек, тем больше будет сила тока, прошедшего через человека, и наоборот, чем ближе к заземлителю, тем она будет меньше.

На рис.3.3. показана схема прикосновения человека к заземленному оборудованию при напряжении прикосновения.

Рис.3.3. Схема распределения потенциалов при напряжении прикосновения: I – распределение потенциала на поверхности грунта в момент замыкания фазы на корпус; II – напряжение прикосновения Uпр при изменении расстояния от заземлителя; 1,2,3 – корпуса электродвигателей.

Напряжение прикосновения и величина тока, протекающего через организм человека при нормальном (неаварийном) режиме работы электроустановки переменного тока частотой 50 Гц, не должны превышать соответственно 2В и 0,3 мА.

Снизить напряжение прикосновения и силу тока можно за счет малого сопротивления системы защитного заземления или увеличения потенциала поверхности в зоне растекания тока на землю.

Напряжение шага

При наличии токопроводящих полов или грунта человек, находящийся недалеко от корпуса электрооборудования, на которое произошло замыкание тока, или упавшего на землю электропровода может оказаться под напряжением шага

. Напряжение шага возникает вокруг места перехода тока от поврежденной электроустановки в землю.

Напряжение шага – напряжение между двумя точками цепи тока, находящимися одна от другой на расстоянии шага, на которых одновременно стоит человек.

Характер распределения потенциалов на земной поверхности подчиняется гиперболическому закону.

На расстоянии 1м от места стекания тока на землю потенциал снижается на 68%, на расстоянии 10м снижение достигает 92%, а на расстоянии 20м потенциал точек земли практически равен нулю. Такое распределение потенциалов объясняется тем, что вблизи заземлителя площадь проводника земли малая, поэтому здесь земля оказывает большое сопротивление прохождению тока, а по закону Ома: где I

– сила тока электроцепи, А;
U
– напряжение, В;

– сопротивление (в данном случае земли), Ом;

По мере удаления от заземлителя сечение проводника – земли увеличивается, сопротивление его уменьшается, следовательно, и падение напряжения уменьшается. На расстоянии более 20м от места замыкания тока земля практически не оказывает сопротивления прохождению тока.

Человек, находясь в зоне растекания тока, даже не прикасаясь к поврежденному оборудованию, может попасть под высокое напряжение.

Это происходит потому, что различные точки земли, которых касаются ноги человека, имеют различные потенциалы. Например, левая нога отстоящая от заземлителя на расстоянии х

, приобретает потенциал

, величину которого определяют по формуле:

— ток замыкания на землю, А;

— удельное сопротивление грунта, Ом × м;

Правая нога соответственно приобретает потенциал xх+а

Разность потенциалов, под которой могут оказаться ноги человека, называют напряжением шага:

Отсюда определяют напряжение шага:

Из равенства следует, что напряжение шага зависит от тока замыкания, ширины шага, расстояния от человека до места замыкания тока на землю, а также от удельного сопротивления грунта. По мере удаления от места замыкания напряжение шага становится меньше.

Силу тока, проходящего через человека, попавшего под напряжение шага, определяют по формуле:

– сопротивление человека воздействию электрического тока, Ом.

Максимальное значение Ih

будет, когда человек одной ногой стоит на участке земли в точке замыкания тока на землю, а другой – на расстоянии шага от этой точки. Минимальное значение
Ih
соответствует случаю, когда человек стоит на точках с одинаковыми потенциалами, тесно сомкнув ноги. В этом случае
Ih
=0.

Напряжение шага является причиной частой гибели людей и крупных животных (коров, лошадей). При обнаружении соединения с землей какой-либо токоведущей части установки запрещается приближение к месту повреждения на расстояние ближе 4м в помещениях и ближе 20м – на открытых площадях.

Необходимо отметить, что характер зависимости напряжения шага от расстояния между человеком и заземлителем противоположен той же зависимости напряжения прикосновения, которое увеличивается с увеличением расстояния.

Без учета дополнительных сопротивлений в электрической цепи человека максимальное напряжение шага меньше напряжения прикосновения. Однако поражение людей при воздействии напряжения шага объясняется тем, что под действием тока в ногах возникают судороги и человек падает, после чего цепь тока замыкается вдоль его тела через дыхательные органы – легкие и сердце, что приводит к параличу их деятельности.

Оказавшись в зоне напряжения шага, выходить из нее следует небольшими шагами (гусиными скользящими шагами) в сторону, противоположенную месту замыкания электрического провода на землю.

Пути снижения опасности

Давайте разберемся, как защитится от напряжения прикосновения. Чтобы снизить опасность возникновения потенциала на корпусах электроприборов нужно, во-первых, обеспечить надежное заземление. Причем сопротивление переходного контакта заземлителя (металлосвязь) не должно превышать 0,01 Ома. Место соединения должно быть надежно закреплено болтом или сваркой, его нужно регулярно проверять.

Во-вторых – прежде чем включать приборы после долгого простоя и вообще старые (более 10 лет) нужно проверить качество изоляции проводов и кабелей, для этого используют мегаомметр. Ориентировочно – сопротивление изоляции должно быть на уровне 1 МОм (мегаом) на 1 кВ. Для электросети 220-380 Вольт достаточно и 0,5 МОм.

Для снижения возможности поражения электрическим током необходимо устанавливать УЗО или дифавтомат. Их назначение – защита людей от поражения током. Но здесь нужна система заземления TN-C-S или TN-S, то есть в сети должны присутствовать отдельные провода PE и N, но никак не совмещенный нулевой провод. Необходимо выполнять требования защиты, иначе УЗО не будет корректно выполнять свои задачи.

Расчет напряжения прикосновения

В сетях с изолированной нейтралью напряжение прикосновения рассчитывается по формуле:

Uприк=Фземли-Фкорпуса

Потенциал земли уменьшается с удалением от точки заземления, это проиллюстрировано на картинке выше. В случае, когда заземлитель один – самое опасное касание будет корпуса того прибора, который расположен от заземлителя дальше всех. Поэтому заземляющих контур должен объединять всю площадь помещения и обеспечивать равномерное уравнивание потенциалов.

Полностью формула, учитывающая все сопротивления (касания, зоны растекания), выглядит следующим образом:

U=Фзa1a2,

Где a1 – коэффициент U прикосновения, на него влияет форма кривой падения потенциала, a2 – коэффициент касания, учитывает сопротивление растекания по площади, на которой стоит человек, обуви, изоляции фазы от земли.

В сетях с глухозаземленной нейтралью, когда человек оказывается под действием напряжения ниже чем линейное (при линейном 380В, фазное равно 220В) ток, протекающий через тело человека, ограничивается сопротивлением обуви, пола (земли) и тела.

Измерения напряжения прикосновения

1. Цель проведения измерения:

Измерения напряжения прикосновения проводятся после монтажа, переустройства и капитального ремонта заземляющего устройства, но не реже 1 раза в 6 лет. Измерения производятся на присоединенных естественных заземлителях и тросах ВЛ.

2.Применяемые средства защиты и измерения, приборы, приспособления:

Для измерения напряжения прикосновения используются:

— стальная пластина 25х25 см;

— медная сетка 25х25 см;

— мегаомметр MIC-2500.

  1. Подготовка рабочего места и основные меры безопасности при проведении испытаний и измерений:

— ознакомление со схемой и проектной документацией (тех. документация предприятия изготовителя, проект, cогласованный с УГЭН, протоколы предыдущих испытаний и т.п.);

— выполнение организационных и технических мероприятий, обеспечивающих безопасность работ в электроустановках.

Примечание:

— Работы ОРУ производятся со снятием напряжения, по наряду — допуску.

  1. Подготовка приборов к работе.

Подготовка прибора MIC-2500 к работе:

— проверка клейма поверки СИ и отсутствия видимых повреждений корпуса и измерительных

— проверка напряжения источника питания.

При измерении напряжения прикосновения на территории ОРУ 110 кВ и выше, питание которого осуществляется от одной или нескольких ВЛ, токовый электрод переносится от края заземлителя не менее чем на 2Д.

Если подстанция располагается на территории промышленного предприятия, на застроенной территории, то для уменьшения наводки напряжения на токовую цепь рабочим током ВЛ токовый электрод переносится не менее чем на 200 м от подстанции и примерно на 100 м в сторону от питающих ВЛ.

Если измерения выполняются на ОРУ 110 кВ, с шин которого осуществляется питание нагрузки, а питание шин в свою очередь осуществляется от автотрансформатора с высшим напряжением 220-1150 кВ, токовый электрод можно присоединять к нейтрали питающего автотрансформатора.

Проводники токовой и потенциальной цепей должны подключаться к заземленному оборудованию отдельными струбцинами, при этом проводник токовой цепи присоединяется к заземляющему проводнику. Проводник потенциальной цепи может быть подсоединен к этому же заземляющему проводнику или к любой точке металлоконструкции, т.е. к месту возможного прикосновения.

При измерении на нерабочем месте токовый вывод Т2 прибора присоединяется к заземляющей шинке корпуса ближайшего оборудования, по которой может протекать ток КЗ.

Потенциальная цепь от вывода П1 прибора подсоединяется к пластине, имитирующей стопы ног человека, размером 25 см × 25 см, которая располагается примерно в 1 м от оборудования. Основание под пластиной должно быть выровнено и увлажнено 250 мл воды. Пластина должна быть выполнена таким образом, чтобы при измерениях на ней мог располагаться человек, создающий необходимое давление, которое должно быть не менее 50 кгс/см2.

Напряжения прикосновения необходимо измерять в контрольных точках, в которых эти значения определены расчетом при проектировании. Кроме того, рекомендуется производить измерения на всех рабочих и нерабочих местах.

При измерениях на подстанциях 110 кВ и выше выводы П1 и П2 измерительного прибора должны быть шунтированы резистором 1 кОм, как это показано на рис. 1. В приборах ПИНП и ЭКО-200 этот резистор встроен.

Для определения сопротивления основания собирается схема, показанная на рис. 2. Определение сопротивления основания рекомендуется производить у каждой точки измерения. Сопротивление Rосн измеряется мегомметром либо с помощью прибора ОНП-1 (в этом случае к заземляющему проводнику присоединяются выводы П1 и Т1, а к основанию П2, Т2).

При измерении значений напряжений прикосновения Uпр изм на частоте, отличной от промышленной (прибор КДЗ-1), необходимо производить пересчет измеренных значений на истинные значения. При этом значение напряжения прикосновения на частоте 50 Гц (Uпр50) определяется по формуле

где Kп – коэффициент пересчета значений напряжения прикосновения с частоты 400 Гц на частоту 50 Гц.

В табл. 1 приведены значения Kп в зависимости от длины заземляющего оборудование проводника L.

Таблица 1
Коэффициент пересчета Kп Длина проводника L, м
1 0-5
1,05 5-10
1,1 10-15
1,15 15-20
1,2 20-25
1,25 25-30

Полученные значения Unp50 сопоставляются с нормами на напряжение прикосновения.

  1. Оформление результатов измерений.

Результаты измерений оформляются протоколом в соответствии ГОСТ ИСО/МЭК 17025-2009 и РД 34.43.105-89.

7. Оформление заключения о состоянии электроустановки и соответствии или несоответствии ее требованиям НТД.

Заключение о соответствии или не соответствии результатов измерений принимается на основании сравнения величины напряжения прикосновения, предусмотренного проектом, и величины полученной в результате замеров и последующих расчетов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *