В чем состоит принцип суперпозиции электрических полей
Перейти к содержимому

В чем состоит принцип суперпозиции электрических полей

Принцип суперпозиции полей

Одним из важнейших принципов, существующих в электростатике, является принцип суперпозиции полей. Кратко рассмотрим суть этого принципа, выведем его математическую формулу.

Действие силового поля

Силовое поле – это особая форма материи, действие которого заключается в силовом влиянии на носители заряда. То есть, если у тела есть некоторый электрический заряд, и оно находится в силовом электрическом поле, то со стороны этого поля на тело будет действовать определенная сила, тем большая, чем больше напряженность поля.

Напряженность электрического поля

Рис. 1. Напряженность электрического поля.

Природа поля не обязательно должна быть электрической. Действие гравитационного силового поля заключается в силовом воздействии на тела, имеющие массу (носители «гравитационного заряда»).

Сложение действия полей

Что произойдет с зарядом, на который действует несколько полей ?

Опыт показывает, что сила, действующая на заряд со стороны поля, не зависит от других сил, тоже действующих на заряд. При этом их источником могут являться другие поля. Фактически, несколько полей будут действовать на заряд независимо, каждое будет создавать силу, точно такую же, как если бы это поле в точке было бы единственным.

Таким образом, если заряд помещен одновременно в несколько электрических полей, он испытывает одновременное действие нескольких сил. А если на материальную точку действует несколько сил, то результатом их действия будет одна равнодействующая сила, которая находится векторным сложением исходных сил:

Сила, действующая на заряд, равна произведению напряженности поля на величину заряда:

Поскольку заряд в рассматриваемой ситуации один и тот же, то:

Принцип суперпозиции

Выражение в скобках представляет собой векторную сумму напряженностей всех полей, действующих на заряд. Получается, что результат действия на заряд нескольких полей эквивалентен действию одного поля, напряженность которого равна векторной сумме напряженностей всех полей, действующих на заряд. Иначе можно сказать, что результирующее поле, существующее в точке, является векторной суммой всех полей, его составляющих. В этом и состоит принцип суперпозиции (наложения) полей.

Если в данной точке пространства электрическое поле создано несколькими зарядами, и напряженность поля каждого по отдельности равна $\overrightarrow_<1>,\overrightarrow_<2>,…$, то результирующая напряженность этого поля равна векторной сумме напряженностей составляющих его полей.

То есть, формула принципа суперпозиции полей записывается следующим образом:

Принцип суперпозиции электрических полей

Рис. 2. Принцип суперпозиции электрических полей.

Отметим, что потенциал результирующего поля не обязательно равен сумме потенциалов исходных полей. Это происходит потому, что потенциал – скалярная величина, не учитывающая направление.

Принцип суперпозиции полей позволяет не только находить напряженность поля, создаваемые несколькими зарядами. Гораздо чаще возникает ситуация, когда заряд распределен по телу неравномерно. В этом случае тело можно разбить на множество элементарных тел, каждое из которых имеет свой заряд, отличный от прочих. А потом поле в любой точке пространства вычисляется, как векторная сумма полей всех элементарных зарядов. При уменьшении размера элементарного тела до нуля сумма заменяется интегралом по объему. Данный способ используется при определении картины картину сложных электрических полей, например, при проектировании электровакуумных приборов.

Устройство электронно-лучевой трубки

Рис. 3. Устройство электронно-лучевой трубки.

Принцип суперпозиции вовсе не так очевиден и универсален, как кажется на первый взгляд. Он действует лишь для линейных полей. Если поле нелинейно – принцип суперпозиции не работает. Примером нелинейного поля является поле сил трения. Если на тело действует несколько внешних сил, то, пока оно не сдвинется, сила трения равна векторной сумме отдельных составляющих. Но, как только тело сдвинулось, сила трения останется неизменной по модулю, даже если мы будем увеличивать количество действующих на тело сил.

Что мы узнали?

Принцип суперпозиции полей заключается в том, что результирующая напряженность поля, состоящего из нескольких исходных полей равна векторной сумме их напряженностей. Принцип суперпозиции выполняется для всех линейных полей, к числу которых относится и электрическое.

Принцип суперпозиции электрических полей

Одна из задач, которые ставит электростатика перед собой – это оценка параметров поля при заданном стационарном распределении зарядов в пространстве. И принцип суперпозиции является одним из вариантов решения такой задачи.

Принцип суперпозиции

Предположим наличие трех точечных зарядов, находящихся во взаимодействии друг с другом. При помощи эксперимента возможно осуществить измерение сил, действующих на каждый из зарядов. Для нахождения суммарной силы, с которой на один заряд действуют два других заряда, нужно силы воздействия каждого из этих двух сложить по правилу параллелограмма. При этом логичен вопрос: равны ли друг другу измеряемая сила, которая действует на каждый из зарядов, и совокупность сил со стороны двух иных зарядов, если силы рассчитаны по закону Кулона. Результаты исследований демонстрируют положительный ответ на этот вопрос: действительно, измеряемая сила равна сумме вычисляемых сил согласно закону Кулона со стороны других зарядов. Данное заключение записывается в виде совокупности утверждений и носит название принципа суперпозиции.

Принцип суперпозиции:

  • сила взаимодействия двух точечных зарядов не изменяется, если присутствуют другие заряды;
  • сила, действующая на точечный заряд со стороны двух других точечных зарядов, равна сумме сил, действующих на него со стороны каждого из точечных зарядов при отсутствии другого.

Принцип суперпозиции полей заряда является одним из фундаментов изучения такого явления, как электричество: значимость его сопоставима с важностью закона Кулона.

В случае, когда речь идет о множестве зарядов N (т.е. нескольких источников поля), суммарную силу, которую испытывает на себе пробный заряд q , можно определить по формуле:

F → = ∑ i = 1 N F i a → ,

где F i a → является силой, с которой влияет на заряд q заряд q i , если прочий N — 1 заряд отсутствует.

При помощи принципа суперпозиции с использованием закона взаимодействия между точечными зарядами существует возможность определить силу взаимодействия между зарядами, присутствующими на теле конечных размеров. С этой целью каждый заряд разбивается на малые заряды d q (будем считать их точечными), которые затем берутся попарно; вычисляется сила взаимодействия и в заключение осуществляется векторное сложение полученных сил.

Полевая трактовка принципа суперпозиции

Полевая трактовка: напряженность поля двух точечных зарядов есть сумма напряженностей, создаваемым каждым из зарядов при отсутствии другого.

Для общих случаев принцип суперпозиции относительно напряженностей имеет следующую запись:

где E i → = 1 4 π ε 0 q i ε r i 3 r i → является напряженностью i -го точечного заряда, r i → — радиусом вектора, проложенного от i -го заряда в некоторую точку пространства. Указанная формула говорит нам о том, что напряженность поля любого числа точечных зарядов есть сумма напряженностей полей каждого из точечных зарядов, если другие отсутствуют.

Инженерная практика подтверждает соблюдение принципа суперпозиции даже для очень больших напряженностей полей.

Значимым размером напряженности обладают поля в атомах и ядрах (порядка 10 11 — 10 17 В м ), но и в этом случае применялся принцип суперпозиции для расчетов энергетических уровней. При этом наблюдалось совпадение результатов расчетов с данными экспериментов с большой точностью.

Все же следует также заметить, что в случае очень малых расстояний (порядка

10 — 15 м ) и экстремально сильных полей принцип суперпозиции, вероятно, не выполняется.

Например, на поверхности тяжелых ядер при напряженности порядка

10 22 В м принцип суперпозиции выполняется, а при напряженности 10 20 В м возникают квантово-механические нелинейности взаимодействия.

Когда распределение заряда является непрерывным (т.е. отсутствует необходимость учета дискретности), совокупная напряженность поля задается формулой:

В этой записи интегрирование проводится по области распределения зарядов:

  • при распределении зарядов по линии ( τ = d q d l — линейная плотность распределения заряда) интегрирование проводится по линии;
  • при распределении зарядов по поверхности ( σ = d q d S — поверхностная плотность распределения) интегрирование проводится по поверхности;
  • при объемном распределении заряда ( ρ = d q d V — объемная плотность распределения) интегрирование проводится по объему.

Принцип суперпозиции дает возможность находить E → для любой точки пространства при известном типе пространственного распределения заряда.

Примеры применения принципа суперпозиции

Заданы одинаковые точечные заряды q , расположенные в вершинах квадрата со стороной a . Необходимо определить, какая сила воздействует на каждый заряд со стороны других трех зарядов.

Решение

На рисунке 1 проиллюстрируем силы, влияющие на любой из заданных зарядов в вершинах квадрата. Поскольку условием задано, что заряды одинаковы, для иллюстрации возможно выбрать любой из них. Сделаем запись суммирующей силы, влияющей на заряд q 1 :

F → = F 12 → + F 14 → + F 13 → .

Силы F 12 → и F 14 → являются равными по модулю, определим их так:

F 13 → = k q 2 2 a 2 .

Примеры применения принципа суперпозиции

Теперь зададим направление оси О Х (рисунок 1 ), спроектируем уравнение F → = F 12 → + F 14 → + F 13 → , подставим в него полученные выше модули сил и тогда:

F = 2 k q 2 a 2 · 2 2 + k q 2 2 a 2 = k q 2 a 2 2 2 + 1 2 .

Ответ: сила, оказывающее воздействие на каждый из заданных зарядов, находящихся в вершинах квадрата, равна F = k q 2 a 2 2 2 + 1 2 .

Задан электрический заряд, распределенный равномерно вдоль тонкой нити (с линейной плотностью τ ). Необходимо записать выражение, определяющее напряженность поля на расстоянии a от конца нити вдоль ее продолжения. Длина нити – l .

Примеры применения принципа суперпозиции

Решение

Первым нашим шагом будет выделение на нити точечного заряда d q . Составим для него, в соответствии с законом Кулона, запись, выражающую напряженность электростатического поля:

d E → = k d q r 3 r → .

В заданной точке все векторы напряженности имеют одинаковую направленность вдоль оси ОХ, тогда:

d E x = k d q r 2 = d E .

Условием задачи дано, что заряд имеет равномерное распределение вдоль нити с заданной плотностью, и запишем следующее:

Подставим эту запись в записанное ранее выражение напряженности электростатического поля, проинтегрируем и получим:

E = k ∫ a l + a τ d r r 2 = k τ — 1 r a l + a = k τ l a ( l + a ) .

Ответ: напряженность поля в указанной точке будет определяться по формуле E = k τ l a ( l + a ) .

Определение принципа суперпозиции электрических полей

Что такое электрическое поле — основные понятия

Электрическим полем принято называть материю в определенной форме, которая наблюдается около тел, имеющих электрический заряд.

Автором данного термина является Фарадей. Исследователь дал пояснения по поводу того, как взаимодействуют заряды. В результате была выведена такая закономерность: любого вида заряд формирует около себя электрическое поле, воздействующее определенным образом на соседний заряд.

Перечислим некоторые свойства, характерные для электрического поля:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

  • материальность;
  • образование за счет заряда;
  • выявляется по характеру воздействия на заряд;
  • не прерывается при распределении в пространстве;
  • при удалении от заряда слабеет.

Тело, имеющее какой-либо заряд, воздействует на расположенные рядом тела. Так возникают притягивающие и отталкивающие силы. За счет этого тела меняют положение и перемещаются относительно тела с зарядом.

Электрическое поле воздействует на заряд с некой силой, которую достаточно просто вычислить по формуле:

\(\overrightarrow = \overrightarrow <Е>\cdot q\)

Здесь речь идет о напряженности, характерной для электрического поля и обозначенной за \(\overrightarrow<Е>\) , а также заряде q.

Принцип суперпозиции электрических полей

Любой из электрических зарядов способен образовывать электрические поля. При этом отсутствует необходимость в наличии каких-либо других зарядов.

Принцип суперпозиции электрических полей: напряженность электрического поля некой системы зарядов, обозначенной за N, представляет собой результат сложения векторов напряженностей полей, которые формируются каждым зарядом индивидуально: \(\overrightarrow <Е>= \overrightarrow<Е_<1>> + \overrightarrow<Е_<2>>+ … + \overrightarrow<Е_>\)

Продемонстрируем наглядно с помощью рисунка рассмотренный выше физический принцип:

принцип

В этом случае важно подчеркнуть, что при формировании электрических полей неодинаковыми зарядами в какой-то определенной пространственной точке их воздействие на заряд происходит вне зависимости друг от друга.

Полевая трактовка принципа, в чем заключается

Полевая трактовка принципа суперпозиции звучит следующим образом: напряженность, характерная для поля, где расположена пара точечных зарядов, вычисляется как результат сложения напряженностей, сформированных каждым таким зарядом индивидуально: \(\overrightarrow=\sum<\overrightarrow>\left(2\right)\) .

Стоит расшифровать напряженность i-го точечного заряда:

Здесь \(\overrightarrow\) обозначает радиус-вектор, который соединяет i-го заряда и какую-то пространственную точку.

Примеры применения при решении задач

Заметим, что при поиске ответов на вопросы о зарядах и системах, которые можно принять по условию за точечные заряды, целесообразно воспользоваться закономерностью Кулона. Представим стандартный алгоритм действий:

  • изобразить графически условия задачи с указанием сил, которые оказывают некое действие на заряд, расположенный в пределах электрического поля;
  • сформулировать ключевое равновесное условие с учетом зарядов, либо представить главное динамическое уравнение для материальной точки;
  • записать силы системы, с помощью данных зарядов и полей для последующей подстановки в начальное выражение;
  • в случае, когда по условию задания предполагается перераспределение зарядов, следует ввести соотношение, характеризующее закономерность сохранения зарядов;
  • найти корни итоговой системы уравнений;
  • выполнить проверку.

Изображение демонстрирует то, как расположены заряды. Отмечена некоторая точка А. Требуется определить направление вектора напряженности общего поля в данной точке.

задача 1

Для заряда, обозначенного за –q напряженность ориентирована в левую сторону. Напряженность в случае второго заряда направлена противоположно. Заметим, что второй заряд имеет модуль больше, чем у первого заряда. Кроме того, он приближен к точке А. Из этого можно сделать вывод: напряженность +2q превышает напряженность –q. Воспользуемся формулой, характеризующей принцип суперпозиции:

\(\overrightarrow <Е>= \overrightarrow<Е_<1>> + \overrightarrow<Е_<2>>+ … + \overrightarrow<Е_>\)

Применим закономерность к условиям этой задачи:

Таким образом, вектор напряженности общего поля ориентирован в правом направлении.

Ответ: вектор направлен в правую сторону.

Имеется пара задов со знаком плюс: \(q_ <1>= 30 нКл q_ <2>= 10 нКл\) Эти заряды расположены в вакуумной среде и удалены друг от друга на L = 0,5 м. Требуется вычислить, чему равна напряженность поля в точке А, которая находится на отрезке между зарядами на расстоянии 2L относительно второго заряда.

задача 2

Запишем краткие формулы для вычисления напряженности для первого и второго заряда, которые будут выполняться в этом случае:

Тогда суммарную напряженность можно привести и вычислить по формуле суперпозиции:

1.2. Закон Кулона. Принцип суперпозиции

Пусть имеются два заряженных макроскопических тела, размеры которых пренебрежимо малы по сравнению с расстоянием между ними. В этом случае каждое тело можно считать материальной точкой или «точечным зарядом».

Французский физик Ш. Кулон (1736–1806) экспериментально установил закон, носящий его имя (закон Кулона) (рис. 1.5):

Рис. 1.5. Ш. Куло́н (1736–1806) — французский инженер и физик

В вакууме сила взаимодействия двух неподвижных точечных зарядов пропорциональна величине каждого из зарядов, обратно пропорциональна квадрату расстояния между ними и направлена по прямой, соединяющей эти заряды:

На рис. 1.6 показаны электрические силы отталкивания, возникающие между двумя одноименными точечными зарядами.

Рис. 1.6. Электрические силы отталкивания между двумя одноименными точечными зарядами

Напомним, что , где и — радиус-векторы первого и второго зарядов, поэтому силу, действующую на второй заряд в результате его электростатического — «кулоновского» взаимодействия с первым зарядом можно переписать в следующем «развернутом» виде

Отметим следующее, удобное при решении задач, правило: если первым индексом у силы ставить номер того заряда, на который действует эта сила, а вторым – номер того заряда, который создает эту силу, то соблюдение того же порядка индексов в правой части формулы автоматически обеспечивает правильное направление силы — соответствующее знаку произведения зарядов: — отталкивание и — притяжение, при этом коэффициент всегда.

Для измерения сил, действующих между точечными зарядами, был использован созданный Кулоном прибор, называемый крутильными весами (рис. 1.7, 1.8).

Рис. 1.7. Крутильные весы Ш. Кулона (рисунок из работы 1785 г.). Измерялась сила, действующая между заряженными шарами a и b

Рис. 1.8. Крутильные весы Ш. Кулона (точка подвеса)

На тонкой упругой нити подвешено легкое коромысло, на одном конце которого укреплен металлический шарик, а на другом — противовес. Рядом с первым шариком можно расположить другой такой же неподвижный шарик. Стеклянный цилиндр защищает чувствительные части прибора от движения воздуха.

Чтобы установить зависимость силы электростатического взаимодействия от расстояния между зарядами, шарикам сообщают произвольные заряды, прикасаясь к ним третьим заряженным шариком, укрепленным на ручке из диэлектрика. По углу закручивания упругой нити можно измерить силу отталкивания одноименно заряженных шариков, а по шкале прибора — расстояние между ними.

Надо сказать, что Кулон не был первым ученым, установившим закон взаимодействия зарядов, носящий теперь его имя: за 30 лет до него к такому же выводу пришел Б. Франклин. Более того, точность измерений Кулона уступала точности ранее проведенных экспериментов (Г. Кавендиш).

Чтобы ввести количественную меру для определения точности измерений, предположим, что на самом деле сила взаимодействия зарядов обратна не квадрату расстояния между ними, а какой-то другой степени:

Никто из ученых не возьмется утверждать, что d = 0 точно. Правильное заключение должно звучать так: эксперименты показали, что d не превышает.

Результаты некоторых из этих экспериментов приведены в таблице 1.

Таблица 1.

Результаты прямых экспериментов по проверке закона Кулона

Эксперимент

Год

Сам Шарль Кулон проверил закон обратных квадратов с точностью до нескольких процентов. В таблице приведены результаты прямых лабораторных экспериментов. Косвенные данные, основанные на наблюдениях магнитных полей в космическом пространстве, приводят к еще более сильным ограничениям на величину d. Таким образом, закон Кулона можно считать надежно установленным фактом.

В СИ единица силы тока (ампер) является основной, следовательно, единица заряда q оказывается производной. Как мы увидим в дальнейшем, сила тока I определяется как отношение заряда , протекающего через поперечное сечение проводника за время , к этому времени:

Отсюда видно, что сила постоянного тока численно равна заряду, протекающему через поперечное сечение проводника за единицу времени, соответственно этому:

В СИ единицей измерения электрического заряда является кулон (Кл) — электрический заряд, протекающий за 1 секунду через поперечное сечение проводника при постоянной силе тока в 1 A:

Коэффициент пропорциональности в законе Кулона записывается в виде:

При такой форме записи из эксперимента следует значение величины , которую принято называть электрической постоянной. Приближенное численное значение электрической постоянной следующее:

Поскольку чаще всего входит в уравнения в виде комбинации

приведём численное значение самого коэффициента

Как и в случае элементарного заряда, численное значение электрической постоянной определено экспериментально с высокой точностью:

Кулон — слишком большая единица для использования на практике. Например, два заряда в 1 Кл каждый, расположенные в вакууме на расстоянии 100 м друг от друга, отталкиваются с силой

Для сравнения: с такой силой давит на землю тело массой

Это примерно масса грузового железнодорожного вагона, например, с углем.

Принцип суперпозиции полей

Принцип суперпозиции представляет собой утверждение, согласно которому результирующий эффект сложного процесса воздействия представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности, при условии, что последние взаимно не влияют друг на друга (Физический энциклопедический словарь, Москва, «Советская энциклопедия», 1983, стр. 731). Экспериментально установлено, что принцип суперпозиции справедлив для рассматриваемого здесь электромагнитного взаимодействия.

В случае взаимодействия заряженных тел принцип суперпозиции проявляет себя следующим образом: сила, с которой данная система зарядов действует на некоторый точеч­ный заряд, равна векторной сумме сил, с которыми действует на него каждый из зарядов системы.

Поясним это на простом примере. Пусть имеются два заряженных тела, действующие на третье с силами и соответственно. Тогда система из этих двух тел — первого и второго — действует на третье тело с силой

Это правило справедливо для любых заряженных тел, не только для точечных зарядов. Силы взаимодействия двух произвольных систем точечных зарядов вычисляются в Дополнении 1 в конце этой главы.

Отсюда следует, что электрическое поле системы зарядов определяется векторной суммой напряженностей полей, создаваемых отдельными зарядами системы, т. е.

Сложение напряженностей электрических полей по правилу сложения векторов выражает так называемый принцип суперпозиции (независимого наложения) электрических полей. Физический смысл этого свойства заключается в том, что электростатическое поле создается только покоящимися зарядами. Значит, поля различных зарядов «не мешают» друг другу, и поэтому суммарное поле системы зарядов можно подсчитать как вектор­ную сумму полей от каждого из них в отдельности.

Так как элементарный заряд весьма мал, а макроскопические тела содержат очень большое количество элементарных зарядов, то распределение зарядов по таким телам в большинстве случаев можно считать непрерывным. Для того чтобы описать как именно распределен (однородно, неоднородно, где зарядов больше, где их меньше и т. п.) заряд по телу введем плотности заряда следующих трех видов:

· объемная плотность заряда :

где dV — физически бесконечно малый элемент объема;

· поверхностная плотность заряда :

где dS — физически бесконечно малый элемент поверхности;

· линейная плотность заряда :

где — физически бесконечно малый элемент длины линии.

Здесь всюду — заряд рассматриваемого физически бесконечно малого элемента (объема, участка поверхности, отрезка линии). Под физически бесконечно малым участком тела здесь и ниже понимается такой его участок, который, с одной стороны, настолько мал, что в условиях данной задачи, его можно считать материальной точкой, а, с другой стороны, он настолько велик, что дискретностью заряда (см. соотношение ) этого участка можно пренебречь.

Общие выражения для сил взаимодействия систем непрерывно распределенных зарядов приведены в Дополнении 2 в конце главы.

Пример 1. Электрический заряд 50 нКл равномерно распределен по тонкому стержню длиной 15 см. На продолжении оси стержня на расстоянии 10 см от ближайшего его конца находится точечный заряд 100 нКл (рис. 1.9). Определить силу взаимодействия заряженного стержня и точечного заряда.

Рис. 1.9. Взаимодействие заряженного стержня с точечным зарядом

Решение. В этой задаче силу F нельзя определить, написав закон Кулона в форме или (1.3). В самом деле, чему равно расстояние между стержнем и зарядом: r, r + a/2, r + a? Поскольку по условиям задачи мы не имеем права считать, что a << r, применение закона Кулона в его исходной формулировке, справедливой только для точечных зарядов невозможно, необходимо использовать стандартный для таких ситуаций приём, который состоит в следующем.

Если известна сила взаимодействия точечных тел (например, закон Кулона) и необходимо найти силу взаимодействия протяженных тел (например, вычислить силу взаимодействия двух заряженных тел конечных размеров), то необходимо разбить эти тела на физически бесконечно малые участки, написать для каждой пары таких «точечных» участков известное для них соотношение и, воспользовавшись принципом суперпозиции, просуммировать (проинтегрировать) по всем парам этих участком.

Всегда полезно, если не сказать — необходимо, прежде чем приступать к конкретизации и выполнению расчета, проанализировать симметрию задачи. С практической точки зрения такой анализ полезен тем, что, как правило, при достаточно высокой симметрии задачи, резко сокращает число величин, которые надо вычислять, поскольку выясняется, что многие из них равны нулю.

Разобьём стержень на бесконечно малые отрезки длиной , расстояние от левого конца такого отрезка до точечного заряда равно .

Равномерность распределения заряда по стержню означает, что линейная плотность заряда постоянна и равна

Следовательно, заряд отрезка равен , откуда, в соответствии с законом Кулона, сила, действующая на точечный заряд q в результате его взаимодействия с точечным зарядом , равна

В результате взаимодействия точечного заряда q со всем стержнем, на него будет действовать сила

Подставляя сюда численные значения, для модуля силы получаем:

Из (1.5) видно, что при , когда стержень можно считать материальной точкой, выражение для силы взаимодействия заряда и стержня, как и должно быть, принимает обычную форму закона Кулона для силы взаимодействия двух точечных зарядов:

Пример 2. Кольцо радиусом несет равномерно распределенный заряд . Какова сила взаимодействия кольца с точечным зарядом q, расположенным на оси кольца на расстоянии от его центра (рис. 1.10).

Решение. По условию, заряд равномерно распределен на кольце радиусом . Разделив на длину окружности, получим линейную плотность заряда на кольце Выделим на кольце элемент длиной . Его заряд равен .

Рис. 1.10. Взаимодействия кольца с точечным зарядом

В точке q этот элемент создает электрическое поле

Нас интересует лишь продольная компонента поля, ибо при суммирова­нии вклада от всех элементов кольца только она отлична от нуля:

Интегрируя по находим электрическое поле на оси кольца на расстоянии от его центра:

Отсюда находим искомую силу взаимодействия кольца с зарядом q:

Обсудим полученный результат. При больших расстояниях до кольца величиной радиуса кольца под знаком радикала можно пренебречь, и мы получаем приближенное выражение

Это не удивительно, так как на больших расстояниях кольцо выглядит точечным зарядом и сила взаимодействия дается обычным законом Кулона. На малых расстояниях ситуация резко меняется. Так, при помещении пробного заряда q в центр кольца сила взаимодействия равна нулю. Это тоже не удивительно: в этом случае заряд q притягивается с равной силой всеми элементами кольца, и действие всех этих сил взаимно компенсируется.

Поскольку при и при электрическое поле равно нулю, где-то при промежуточном значении электрическое поле кольца максимально. Найдем эту точку, дифференцируя выражение для напряженности Е по расстоянию

Приравнивая производную нулю, находим точку где поле максимально. Оно равно в этой точке

Пример 3. Две взаимно перпендикулярные бесконечно длинные нити, несущие равномерно распределенные заряды с линейными плотностями и находятся на расстоянии а друг от друга (рис. 1.11). Как зависит сила взаимодействия между нитями от расстояния а?

Решение. Сначала обсудим решение этой задачи методом анализа размерностей. Сила взаимодействия между нитями может зависеть от плотностей заряда на них, расстояния между нитями и электрической постоянной, то есть искомая формула имеет вид:

где — безразмерная постоянная (число). Заметим, что вследствие сим­метричного расположения нитей плотности заряда на них могут входить только симметричным же образом, в одинаковых степенях. Размерности входящих сюда величин в СИ известны:

Рис. 1.11. Взаимодействие двух взаимно перпендикулярных бесконечно длинных нитей

По сравнению с механикой здесь появилась новая величина — размерность электрического заряда. Объединяя две предыдущие формулы, получаем уравнение для размерностей:

Приравнивая степени при М и Т в обеих частях этого уравнения, не­медленно получаем В левой части нет величины размерности заряда, откуда следует, что или Наконец, приравнивая степени при размерности длины, получаем уравнение откуда следует, что Окончательно имеем:

Таким образом, оказывается, что сила взаимодействия нитей не зависит от расстояния между ними. Напомним, что безразмерную постоянную С методом анализа размерностей определить невозможно. В сущности мы уже получили ответ на вопрос задачи, но приведем также и точное ее решение, которое позволит найти С. На рис. 1.11 справа показан вид сверху на плоскость, содержащую нить точкой А отмечено сечение плоскостью чертежа нити . Напряженность электрического поля, создаваемого нитью в точке, где находится элемент второй нити, равна

На элемент нити действует сила

Нас, однако, интересует лишь компонента этой силы вдоль оси ибо продольная составляющая компенсируется точно такой же силой, действующей на симметричный элемент нити внизу. Выразим все расстояния через угол :

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *