Манометры с упругими чувствительными элементами
В практике измерения давления в диапазоне от 50 Па до 1000 МПа широкое распространение получили приборы, принцип действия которых основан на использовании упругой деформации чувствительных элементов, воспринимающих давление среды.
Манометры с упругими чувствительными элементами, снабженные передающими преобразователями с унифицированным сигналом постоянного тока, предназначены для работы в информационно-измерительных системах.
Манометры с одновитковой трубчатой пружиной
Манометры с трубчатой пружиной получили наибольшее распространение при измерении давления в диапазоне от 0,1 до 1000 МПа. Манометры в зависимости от их назначения подразделяются на образцовые типа МО классов точности 0,16, 0,25 и 0,4, повышенной точности типа МТИ классов точности 0,6 и 1 и технические -классов точности 1, 1,6 и 2,5.
Манометры образцовые типа МО выпускаются с верхним пределом измерения от 10,1 до 60 МПа.
На рис. 1.5. показано устройство манометра с трубчатой пружиной Бурдона. Один конец трубчатой пружины 1 закреплен в держателе 6, который снабжен штуцером 7 для соединения с объектом измерения давления. Запаянный конец пружины соединен поводком 5 с передаточным механизмом, состоящим из сектора 4 и зубчатого колеса 2, на оси которого закреплена стрелка манометра 3. Под влиянием избыточного давления трубчатая пружина деформируется и через секторный передающий механизм поворачивает стрелку манометра. У манометров такого типа угол поворота стрелки практически пропорционален измеряемому давлению, поэтому шкала таких манометров равномерная.
Рисунок 1.5 — Манометр
Установка для поверки пружинного манометра (рис. 1.6) состоит из трубки 6, к которой через вентильные краны 5, 1 и 8 присоединены соответственно бачок с маслом 4, грузопоршневой образцовый манометр 3 и поверяемый манометр 7. Трубка 6 заполняется маслом, поступающим из бачка 4 через кран 5. Для изменения давления масла в трубке 6 присоединено прессовое устройство, представляющее собой, цилиндр 9 с перемещающимся в нем поршнем 10. Перемещение поршня осуществляется вращением его винтового штока 11 маховиком 12. Все устройства размещены на подставке, ножки которой выполнены в виде микрометрических винтов. Установка снабжена уровнем.
Рисунок 1.6 — Тарировочный пресс
Средства измерения скоростей и расходов жидкостей и газов
Общие сведения
Приборы, предназначенные для определения объема или массы вещества, проходящего через сечение трубопровода в единицу времени, называются расходомерами.
Объемный Q0 и массовый М расходы жидкости могут быть выражены в
единицах м 3 /с, м 3 /ч, л/ч и кг/с, кг/ч, т/ч соответственно. Для получения сопоставимых результатов объемный расход должен быть приведен к нормальным условиям (tH=20°C, р=101325 Па, относительная влажность φ = о). В этом случае объемный расход обозначается через Q0.
В качестве измерителей расхода в настоящее время используются различные напорные трубки, суживающие устройства, расходомеры постоянного перепада давлений (ротаметры), а также различного типа счетчики и электромагнитные расходомеры. Напорные трубки используют также для измерения скоростей жидкостей и газов.
Вакуумметры и мановакуумметры с трубчатой пружиной имеют аналогичную конструкцию.
Применяя приборы с трубчатой пружиной, следует иметь в виду, что в условиях переменной температуры изменяется модуль упругости чувствительного элемента, что вызывает необходимость введения поправок к показанию прибора. Кроме того, стабильность показаний трубчатого манометра нарушается явлениями гистерезиса и остаточной деформации, поэтому трубчатые манометры следует тарировать не реже 1 раза в год.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.
Манометры с упругими чувствительными элементами
В любом технологическом процессе одними из основных процедур являются различные измерения. Они необходимы для того, чтобы на производственных линиях выпускалась продукция действительно высокого качества, а для этого совершенно необходима та информация, которую предоставляют обслуживающему персоналу различные измерительные приборы.
Одной из их многочисленных разновидностей является манометр. Он предназначен для того, чтобы определять те значения давления различных газов, которые превышают атмосферное, или находятся на более низком уровне. Название этого прибора происходит от греческих слов, означающих в переводе на русский язык «измеряю» («метрео») и «неплотный» («манос»).
Подавляющее большинство используемых сейчас манометров в своей конструкции имеют так называемые деформационные чувствительные элементы. Их действие основывается на том, что под воздействием давления газов меняется изгибающий момент. Его значение определяется или тем усилием, которое развивает упругий элемент, или же перемещением.
Все манометры, которые разрабатываются и изготавливаются в Российской Федерации, должны соответствовать ГОСТ 8.271-77. Именно в этом стандарте определен принцип действия измерительного прибора, а также основные требования, которым ему надлежит соответствовать.
Следует заметить, что упругие чувствительные элементы распространены в технике весьма широко, и их можно встретить в самых разнообразных конструкциях и приборах. Например, они являются практически обязательными компонентами электромагнитных, тензометрических, емкостных измерителях давления, причем они считаются, по сути дела, их первичными элементами. Именно с их помощью осуществляется восприятие давления, а также такой важный процесс, как линейное перемещение. Оно, в свою очередь, нередко преобразуется в электрический сигнал.
Характеристики упругих элементов, применяемых в манометрах
Чувствительные элементы, которые используются в манометрах, обладают целым рядом метрологических характеристик. Основными из них являются:
• Нелинейность и постоянство упругой характеристики;
• Рабочий ход элемента;
• Условная линейная характеристика;
Под упругой характеристикой манометра понимается та зависимость, которая имеется между возрастающим или убывающим давлением (при прямом и обратном ходе соответственно), и перемещением заданной точки упругого элемента прибора. Ее нелинейность представляет собой то отклонение упругой характеристики, которое возникает от условной линейной характеристики при прямом ходе.
Рабочий ход представляет собой то расстояние перемещения заданной точки упругого чувствительного элемента, которое образуется тогда, когда он нагружается номинальным давлением.
Под чувствительностью манометров понимается то значение, которое образует отношение приращения перемещения некоей точки упругого элемента прибора к приращению приложенного давления.
Что касается такого явления, как гистерезис, то оно является, существенным недостатком который, влияет на характеристики современных манометров. Данное явление присуще всем чувствительным элементам, которые используются в этих приборах. Гистерезис представляет собой вариацию упругой характеристики, являющейся разницей между теми показаниями манометра, которые он демонстрирует при прямом и обратном ходе.
Условной линейной характеристикой манометра является отражение прямо пропорциональной зависимости между такими показателями, как перемещение некоей точки упругого элемента и прилагаемому к нему давлению газовой среды. При этом расчеты производятся для прямого хода, а начальная и конечная точки условной характеристики совпадают с теми, что определены для условной упругой характеристики.
Еще одним важным параметром, который присущ всем современным манометрам, является тяговое усилие. Оно представляет собой характеристику, зависящую от такого показателя, как эффективная площадь деформационного преобразующего элемента. Геометрически она определяется его габаритными размерами, а также теми показателями, которые он демонстрирует под влиянием нагрузки. Тяговое усилие по своему вектору направлено на преодоление сопротивления такого устройства, как передаточный механизм, а также пружин уравновешивания и т.п.
Следует отметить, что для всех современных манометров весьма актуальными является такая проблема, как температурное расширение металла. Поскольку чувствительные элементы закрепляются в корпусах весьма жестко, то этот процесс существенно влияет на точность измерения. Чтобы она была высокой, необходимо произвести согласование коэффициентов температурного расширения различных конструктивных элементов прибора.
К его чувствительным элементам манометров предъявляются повышенные требования в том, что касается прочности, технологии и точности обработки. При их изготовлении важно выбрать оптимальные режимы таких процессов, как отжиг и последующая нормализация. Обязательно следует также принимать во внимание и такой неизбежный процесс, как «старение» металла.
В современных манометрах в качестве чувствительных элементов чаще всего используются многовитковые трубчатые пружины; одновитковые пружины Бурдона; спиральные пружины; сильфоны; мембраны различных типов.
Приборы для измерения давления
Изучение классификации приборов для измерения давления и разрежения по типу чувствительного элемента. Анализ устройства, принципа действия и областей применения приборов с упругими пружинными чувствительными элементами: манометра, вакуумметра, тягомера.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 09.02.2012 |
Размер файла | 251,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Приборы для измерения давления
Измерение давления необходимо для управления технологическими процессами и обеспечения безопасности производства. Кроме того, этот параметр используется при косвенных измерениях других технологических параметров: уровня, расхода, температуры, плотности и т. д. В системе СИ за единицу давления принят паскаль (Па).
В большинстве случаев первичные преобразователи давления имеют неэлектрический выходной сигнал в виде силы или перемещения и объединены в один блок с измерительным прибором. Если результаты измерений необходимо передавать на расстояние, то применяют промежуточное преобразование этого неэлектрического сигнала в унифицированный электрический или пневматический. При этом первичный и промежуточный преобразователи объединяют в один измерительный преобразователь.
Измерение давления является одним из самых главных видов измерений в любых отраслях промышленности. Надежность измерения этого параметра гарантирует безопасность и целостность установки, а также требуется во многих процессах учета расхода жидкостей, измерения абсолютного и дифференциального давления в коррозионных и абразивных средах. Для измерения давления используют манометры, вакуумметры, мановакуумметры, напоромеры, тягомеры, тягонапоромеры, датчики давления , дифманометры.
Классификация приборов для измерения давления по типу чувствительного элемента
По виду упругого чувствительного элемента пружинные приборы делятся на следующие группы [1]:
1) приборы с трубчатой пружиной, или собственно пружинные (рис. 1а,б);
2) мембранные приборы, у которых упругим элементом служит мембрана (рис. 1в), анероидная или мембранная коробка (рис. 1г,д), блок анероидных или мембранных коробок (рис. 1е,ж);
3) пружинно-мембранные с гибкой мембраной (рис. 1з);
4) приборы с упругой гармониковой мембраной (сильфоном) (рис. 1к);
5) пружинно-сильфонные (рис. 1и).
Рис. 1. Типы пружинных устройств
Определение понятия «давление», точное измерение давления и соотношение между ними
давление манометр вакуумметр пружинный
Давление является одним из важнейших параметров химико-технологических процессов. От величины давления часто зависит правильность протекания процесса химического производства. Под давлением в общем случае понимают предел отношения нормальной составляющей силы к площади, на которую действует сила. При равномерном распределении сил давление равно частному от деления нормальной составляющей силы давления на площадь, на которую эта сила действует. Величина единицы давления зависит от выбранной системы единиц (табл. 1).
Различают абсолютное и избыточное давление. Абсолютное давление Pа — параметр состояния вещества (жидкостей, газов и паров). Избыточное давление ри представляет собой разность между абсолютным давлением Pа и барометрическим давлением Рб (т. е. давлением окружающей среды):
Если абсолютное давление ниже барометрического, то
где Pв — разрежение [1].
Единицы измерения давления: Па (Н/м 2 ); кгс/см 2 ; мм вод. ст.; мм рт.ст.
Таблица 1 Соотношение между единицами давления:
кгс/м 2 или мм вод. ст.
кгс/см 2 или атм. (техническая атмосфера)
атм. (физичеcкая атмосфера)
1 кгс/м 2 или 1 мм вод. ст.
1 кгс/см 2 или 1 атм. (техническая атмо-сфера)
1 атм. (физи-ческая атмо-сфера)
Классификация приборов для измерения давления и разрежения
Приборы для измерения давления подразделяются на:
а) манометры — для измерения абсолютного и избыточного давления;
б) вакуумметры — для измерения разряжения (вакуума);
в) мановакуумметры — для измерения избыточного давления и вакуума;
г) напоромеры — для измерения малых избыточных давлений (верхний предел измерения не более 0,04 МПа);
д) тягомеры — для измерения малых разряжений (верхний предел измерения до 0,004 МПа);
е) тягонапорометры — для измерения разряжений и малых избыточных давлений;
ж) дифференциальные манометры — для измерения разности давлений;
з) барометры — для измерения барометрического давления атмосферного воздуха [1].
Понятие «поверка» рабочего измерительного прибора
Поверка рабочего измерительного прибора — операция сравнения его показаний с показаниями образцового измерительного прибора при прямом и обратном ходе. Цель поверки — определение погрешностей рабочего прибора или поправок к его показаниям. При этом показания образцового прибора принимаются за действительные значения измеряемой величины [2].
Возможные источники систематических погрешностей приборов с упругим чувствительным элементом
Возможные источники систематических погрешностей могут быть следующими:
Переход за предельное по шкале давление при измерении, хотя бы один раз за всё время измерений. Предельное давление, при котором еще сохраняется линейная зависимость между перемещениями конца трубки (чувствительного элемента) и давлением, называется пределом пропорциональности трубки. При переходе давления за предел пропорциональности трубка приобретает остаточную деформацию и становится непригодной для измерения.
Механическая характеристика трубки, т.е. значение предела пропорциональности и величина перемещения свободного конца, зависит от ряда факторов, из которых наиболее важными являются отношение осей сечения трубки, толщина ее стенок, модуль упругости материала и радиус дуги изгиба трубки.
Трение трубки о внутренние части прибора в результате их поломки.
Периодическое изменение температуры при измерениях. Материал трубки по-разному сжимается и разгибается в зависимости от температуры [1].
Классификация погрешностей измерения
Любое измерение не может быть выполнено абсолютно точно, его результат всегда содержит некоторую ошибку. В задачу измерений входит не только измерение контролируемой величины, но и оценка допущенной при измерении погрешности. Причины возникновения погрешностей измерений можно подразделить на группы: инструментальные, методические и субъективные.
Инструментальные погрешности — это составляющая погрешностей измерения, зависящая от погрешностей применяемых средств измерения. Инструментальные погрешности являются следствием недостатков конструкции измерительных приборов, несоблюдения технологии их изготовления, несовершенства применяемых материалов, трения в механизмах, несовершенства упругих чувствительных элементов и т.п. Эти погрешности могут быть частично устранены регулировкой прибора. К инструментальным погрешностям относятся и погрешности, вызванные изменением внешних условий. Например, в зависимости от температуры изменяется жесткость пружин, мембран и других деталей, от размеров деталей передаточного механизма прибора, электрического сопротивления проводников — магнитные свойства материалов и т. п.
В некоторых случаях температурные погрешности можно определить расчетным путем, а в показания прибора могут вноситься соответствующие поправки. Инструментальные погрешности измерительного прибора складываются из погрешностей преобразователей (звеньев), составляющих прибор. Инструментальные погрешности в процессе эксплуатации прибора могут изменяться (например, погрешности трения могут возрастать от засорения механизма прибора пылью, из-за коррозии деталей, нарушения нормальной смазки и т. п.).
Чтобы быть уверенным, что инструментальная погрешность находится в допустимых пределах, приборы подвергают поверке.
Методические погрешности являются следствием неточности метода измерения или недостаточного знания всех обстоятельств, сопровождающих измерение.
Субъективные погрешности зависят от индивидуальных особенностей лица, производящего измерение (недостаточно точное отсчитывание показаний и т. п.).
Статические погрешности измерения в зависимости от причин появления принято подразделять на систематические, грубые (промахи) и случайные.
Систематическими называются погрешности, величина которых одинакова во всех измерениях, проводящихся одним и тем же методом с использованием одних и тех же измерительных приборов. К систематическим погрешностям относятся инструментальные; погрешности, вызванные неправильной установкой прибора (например, установкой не по отвесу или уровню); методические.
Перед каждым измерением необходимо выявить возможные источники систематических погрешностей и принять меры к их исключению или определению; в большинстве случаев учет систематических погрешностей затруднителен. Сложность задачи исключения систематических погрешностей заключается в том, что нельзя предложить общий способ решения этой задачи. Для определения систематических погрешностей необходимо их изучить, что делается с помощью специально поставленных экспериментов.
Наиболее ответственные измерения выполняют различными методами, чтобы получить несколько результатов, независимых друг от друга по источникам погрешностей, и затем сопоставить их. Если даже все систематические погрешности учтены, т. е. вычислены и введены все поправки, то и в этом случае результаты измерений все же не свободны от случайных погрешностей.
Грубыми (промахами) называются погрешности, которые явно искажают результат измерения. Эти погрешности получаются, например, из-за неправильной записи результатов измерения, неверной схемы включения прибора и т. п. Измерения, содержащие грубые погрешности, исключаются из ряда измерений по соответствующему критерию.
Случайными называются погрешности, не подчиняющиеся какой-либо известной закономерности. Они возникают в результате влияния на процесс измерения случайных факторов (вибрация прибора, влияние посторонних электромагнитных полей, физиологические изменения органов чувств наблюдателя и т.п.). Случайные погрешности всегда присутствуют в эксперименте; они в равной степени могут быть как положительными, так и отрицательными. Случайные погрешности не могут быть исключены опытным или расчетным путем. Для учета влияния случайных погрешностей на результат измерения одну и ту же величину измеряют многократно. К ряду значений применяют законы теории вероятностей и методы статистики, на основании которых учитывают влияние случайных погрешностей на результат измерения [1].
Абсолютная, относительная, приведённая погрешности измерительного прибора. Вариация показаний прибора
Абсолютной погрешностью измерительного прибора называется разность между его показанием и истинным значением измеряемой величины. Так как истинное значение измеряемой величины установить невозможно, в измерительной технике используется так называемое действительное значение, полученное с помощью образцового прибора [1].
где Хп — значение, полученное при измерении величины рабочим измерительным прибором; Q0 — действительное значение измеряемой величины.
Относительная погрешность измерительного прибора — это отношение абсолютной погрешности к действительному значению, выраженное в %:
При вычислении относительной погрешности абсолютную погрешность можно также относить к показанию рабочего прибора Xп.
Если прибор работает в условиях, отличных от условий, оговоренных в паспорте, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора. К дополнительным погрешностям относятся: температурная погрешность, вызванная отклонением температуры окружающей среды от нормальной; инструментальная погрешность, обусловленная отклонением положения прибора от нормального рабочего положения и т.п. За нормальную температуру окружающего воздуха принимают 20° С, а за нормальное атмосферное давление — 101325 Н/м 2 (760 мм рт. ст.).
Приведённая погрешность — это отношение абсолютной погрешности к нормирующему значению:
где Хнорм — деление шкалы поверяемого прибора (чаще всего).
Вариацией измерительного прибора N называется наибольшая экспериментально полученная разность между показаниями измерительного прибора при прямом и обратном ходе, соответствующими одному и тому же действительному значению измеряемой величины при одинаковых условиях измерения. Вариации вызываются трением в механизме прибора, зазорами (люфтами) в кинематических парах, гистерезисом и упругим после-действием чувствительных элементов прибора. Таким образом, N — это абсолютная вариация прибора.
Приведенная вариация прибора :
где ДN — абсолютная вариация прибора; Nmax и Nmin — соответственно верхнее и нижнее предельные значения шкалы прибора.
Класс точности приборов
Обобщенной характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основных и дополнительных погрешностей, а также другими свойствами средств измерения, влияющими на точность, значение которых устанавливается в стандартах на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств. Например, класс точности вольтметра характеризует пределы допускаемой основной погрешности и допускаемых изменений показаний, вызываемых внешним магнитным полем и отклонением от нормальных значений температуры, частоты переменного тока и некоторых других влияющих факторов [1].
В настоящее время в нашей стране используются два вида классов точности: 1) по абсолютным погрешностям (порядковые номера классов); 2) по относительным погрешностям. В последнем случае класс точности — это отношение абсолютной погрешности Д к диапазону шкалы прибора, выраженное в процентах.
Государственными стандартами для разных приборов установлены различные классы точности. Класс точности обозначается на циферблате прибора либо в паспорте прибора.
Согласно ГОСТ 8.401-80 (взамен ГОСТ 13600-68) классы точности выбираются из ряда:
Средства измерений с двумя и более шкалами могут иметь соответственно два и более классов точности.
Устройство и принцип действия, и область применения приборов с упругими пружинными чувствительными элементами
Действие пружинных приборов основано на измерении величины деформации различного вида упругих элементов. Деформация упругого чувствительного элемента преобразуется передаточными механизмами того или иного вида в угловое или линейное перемещение указателя по шкале прибора [1].
Наиболее широко применяются приборы (манометры, вакуумметры, мановакуумметры и дифманометры) с одновитковой трубчатой пружиной. Основная деталь прибора с одновитковой трубчатой пружиной — согнутая по дуге окружности трубка эллиптического или плоскоовального сечения (рис. 2). Одним концом трубка заделана в держатель, оканчивающийся ниппелем с резьбой для присоединения к полости, в которой измеряется давление. Внутри держателя есть канал, соединяющийся с внутренней полостью трубки (рис. 2).
Если в трубку подать жидкость, газ или пар под избыточным давлением, то кривизна трубки уменьшится, и она распрямляется; при создании разрежения внутри трубки кривизна ее возрастает, и трубка скручивается. Так как один конец трубки закреплен, то при изменении кривизны трубки ее свободный конец перемещается по траектории, близкой к прямой, и при этом воздействует на передаточный механизм, который поворачивает стрелку показывающего прибора.
Свойство изогнутой трубки некруглого сечения изменять величину изгиба при изменении давления в ее полости является следствием изменения формы сечения. Под действием измеряемого давления внутри трубки эллиптическое или плоскоовальное сечение, деформируясь под действием силы
где S=площадь воздействия давления, приближается к круговому сечению (малая ось эллипса или овала увеличивается, а большая уменьшается).
Рис .2. Схема трубчатой пружины (а) и ее эллиптическое (б), плоскоовальное (в) поперечные сечения: 1 — трубка; 2 — держатель
Устройство и принцип действия грузопоршневого манометра МП -60
Грузопоршневые манометры в основном применяются для градуировки и поверки различных видов пружинных манометров, так как отличаются высокой точностью и широким диапазоном измерений — от 0,098 до 980 МН/м 2 (1—10000 кгс/см 2 ) [1].
Принцип действия грузопоршневых манометров следующий. На поршень, свободно движущийся в цилиндре, действуют две силы: сила от давления жидкости, с одной стороны, и сила тя-жести положенных на поршень грузов — с другой.
Образцовый грузопоршневой манометр (рис. 3) состоит из колонки, укрепленной на станине прибора. В колонке имеется вертикальный цилиндрический канал, в котором движется пришлифованный поршень, несущий на верхнем конце тарелку для установки грузов. Верхняя часть колонки снабжена воронкой для сбора масла, просачивающегося через зазор между поршнем и цилиндром.
В станине высверлен горизонтальный канал, в расширенной части которого движется посредством винтового штока поршень 7, уплотненный манжетами. Канал в станине соединяется с каналом колонки и каналами двух бобышек, предназначенных для укреп-ления поверяемых манометров. Кроме того, с каналом станины соединен канал воронки 8, которая служит для заполнения системы маслом.
Рис. 3. Схема образцового поршневого манометра:
1 — колонка; 2— поршень; 3 и 5 — воронки; 4 — бобышки;
5 — канал; 6 — тарелка; 7 — поршень; 9 и 13 —вентили
Каналы для отсоединения их от канала станины снабжены игольчатыми вентилями 9—12. Назначение вентиля 13 — спуск масла из прибора. Максимальное давление, создаваемое грузами, 4,90 МН/м 2 (50 кгс/см 2 ). Для поверки манометров на большее давление пользуются поршневым прессом, отсоединив от прибора поршневую колонку 1 вентилем 10. В качестве при-бора сравнения применяют образцовый пружинный манометр: его присоединят к одной из бобышек 4, а поверяемый прибор — к другой бобышке.
Требования к специальным приборам для измерения давления
1) герметичность внутренних деталей манометров, находящихся под высоким давлением, для исключения выброса измеряемой среды в атмосферу;
2) наличие в приборах для измерений высоких давлений защитных средств от перегрузки. Например, для защиты от односторонних перегрузок применяются сдвоенные сильфоны, с сообщающимся каналом, полости которых заполнены практически несжимаемой жидкостью;
3) точность зубчато-секторного передаточного механизма в приборах с трубчатой пружиной;
4) отсутствие остаточной деформации элементов в пружинных приборах;
5) наличие аварийных датчиков, реагирующих на резкое аварийное повышение давления [1].
Размещено на Allbest.ru
Подобные документы
Виды давления, классификация приборов для его измерения и особенности их назначения. Принцип действия мановакуумметров, характеристика их разновидностей. Многопредельные измерители и преобразователи давления. Датчики-реле давления, виды манометров.
презентация [1,8 M], добавлен 19.12.2012
Применение, устройство и принцип действия приборов для измерения давления: барометр-анероид, жидкостный и металлический манометр. Понятие атмосферного давления. Загадки об атмосферных явлениях. Причины различия в показателях давления с ростом высоты.
презентация [524,5 K], добавлен 08.06.2010
Характеристика устройства и принципа действия электроизмерительных приборов электромеханического класса. Строение комбинированных приборов магнитоэлектрической системы. Шунты измерительные. Приборы для измерения сопротивлений. Магнитный поток и индукция.
реферат [1,3 M], добавлен 28.10.2010
Средства измерения температуры. Характеристики термоэлектрических преобразователей. Принцип работы пирометров спектрального отношения. Приборы измерения избыточного и абсолютного давления. Виды жидкостных, деформационных и электрических манометров.
учебное пособие [1,3 M], добавлен 18.05.2014
Исследование истории развития электрических измерительных приборов. Анализ принципа действия магнитоэлектрических, индукционных, стрелочных и электродинамических измерительных приборов. Характеристика устройства для создания противодействующего момента.
курсовая работа [1,1 M], добавлен 24.06.2012
Атмосфера, единицы измерения давления воздуха. Барическая ступень и градиент. Барометрическая формула Лапласа. Приборы для измерения атмосферного давления, его изменчивость и влияние на погоду, приведение к уровню моря с помощью таблиц. Плотность воздуха.
контрольная работа [45,3 K], добавлен 04.11.2014
Рассмотрение основных методов измерения электрической мощности и энергии в цепи однофазного синусоидального тока, в цепях повышенной и высокой частот. Описание конструкции ваттметров, однофазных счетчиков. Изучение особенностей современных приборов.
2.1.2. Виды и материалы упругих чувствительных элементов
В качестве упругих чувствительных элементов в механических приборах измерения и контроля давления манометрических приборов наиболее часто используются (рис. 2.2):
- одновитковая трубчатая пружина (трубка Бурдона);
- многовитковая пружина;
- винтовая пружина;
- спиральная пружина;
- упругая мембрана как плоская, так и гофрирован-
ная или мембрана вялая с жестким центром и без него; - мембранная коробка (коробчатая мембрана) или сильфон.
Рис. 2.2. Типы упругих чувствительных элементов манометрических приборов: а – одновитковая трубчатая пружина; б – многовитковая трубчатая пружина; в – винтовая трубчатая пружина (геликоид); г — спиральная пружина; д – упругая мембрана как плоская, так и гофрированная, вялая с жестким центром и без него; е – мембранная коробка; ж – сильфон
Выбор между трубчатой пружиной, сильфоном и мембраной базируется на анализе следующих основных критериев:
· величина перемещения рабочей точки деформационного преобразователя при воздействии измеряемого давления и развиваемое тяговое усилие;
· минимальная остаточная деформация УЧЭ и работоспособность в диапазоне допустимых напряжений;
· минимальная металлоемкость и технологичность изготовления.
Одновитковые трубчатые пружины(рис.2.2а и 2.3а), называемые зачастую по имени владельца первого патента трубками Бурдона и изготавливаемые с плоскоовальной и эллиптической формами поперечного сечения — являются наиболее распространенными чувствительными элементами показывающих манометров для малых и средних давлений. Другие формы поперечного сечения УЧЭ, применяемые в практике манометрии, более детально представлены в разделе 2.2.1.
Многовитковые, объединяющие под своим названием 1,5- и 2,5-витковые трубчатые пружины, производятся из круглых трубок (рис. 2.2б и 2.3б) с практически не контролируемым профилем изгиба. Наиболее широко применяются в показывающих манометрах высоких и сверхвысоких давлений.
Винтовая трубчатая пружина (геликоид) (рис.2.2в), которой свойственны большие перемещения свободного конца, нашла применение в качестве чувствительного элемента в самопишущих приборах. В большинстве приборов изготавливается из плоскоовальных трубок.
Спиральная пружина (рис.2.2г и 2.3в) выполняется из плющенной трубы и используется наиболее часто в качестве чувствительного элемента манометров-индикаторов с малыми диаметрами корпусов – 20…40 мм. Такие преобразователи успешно используются некоторыми производителями в конструкциях манометрических термометров.
Трубчатые чувствительные элементы по сравнению с сильфонами, мембранами и мембранными коробками из-за существенно различающейся эффективной площади обладают малой тяговой силой. В производимых показывающих манометрических приборах эффективная площадь деформационных чувствительных элементов выбирается как достаточная для преодоления сопротивления со стороны передаточного механизма, вызываемого силами трения в посадочных гнездах осей вращения трибки и сектора, инерционностью массы указательной стрелки, а также для преодоления противодействия волосковой спиральной пружины.
Мембраны (рис. 2.2д, 2.3г) широко применяются в качестве чувствительных элементов приборов, измеряющих низкие значения давления. При малых и средних давлениях мембраны нашли применение в конструкциях приборов (раздел 2.3.1) для измерения давления вязких и загрязненных сред. Мерой давления в таких приборах является прогиб центра мембраны, трансформируемый на указательную стрелку с помощью различных механизмов.
Мембраны могут также выполнять роль разделительной перегородки в специальных устройствах (разделителях), применяемых в комплекте с общепромышленными приборами, для измерения давления сред с особыми физическими свойствами, например агрессивных, кристаллизующихся, высоковязких. Конструкции разделителей представлены в разделе 5.1.
Измерители низкого давления, такие как напоромеры, тягомеры, тягонапоромеры, также функционируют на основе мембран (рис. 2.2г), мембранных коробок
(рис. 2.2д) или сильфонов (рис. 2.2е).
Сильфоны (рис.2.2е) представляют собой осесимметричную трубчатую гофрированную оболочку. Наличие гофров обеспечивают под воздействием давления значительные перемещения. Такие устройства могут обеспечивать существенные тяговые усилия. Сильфоны нашли применение, как отмечалось выше, в приборах измерения малых давлений, а также дифференциальных манометрах, разделителях.
Рис. 2.3. Вид пружинных чувствительных элементов: а – трубчатые одновитковые пружины Бурдона; б – многовитковые чувствительные элементы; в – спиральный чувствительный элемент; г – упругая плоская мембрана
При выборе измерительного средства необходимо обращать внимание на материал упругого элемента, его инертность по отношению к измеряемой среде, физические свойства анализируемой среды, геометрию чувствительного элемента прибора, конструкцию измерительного прибора. Так, например, несовместимы медные сплавы с аммиачной средой. Ряд сред проявляют агрессивность даже по отношению к нержавеющей стали. К большим погрешностям также могут приводить измерения быстро изменяющегося давления высоковязкой среды с прибором с установленным демпферным устройством. Кристаллизующиеся, а также изменяющие текучесть или даже фазовое состояние жидкости могут нарушить функционирования трубчатой пружины или коробчатой мембраны измерителя и сделать невозможным их последующее использование.
Трубчатые пружины являются чувствительными элементами наиболее распространенных показывающих манометрических приборов. Простота конструкции, высокая надежность в работе, относительно низкая себестоимость изготовления, удобство в эксплуатации предопределили их широкое распространение.
Материалы, применяемые большинством производителей манометрических приборов, следующие:
— для общепромышленных приборов – медные сплавы
ЛАНКМц, Л63, CuSn 8, CuBe 2 и др.;
— для приборов имеющих контакт с агрессивной измеряемой средой – 36НХТЮ, 42НХТЮ, 1.4571 (316) и др.
Следует отметить, что некоторые отечественные приборостроительные предприятия широко применяют марки сплавов ЛАНКМц и Л63 из-за их невысокой стоимости. Но, к сожалению, качество заготовок для трубчатых пружин оставляет желать лучшего. Так, например, заготовки отечественного производителя трубок для чувствительных элементов даже для высоких давлений в ряде случаев при незначительной формовке растрескивались по производственному шву.
Кроме того, ГОСТ 2405-88 [2-5] регламентирует работу манометрических приборов, изготовленных из вышеуказанных сплавов в диапазоне температур –50.. +50 о С окружающего воздуха и измеряемой среды. Понятно, что при установлении диапазона температур для точного функционирования прибора в первую очередь учитываются свойства упругого чувствительного элемента.
В соответствии с ГОСТ 10994-74 [2-6] детали, произведённые из сплава марки 42НХТЮ, могут работать при температуре до 100 о С, в то время как сплав 36НХТЮ обеспечивает работоспособность до 250 о С.
Таким образом, в условиях конкуренции на современном производстве манометрических приборов необходимо повышать как качество производства приборов, так и качество используемых комплектующих. Вполне естественно, что со временем свойства металла морально устаревают и на его смену приходят более новые, с улучшенными свойствами и качествами. Поэтому при производстве общетехнических приборов необходимо использовать медный сплав марки CuSn 8, а для приборов устойчивых к воздействию агрессивной среды – 36НХТЮ или европейский сплав 1.4571.
Кроме того, латунь имеет меньшую температуру плавления по сравнению с медью, бронзой и нержавеющей сталью, поэтому будет разумным использование чувствительных элементов из латуни до 100-120 о С. Но для более чёткого и ясного представления температурных возможностей данных сплавов необходимо провести исследования на воздействие температуры измеряемой и окружающей сред.
Более детальное описание материалов, применяемых для изготовления УЧЭ, представлено в /2-3,2-7,2-8 и др./.
ул. Ярцевская, д. 29, корп.2
© 2002 — 2022. НПО ЮМАС
Разработка и производство приборов измерения давления и температуры: манометров, термометров,
напоромеров и клапанов в Москве, Екатеринбурге, Самаре, Санкт-Петербурге, Уфе, Омске, Тюмени и Нижнем Новгороде.
Все права защищены.
Уважаемый пользователь. Уведомляем Вас о том, что персональные данные, которые Вы можете оставить на сайте, обрабатываются в целях его функционирования. Если Вы с этим не согласны, то пожалуйста покиньте сайт. В противном случае это будет считаться согласием на обработку Ваших персональных данных.
Политика конфиденциальности