презентация познавательного альманаха по электроматериаловедению
презентация к уроку
Обобщающее занятие по разделу «Свойства проводников».
Скачать:
Вложение | Размер |
---|---|
poznavatelnyy_almanah_-_viktorina.pptx_2.pptx | 1.89 МБ |
Предварительный просмотр:
Подписи к слайдам:
Познавательный альманах – викторина «Свойства проводников» Разработала преподаватель Шилова Галина Григорьевна Костромской машиностроительный техникум
Цель альманаха Альманах по электроматериаловедению – это журнал, в котором будут собраны основные сведения по нескольким. темам раздела «Проводниковые материалы». На страницах журнала мы рассмотрим свойства проводников и их применение. В приложении журнала будет предложена познавательная викторина
Вопросы альманаха Какие материалы называют электротехническими ? На какие группы делятся электротехнические материалы ? Для чего необходимо знать свойства электротехнических материалов? Назовите характеристики электротехнических материалов. 5. Назовите материалы высокой проводимости.
Электротехнические материалы Электротехнические материалы представляют собой совокупность проводниковых, электроизоляционных, магнитных и полупроводниковых материалов , предназначенных для работы в электрических и магнитных полях. это специальные материалы для изготовления электротехнических машин, аппаратов, приборов и т.д . Применение этих материалов в радиоэлектронике И ЭЛЕКТРОТЕХНИКЕ обусловлено , прежде всего, их электрическими и магнитными свойствами.
Проводники – материалы, которые обладают способностью проводить электрический ток и характеризуются весьма малым удельным электрическим сопротивлением. Различают: Проводники 1 рода (металлы и сплавы ) Проводники 2 рода (электролиты) Газы и пары металлов Сверхпроводники и криопроводники
Для твердых проводниковых материалов (металлов и сплавов) носителями заряда являются электроны . Примерное количество электронов в металле составляет около 1 0 22 шт /см 3 , заряд электрона – величина постоянная, равная 1,6 ·10 –16 Кл.
На какие группы делятся электротехнические материалы? диэлектрики, проводники, полупроводники, магнитные Для чего необходимо знать свойства электроматериалов? чтобы создавать электрооборудование разных габаритов и масс, а также надежное в эксплуатации.
Общие свойства проводников: Высокая электропроводность; Высокая теплопроводность; Возникновение термо -ЭДС при контакте различных проводников; Линейная зависимость сопротивления от температуры (положительный температурный коэффициент удельного сопротивления –для металлов);
Общие свойства проводников: Достаточно высокие механические характеристики (прочность, твердость, ударная вязкость, упругость, пластичность, относительное удлинение и др.); Достаточно высокие физико-химические характеристики (коррозионная стойкость, нагревостойкость, влагостойкость, износостостойкость, химикостойкость и т.д.).
Основные свойства электротехнических материалов тепловые, механические , физико-химические , электрические свойства.
Высокая электропроводность – это основная характеристика всех проводниковых материалов .
Проводники Материалы высокой проводимости Материалы высокого удельного сопротивления Материалы специального назначения Медь Алюминий Серебро Сталь Манганин Константан Нихром Нейзильбер Фехраль Вольфрам Золото Алюмель Уголь и графит
Классификация проводников 1 рода Материалы высокой удельной проводимости ( ρ менее 0,05 мкОм.м ) Материалы высокого удельного сопротивления ( ρ более 0,3 мкОм.м ) Материалы специального назначени я: контактные материалы; материалы для термопар; материалы с особыми свойствами Композиционные и неметаллические проводники
Материалы высокой удельной проводимости Материалами высокой удельной проводимости являются металлы и сплавы, у которых удельное сопротивление менее 0,05 мкОм.м . К этой группе относятся серебро , медь , алюминий, железо и некоторые сплавы этих металлов: латуни, бронзы, альдрей , магналий и др.
Металл γ , МСм/м ρ , мкОм м Металл γ , МСм/м ρ , мкОм м Серебро 67 – 62 0,015 –0,016 Алюми-ний 35–32 0,028–0,029 5 Медь 57–54 0,017 9–0,018 2 Железо 10 0,1 Электропроводность основных проводниковых металлов
Для расчетов сопротивления R провода из материала с у дельным электрическим сопротивлением ρ обычно применяется формула: где l – длина проводника; S – площадь поперечного сечения проводника.
Основные характеристики проводников: Удельное электрическое сопротивление (ρ) – величина, равная отношению модуля напряженности электрического поля к модулю плотности тока. Удельная электрическая проводимость (γ) – величина обратная удельному электрическому сопротивлению. Температурный коэффициент удельного сопротивления. Контактная разность потенциалов и термоэлектродвижущей сила.
Теплопроводность проводников Теплопроводность определяет способность проводников передавать тепловую энергию. Она характеризуется коэффициентом теплопроводности т . Коэффициент теплопроводности численно равен потоку теплоты, проходящему через площадку единичной площади, при перепаде на ее гранях температуры 1 С. Лучше всего передают тепло металлы. Для меди т равен 400 Вт/мК, для серебра – 418 Вт/мК, для алюминия – 200 Вт/мК, для нержавеющей стали – 20 Вт/мК.
Медь – металл, наиболее широко применяемый в качестве проводникового материала. Медь обладает целым рядом ценных технологических свойств: малым удельным сопротивлением; достаточно высокой механической прочностью; хорошей обрабатываемостью (легко прокатывается в листы и ленты, протягивается в проволоку); хорошей способностью к пайке и сварке; удовлетворительной стойкостью к коррозии.
Механические и электрические свойства меди существенно зависят от ее состояния и способа изготовления . Твердотянутая медь марки МТ имеет меньшую проводимость и относительное удлинение, но большую механическую прочность, чем отожженная медь марки ММ. Медь марки МТ применяется для изготовления волноводов, при изготовлении контактных проводов, шин РУ, коллекторных пластин ЭМ. Медь марки ММ – для изготовления обмоточных и монтажных проводов и жил силовых кабелей.
Алюминий – второй широко применяемый проводниковый материал. Он приблизительно в 3,5 раза легче меди и значительно ее дешевле. На воздухе на поверхности алюминия образуется прочная оксидная пленка. Часто в электротехнике применяются сплавы меди: латуни и бронзы , и сплавы алюминия: альдрей , магналий, дюраль.
Неметаллические проводниковые материалы: электротехнический угль и графит Исходные материалы (графит, сажа проходят специальную термообработку при температуре 1200–1300 °С, затем в них добавляют связующие вещества и. Затем полученные е изделия или их заготовки (блоки) подвергают высокотемпературной обработке – обжигу в специальных печах. В результате обжига изделия приобретают механическую прочность и способность к механической обработке. При этом уменьшается величина их удельного электрического сопротивления. Удельное электрическое сопротивление электротехнического угля составляет 8 – 30 мкОм·м. Неметаллические проводниковые материалы применяются для изготовления : щеток электрических машин, контактов ; электродов для электродуговых печей и ванн, прожекторов, непроволочных высокоумных резисторов, Разрядников и электровакуумных приборов.
Проводниковые материалы специального назначения К данной категории относятся металлы и сплавы, обладающие особыми физико-химическими, механическими и электрическими свойствами . По назначению такие материалы можно подразделить на группы : контактные материалы; материалы для изготовления термопар; припои; материалы для электровакуумных приборов.
Материалы для нагревательных элементов Жаростойкие сплавы – это сплавы на основе никеля, хрома, железа и других компонентов. Устойчивость этих сплавов к высоким температурам объясняется наличием на их поверхности оксидов хрома Cr 2 O 3 и закиси никеля NiO . Наличие железа повышает их жаропрочность.
Сплавы системы «железо–никель–хром» с небольшим содержанием железа называются нихромами , а при повышенном содержании железа – ферронихромами . При замене в составе сплавов никеля на алюминий или хром получаются сплавы, имеющие название фехрали и хромали . Основная область применения жаропрочных сплавов – электронагревательные приборы, реостаты, элементы электротермической техники . Для электротермической техники и электрических печей большой мощности обычно используют более дешевые, чем нихром, сплавы: фехрали, хромали . Материалы для нагревательных элементов
Сплавы высокого удельного сопротивления Сплавы для резисторов и измерительных приборов — это сплавы на основе никеля и меди: манганин, константан, нейзельберы Жаростойкие сплавы — это сплавы на основе никеля, хрома и железа с присадками других компонентов: нихромы и ферронихромы — фехрали, хромали.
Вопросы альманаха Какие материалы называют электротехническими ? На какие группы делятся электротехнические материалы ? Для чего необходимо знать свойства электротехнических материалов? Назовите характеристики электротехнических материалов. 5. Назовите материалы высокой проводимости.
Проверь себя! 1. Электротехнические материалы представляют собой совокупность проводниковых, электроизоляционных, магнитных и полупроводниковых материалов, предназначенных для работы в электрических и магнитных полях. 2. На какие группы делятся электротехнические материалы? диэлектрики, проводники, полупроводники , магнитные 3 .Для чего необходимо знать свойства электроматериалов? чтобы создавать электрооборудование разных габаритов и масс, а также надежное в эксплуатации . 4. тепловые, механические, физико-химические, электрические свойства. 5. медь, алюминий, серебро
По теме: методические разработки, презентации и конспекты
презентация: САМОСТОЯТЕЛЬНАЯ РАБОТА ОБУЧАЮЩИХСЯ КАК УСЛОВИЕ ФОРМИРОВАНИЯ ПОЗНАВАТЕЛЬНОГО ИНТЕРЕСА
презентация к статье о формах и методах организации внеаудиторной самостоятельной работы студентов.
Презентация:Активизация познавательной деятельности обучающихся на уроках производственного обучения и практических занятиях через применение исследовательского метода обучения
Презентация к педагогическому мастер-классу.
Презентация «Активизация познавательной деятельности учащихся»
Вопросы активизации учения учащихся относятся к числу наиболее актуальных проблем современной педагогической науки и практики. Реализация принципа активности в обучении имеет определенное значение, т.
[Рабочие программ ПМ и УД] 140448. ОП 11. электроматериаловедение
Программа учебной дисциплины «Электроматериаловедение» разработана на основе Федерального государственного образовательного стандарта (ФГОС) по профессии среднего профессионального образования (СПО) 1.
[Контрольно-измерительные материалы] 220703 тест электроматериаловедение
Данные тестовые материалы по учебной дисциплине «Электроматериаловедение» разработаны в соответствии с рабочей основной профессиональной образовательной программой, в соответст.
электроматериаловедение
Рабочая программа «Электроматериаловедение»
Программа учебной дисциплины «Электроматериаловедение» разработана на основе Федерального государственного образовательного стандарта (ФГОС) по профессии среднего профессиональног.
Электротехнические материалы, их свойства и применение
Эффективная и долговечная работа электрических машин и установок напрямую зависит от состояния изоляции, для устройства которой применяют электротехнические материалы. Они характеризуются набором определенных свойств при помещении в условия электромагнитного поля, и устанавливаются в приборах с учетом этих показателей.
Классификация электротехнических материалов позволяет разделить на отдельные группы электроизоляционных, полупроводниковых, проводниковых и магнитных материалов, которые дополняются основными изделиями: конденсаторами, проводами, изоляторами и готовыми полупроводниковыми элементами.
Материалы работают как в отдельных магнитных или электрических полях с определенными свойствами, так и подвергаются действию нескольких излучений одновременно. Магнитные материалы условно подразделяют на магнетики и слабомагнитные вещества. В электрической технике наиболее широко применяют сильномагнитные материалы.
Наука о материалах
Материалом называется субстанция, характеризующаяся отличным от других объектов химическим составом, свойствами и структурой молекул и атомов. Вещество находится в одном из четырех состояний: газообразном, твердом, плазменном или жидком. Электротехнические и конструкционные материалы выполняют в установке разнообразные функции.
Проводниковые материалы осуществляют передачу потока электронов, диэлектрические компоненты обеспечивают изоляцию. Применение резистивных элементов преобразовывает электрическую энергию в тепловую, конструкционные материалы сохраняют форму изделия, например, корпуса. Электротехнические и конструкционные материалы обязательно выполняют не одну, а несколько сопутствующих функций, например, диэлектрик в работе электроустановки испытывает нагрузки, что приближает его к конструкционным материалам.
Электротехническое материаловедение – это наука, занимающаяся определением свойств, изучением поведения вещества при воздействии электричества, тепла, мороза, магнитного поля и др. Наука изучает специфические характеристики, необходимые для создания электрических машин, приборов и установок.
Проводники
К ним относят электротехнические материалы, основным показателем которых является выраженная проводимость электрического тока. Это происходит потому, что в массе вещества постоянно присутствуют электроны, слабо связанные с ядром и являющиеся свободными носителями заряда. Они перемещаются с орбиты одной молекулы на другую и создают ток. Основными проводниковыми материалами считают медь, алюминий.
К проводникам относятся элементы, которые имеют удельное электрическое сопротивление ρ < 10 -5 , при этом отличным проводником является материал с показателем 10 -8 Ом*м. Все металлы хорошо проводят ток, из 105 элементов таблицы только 25 не являются металлами, причем из этой разнородной группы 12 материалов проводят электрический ток и считаются полупроводниками.
Физика электротехнических материалов позволяет использование их в качестве проводников в газообразном и жидком состоянии. В качестве жидкого металла с нормальной температурой применяется только ртуть, для которой это естественное состояние. Остальные металлы используются как жидкие проводники только в разогретом состоянии. Для проводников применяют и токопроводящие жидкости, например электролит. Важными свойствами проводников, позволяющими различать их по степени электропроводности, считаются характеристики теплопроводности и способности к термальной генерации.
Диэлектрические материалы
В отличие от проводников, в массе диэлектриков содержится малое число свободных электронов продолговатой формы. Основным свойством вещества является его способность получать полярность под действием электрического поля. Это явление объясняется тем, что под действием электричества связанные заряды перемещаются в сторону действующих сил. Расстояние смещения тем больше, чем выше напряженность электрического поля.
Изоляционные электротехнические материалы тем ближе стоят к идеалу, чем меньше показатель удельной проводимости, и чем меньше выражена степень поляризации, которая позволяет судить о рассеивании и выделении тепловой энергии. Проводимость диэлектрика основана на действии незначительного количества свободных диполей, смещающихся в сторону действия поля. После поляризации диэлектрик образует субстанцию с разной полярностью, то есть на поверхности образуются два разных знака зарядов.
Применение диэлектриков наиболее обширно в электротехнике, так как используются активные и пассивные характеристики элемента.
К активным материалам, с поддающимся управлению свойствами, относят:
- пироэлектрики;
- электролюминофоры;
- пьезоэлектрики;
- сегнетоэлектрики;
- электреты;
- материалы для излучателей в лазере.
Основные электротехнические материалы — диэлектрики с пассивными свойствами, используют в качестве изоляционных материалов и конденсаторов обычного типа. Они способны отделить два участка электрической цепи один от другого и не допустить перетекания электрических зарядов. С их помощью осуществляется изоляция токоведущих частей, чтобы электрическая энергия не уходила в землю или на корпус.
Разделение диэлектриков
На органические и неорганические материалы делят диэлектрики, в зависимости от химического состава. Неорганические диэлектрики не содержат в своем составе углерода, тогда как органические формы имеют основным элементом углерод. Неорганические вещества, такие как керамика, слюда, имеют высокую степень нагревания.
Электротехнические материалы по способу получения делят на естественные и искусственные диэлектрики. Широкое применение синтетических материалов основано на том, что изготовление позволяет придать материалу заданные свойства.
По строению молекул и молекулярной решетки диэлектрики подразделяются на полярные и неполярные. Последние называют еще нейтральными. Отличие состоит в том, что атомы и молекулы до начала действия на них электрического тока обладают или нет электрическим зарядом. К нейтральной группе относятся фторопласт, полиэтилен, слюда, кварц и др. Полярные диэлектрики состоят из молекул с положительным или отрицательным зарядом, примером служит поливинилхлорид, бакелит.
Свойства диэлектриков
По состоянию диэлектрики делят на газообразные, жидкие и твердые. Наиболее часто применяются твердые электротехнические материалы. Их свойства и применение оцениваются с помощью показателей и характеристик:
- объемное удельное сопротивление;
- диэлектрическая проницаемость;
- поверхностное удельное сопротивление;
- коэффициент термической проницаемости;
- диэлектрические потери, выраженные тангенсом угла;
- прочность материала под действием электричества.
Объемное удельное сопротивление зависит от способности материала сопротивляться протеканию по нему тока постоянного значения. Показатель, обратный удельному сопротивлению, называется объемной удельной проводимостью.
Поверхностное удельное сопротивление определяется возможностью материала сопротивляться постоянному току, протекающему по его поверхности. Поверхностная удельная проводимость является обратной величиной к предыдущему показателю.
Коэффициент термической проницаемости отражает степень изменения удельного сопротивления после повышения температуры вещества. Обычно при увеличении температуры уменьшается сопротивление, следовательно, значение коэффициента становится отрицательным.
Диэлектрическая проницаемость определяет применение электротехнических материалов в соответствии со способностью материала создавать электроемкость. Показатель относительной проницаемости диэлектрика входит в понятие абсолютной проницаемости. Изменение емкости изоляции показывается предыдущим показателем коэффициента термической проницаемости, который одновременно показывает увеличение или уменьшение емкости с изменением температурного режима.
Тангенс угла потерь диэлектрика отражает степень потери мощности цепи относительно материала диэлектрика, подверженного действию электрического переменного тока.
Электротехнические материалы характеризуются показателем электрической прочности, который определяет возможность разрушения вещества под действием напряжения. При выявлении механической прочности существует ряд испытаний для установления показателя предела прочности на сжатие, растяжение, изгиб, кручение, при ударе и раскалывании.
Физические и химические показатели диэлектриков
В диэлектриках содержится определенное число высвобожденных кислот. Количество едкого калия в миллиграммах, необходимое для избавления от примесей в 1 г вещества, носит название кислотного числа. Кислоты разрушают органические материалы, оказывают отрицательное действие на изоляционные свойства.
Характеристика электротехнических материалов дополняется коэффициентом вязкости или трения, показывающим степень текучести вещества. Вязкость делят на условную и кинематическую.
Степень водопоглощения определяется в зависимости от массы воды, впитанной элементом испытательного размера после суток нахождения в воде при заданной температуре. Эта характеристика указывает на пористость материала, повышение показателя ухудшает изоляционные свойства.
Магнитные материалы
Показатели оценки магнитных свойств носят название магнитных характеристик:
- магнитная абсолютная проницаемость;
- магнитная относительная проницаемость;
- термический магнитный коэффициент проницаемости;
- энергия максимального магнитного поля.
Магнитные материалы подразделяются на твердые и мягкие. Мягкие элементы характеризуются небольшими потерями при отставании величины намагниченности тела от действующего магнитного поля. Они более проницаемы для магнитных волн, имеют небольшую коэрцитивную силу и повышенную индукционную насыщаемость. Используют их при устройстве трансформаторов, электромагнитных машин и механизмов, магнитных экранов и других приборов, где нужно намагничивание с малыми энергетическими упущениями. К ним относят чистое электролитное железо, железо – армко, пермаллой, электротехническую сталь в листах, никелево-железные сплавы.
Твердые материалы характеризуются значительными потерями при отставании степени намагниченности от внешнего магнитного поля. Получив один раз магнитные импульсы, такие электротехнические материалы и изделия намагничиваются, и долгое время сохраняют накопленную энергию. Они обладают большой коэрцитивной силой и большой емкостью остаточной индукции. Элементы с такими характеристиками применяют для изготовления стационарных магнитов. Представителями элементов служат сплавы на железной основе, алюминиевые, никелевые, кобальтовые, кремниевые компоненты.
Магнитодиэлектрики
Это смешанные материалы, на 75-80% содержащие в составе магнитный порошок, остаток массы заполняется органическим высокополимерным диэлектриком. У ферритов и магнитодиэлектриков повышенные значения объемного удельного сопротивления, маленькие вихревые потери тока, что позволяет применять их в высокочастотной технике. Ферриты обладают стабильностью показателей при различных частотных полях.
Область использования ферромагнетиков
Их используют наиболее эффективно для создания сердечников трансформаторных катушек. Применение материала позволяет намного увеличить магнитное поле трансформатора, при этом, не изменяя показания силы тока. Такие вставки из ферритов позволяют экономить расход электричества при работе прибора. Электротехнические материалы и оборудование после выключения внешнего магнитного воздействия сохраняют магнитные показатели, и поддерживает поле в соседнем пространстве.
Элементарные токи не проходят после выключения магнита, таким образом, создается стандартный постоянный магнит, который эффективно работает в наушниках, телефонах, измерительных приборах, компасах, звукозаписывающих устройствах. Очень популярны в применении постоянные магниты, не проводящие электричество. Получают их соединением железных окислов с другими различными оксидами. Магнитный железняк относится к ферритам.
Полупроводниковые материалы
Это элементы, которые имеют значение удельной проводимости, находящееся в промежутке этого показателя для проводников и диэлектриков. Проводимость этих материалов напрямую зависит от проявления примесей в массе, внешних направлений воздействия и внутренних дефектов.
Характеристика электротехнических материалов группы полупроводников говорит о существенном отличии элементов друг от друга по структурной решетке, составу, свойствам. В зависимости от указанных параметров, материалы подразделяют на 4 вида:
- Элементы, содержащие в себе атомы одного вида: кремний, фосфор, бор, селен, индий, германий, галлий и др.
- Материалы, содержащие в составе металлические окислы – медь, окись кадмия, цинка и др.
- Материалы, объединенные в группу антимонид.
- Материалы органики – нафталин, антрацен и др.
В зависимости от кристаллической решетки, полупроводники подразделяют на поликристаллические материалы и монокристаллические элементы. Характеристика электротехнических материалов позволяет разделять их на немагнитные и слабомагнитные. Среди магнетических компонентов различают полупроводники, проводники и непроводящие элементы. Четкое распределение выполнить затруднительно, так как многие материалы по-разному ведут себя в изменяющихся условиях. Например, работу некоторых полупроводников при пониженных температурах можно сравнить с действием изоляторов. Те же диэлектрики при нагревании работают, как полупроводники.
Композиционные материалы
Материалы, которые подразделяются не по функционированию, а по составу, называются композиционными материалами, это тоже электротехнические материалы. Их свойства и применение обусловлены сочетанием применяемых при изготовлении материалов. Примером служат листовые стекловолокнистые компоненты, стеклопластик, смеси электропроводного и тугоплавкого металлов. Применение равноценных смесей позволяет выявить сильные стороны материала и применять их по назначению. Иногда сочетание композитных составляющих приводит к созданию абсолютно нового элемента с другими свойствами.
Пленочные материалы
Большую область применения в электротехнике завоевали пленки и ленты, как электротехнические материалы. Свойства их отличаются от других диэлектриков гибкостью, достаточной механической прочностью и отличными изоляционными характеристиками. Толщина изделий варьируется в зависимости от материала:
- пленки делают толщиной 6-255 мкм, ленты выпускают 0,2-3,1 мм;
- полистирольные изделия в виде лент и пленок производят толщиной 20-110 мкм;
- полиэтиленовые ленты делают толщиной 35-200 мкм, шириной от 250 до 1500 мм;
- фторопластовые пленки изготавливают толщиной от 5 до 40 мкм, ширину предусматривают 10-210 мм.
Классификация электротехнических материалов из пленки позволяет выделить два вида: ориентированные и неориентированные пленки. Первый материал применяется наиболее часто.
Лаки и эмали для электрической изоляции
Растворы веществ, образующих при застывании пленку, представляют собой современные электротехнические материалы. К этой группе относят битумы, высыхающие масла, смолы, целлюлозные эфиры или соединения и сочетания этих компонентов. Превращение вязкого компонента в изолятор происходит после испарения из массы нанесенного растворителя, и образования плотной пленки. По способу нанесения пленки подразделяют на клеящие, пропиточные и покрывающие.
Пропиточные лаки используют для обмоток электроустановок с целью повысить коэффициент теплопроводности и сопротивление влаге. Покрывающие лаки создают верхнее защитное покрытие от влаги, мороза, масла для поверхности обмоток, пластмассы, изоляции. Клеящие компоненты способны склеивать пластинки слюды с другими материалами.
Компаунды для электрической изоляции
Эти материалы представляются жидким раствором в момент использования с последующим застыванием и отвердеванием. Вещества характерны тем, что в составе не содержат растворителей. Компаунды также относятся к группе «электротехнические материалы». Виды их бывают заливочные и пропиточные. Первый вид применяют для заполнения полостей в муфтах кабелей, а вторая группа используется для пропитки обмоток двигателя.
Компаунды производят термопластичными, они размягчаются после повышения температур, и термореактивными, стойко сохраняющими форму отвердевания.
Волокнистые непропитанные электроизоляционные материалы
Для производства таких материалов используют волокна органики и искусственно созданные составляющие. Природные растительные волокна натурального шелка, льна, дерева переделывают в материалы органического происхождения (фибра, ткань, картон). Влажность таких изоляторов колеблется в пределах 6-10%.
Органические материалы из синтетики (капрон) содержат влаги только от 3 до 5%, такое же насыщение влагой и у неорганических волокон (стекловолокно). Неорганические материалы отличаются неспособностью к возгоранию при значительном нагревании. Если материалы пропитать эмалями или лаками, то горючесть повышается. Поставка электротехнических материалов производится на предприятие по изготовлению электрических машин и приборов.
Летероид
Тонкая фибра выпускается в листах и скатывается в рулон для транспортировки. Применяется как материал для изготовления прокладок изоляции, фасонных диэлектриков, шайб. Бумагу с асбестовой пропиткой и асбестовый картон делают из хризолитового асбеста, расщепляя его на волокна. Асбест обладает сопротивлением к щелочной среде, но разрушается в кислотной.
В заключение следует отметить, что с применением современных материалов для изоляции электрических приборов значительно увеличился срок их службы. Для корпусов установок применяют материалы с выбранными характеристиками, что дает возможности для выпуска новой функциональной техники с улучшенными показателями.
Электротехнические материалы, их свойства и применение
Эффективная и долговечная работа электрических машин и установок напрямую зависит от состояния изоляции, для устройства которой применяют электротехнические материалы. Они характеризуются набором определенных свойств при помещении в условия электромагнитного поля, и устанавливаются в приборах с учетом этих показателей.
Классификация электротехнических материалов позволяет разделить на отдельные группы электроизоляционных, полупроводниковых, проводниковых и магнитных материалов, которые дополняются основными изделиями: конденсаторами, проводами, изоляторами и готовыми полупроводниковыми элементами.
Материалы работают как в отдельных магнитных или электрических полях с определенными свойствами, так и подвергаются действию нескольких излучений одновременно. Магнитные материалы условно подразделяют на магнетики и слабомагнитные вещества. В электрической технике наиболее широко применяют сильномагнитные материалы.
Наука о материалах
Материалом называется субстанция, характеризующаяся отличным от других объектов химическим составом, свойствами и структурой молекул и атомов. Вещество находится в одном из четырех состояний: газообразном, твердом, плазменном или жидком. Электротехнические и конструкционные материалы выполняют в установке разнообразные функции.
Проводниковые материалы осуществляют передачу потока электронов, диэлектрические компоненты обеспечивают изоляцию. Применение резистивных элементов преобразовывает электрическую энергию в тепловую, конструкционные материалы сохраняют форму изделия, например, корпуса. Электротехнические и конструкционные материалы обязательно выполняют не одну, а несколько сопутствующих функций, например, диэлектрик в работе электроустановки испытывает нагрузки, что приближает его к конструкционным материалам.
Электротехническое материаловедение – это наука, занимающаяся определением свойств, изучением поведения вещества при воздействии электричества, тепла, мороза, магнитного поля и др. Наука изучает специфические характеристики, необходимые для создания электрических машин, приборов и установок.
Вспомогательное оборудование
К данной категории товаров относят различное вспомогательное оборудование, которое обеспечивает бесперебойную работу бытовых прибором и промышленной аппаратуры. Данная категория не менее востребована и без нее не обходится ни один современный монтаж. Наиболее распространенными вспомогательными приборами являются:
- стабилизаторы, защищающие потребительские устройства от скачков напряжения;
- источники бесперебойного питания, позволяющие на некоторое время продолжить работу оборудования во время отключения электроэнергии. Многие современные модели позволяют также выравнивать колебания в сети.
- расходные материалы – включают в себя аккумуляторные батареи, зарядники и другие изделия.
Проводники
К ним относят электротехнические материалы, основным показателем которых является выраженная проводимость электрического тока. Это происходит потому, что в массе вещества постоянно присутствуют электроны, слабо связанные с ядром и являющиеся свободными носителями заряда. Они перемещаются с орбиты одной молекулы на другую и создают ток. Основными проводниковыми материалами считают медь, алюминий.
К проводникам относятся элементы, которые имеют удельное электрическое сопротивление ρ < 10-5, при этом отличным проводником является материал с показателем 10-8 Ом*м. Все металлы хорошо проводят ток, из 105 элементов таблицы только 25 не являются металлами, причем из этой разнородной группы 12 материалов проводят электрический ток и считаются полупроводниками.
Физика электротехнических материалов позволяет использование их в качестве проводников в газообразном и жидком состоянии. В качестве жидкого металла с нормальной температурой применяется только ртуть, для которой это естественное состояние. Остальные металлы используются как жидкие проводники только в разогретом состоянии. Для проводников применяют и токопроводящие жидкости, например электролит. Важными свойствами проводников, позволяющими различать их по степени электропроводности, считаются характеристики теплопроводности и способности к термальной генерации.
Защитные устройства
В современном мире с каждым годом увеличивается спрос на электротехническую продукцию, а на замену устаревшему оборудованию приходит новое. Без таких устройств невозможна работа электросети. Кроме того, они обеспечивают безопасность эксплуатации и увеличивают срок службы бытовых приборов и промышленного оборудования.
Также такая продукция позволяет автоматизировать некоторые процессы. Примером могут служить автоматические выключатели, которые проводят ток цепи в нормальных режимах и автоматически защищают электрические сети и оборудование от аварийных режимов.
Немаловажным является устройство защитного отключения. Оно отключает систему в случае утечки тока в результате пробоя на корпус электрических нагревателей, духовых шкафов, стиральных машин и других бытовых приборов, и таким образом защищает человека от поражения электрическим током.
Одним из наиболее современных защитных устройств являются дифференциальные автоматы, которые совмещают в себе функции автоматического выключателя и УЗО.
Диэлектрические материалы
В отличие от проводников, в массе диэлектриков содержится малое число свободных электронов продолговатой формы. Основным свойством вещества является его способность получать полярность под действием электрического поля. Это явление объясняется тем, что под действием электричества связанные заряды перемещаются в сторону действующих сил. Расстояние смещения тем больше, чем выше напряженность электрического поля.
Изоляционные электротехнические материалы тем ближе стоят к идеалу, чем меньше показатель удельной проводимости, и чем меньше выражена степень поляризации, которая позволяет судить о рассеивании и выделении тепловой энергии. Проводимость диэлектрика основана на действии незначительного количества свободных диполей, смещающихся в сторону действия поля. После поляризации диэлектрик образует субстанцию с разной полярностью, то есть на поверхности образуются два разных знака зарядов.
Применение диэлектриков наиболее обширно в электротехнике, так как используются активные и пассивные характеристики элемента.
К активным материалам, с поддающимся управлению свойствами, относят:
- пироэлектрики;
- электролюминофоры;
- пьезоэлектрики;
- сегнетоэлектрики;
- электреты;
- материалы для излучателей в лазере.
Основные электротехнические материалы — диэлектрики с пассивными свойствами, используют в качестве изоляционных материалов и конденсаторов обычного типа. Они способны отделить два участка электрической цепи один от другого и не допустить перетекания электрических зарядов. С их помощью осуществляется изоляция токоведущих частей, чтобы электрическая энергия не уходила в землю или на корпус.
Электроизоляционные лакированные ткани
Лакоткани и стеклоткани представляют собой гибкий материал и изготовляют из х/б, стеклянной или шелковой ткани. После этого ткань пропитывают масляно-битумным или масляным лаком или другим изоляционным составом. Они выпускаются рулонами толщиной 0,1—0,3 мм и шириной от 700 до 1000 мм. Марки лакоткани, выпускаемые промышленностью ЛХС, ЛХСМ, ЛХСС, ЛХЧ, ЛШС. Марки стеклоткани ЛСБ, ЛСМ, ЛСЭ, ЛСММ, ЛСК, ЛСКР, ЛСКЛ. Лакоткань шелковую марки ЛШС выпускают также и толщиной 0,08 мм, а ЛШСС может иметь толщину 0,04 мм.
Лакоткань
У марок лакотканей и стеклотканей аббревиатура в названии расшифровывается следующим образом: Л — лакоткань; X — хлопчатобумажная; С — на втором месте — стеклянная; К — на втором месте — капроновая; С — на третьем месте — светлая; К — на третьем месте — кремнийорганическая; С — на четвертом месте — специальная; Л — на четвертом месте — липкая; Ч — черная; Ш — шелковая; Б — битумно-маслянноалкидная; М — маслостойкая; Р — резиновая; Э — эскапоновая. Стеклоткань имеет высокую нагревостойкостью. Марки ЛСКЛ и ЛСК — около 180°С, а марка ЛБС доходит до 130° С. Их электрическая прочность составляет 35 – 40 кВ/мм.
Стеклоткань
Лакоткань и стеклоткань используются в качестве электро и тепло изоляционных материалов. Чаще всего ими изолируют слои обмоток катушек.
Разделение диэлектриков
На органические и неорганические материалы делят диэлектрики, в зависимости от химического состава. Неорганические диэлектрики не содержат в своем составе углерода, тогда как органические формы имеют основным элементом углерод. Неорганические вещества, такие как керамика, слюда, имеют высокую степень нагревания.
Электротехнические материалы по способу получения делят на естественные и искусственные диэлектрики. Широкое применение синтетических материалов основано на том, что изготовление позволяет придать материалу заданные свойства.
По строению молекул и молекулярной решетки диэлектрики подразделяются на полярные и неполярные. Последние называют еще нейтральными. Отличие состоит в том, что атомы и молекулы до начала действия на них электрического тока обладают или нет электрическим зарядом. К нейтральной группе относятся фторопласт, полиэтилен, слюда, кварц и др. Полярные диэлектрики состоят из молекул с положительным или отрицательным зарядом, примером служит поливинилхлорид, бакелит.
Электроизоляционные материалы и сферы их применения
К основным областям применения электроизоляционных материалов можно отнести различные промышленные ветви, радиотехнику, приборостроение и монтаж электрических сетей. Диэлектрики – это основные элементы, от которых зависит безопасность и стабильность работы любого электроприбора. На качество и функциональность изоляции влияют различные параметры.
Таким образом, главная причина применения электроизоляции – соблюдение правил безопасности. В соответствии с ними строго запрещено эксплуатировать оборудование с частично или полностью отсутствующей изоляцией, поврежденной оболочкой, поскольку даже малые токи могут нанести вред человеческому организму.
Свойства диэлектриков
По состоянию диэлектрики делят на газообразные, жидкие и твердые. Наиболее часто применяются твердые электротехнические материалы. Их свойства и применение оцениваются с помощью показателей и характеристик:
- объемное удельное сопротивление;
- диэлектрическая проницаемость;
- поверхностное удельное сопротивление;
- коэффициент термической проницаемости;
- диэлектрические потери, выраженные тангенсом угла;
- прочность материала под действием электричества.
Объемное удельное сопротивление зависит от способности материала сопротивляться протеканию по нему тока постоянного значения. Показатель, обратный удельному сопротивлению, называется объемной удельной проводимостью.
Поверхностное удельное сопротивление определяется возможностью материала сопротивляться постоянному току, протекающему по его поверхности. Поверхностная удельная проводимость является обратной величиной к предыдущему показателю.
Коэффициент термической проницаемости отражает степень изменения удельного сопротивления после повышения температуры вещества. Обычно при увеличении температуры уменьшается сопротивление, следовательно, значение коэффициента становится отрицательным.
Диэлектрическая проницаемость определяет применение электротехнических материалов в соответствии со способностью материала создавать электроемкость. Показатель относительной проницаемости диэлектрика входит в понятие абсолютной проницаемости. Изменение емкости изоляции показывается предыдущим показателем коэффициента термической проницаемости, который одновременно показывает увеличение или уменьшение емкости с изменением температурного режима.
Тангенс угла потерь диэлектрика отражает степень потери мощности цепи относительно материала диэлектрика, подверженного действию электрического переменного тока.
Электротехнические материалы характеризуются показателем электрической прочности, который определяет возможность разрушения вещества под действием напряжения. При выявлении механической прочности существует ряд испытаний для установления показателя предела прочности на сжатие, растяжение, изгиб, кручение, при ударе и раскалывании.
Слоистые изоляционные материалы
К слоистым изоляционным материалам относятся текстолит, стеклотекстолит, и гетинакс.
Текстолит
Текстолит представляет собой слоистый изоляционный материал. Изготовлен методом прессованния при 150°С многослойной х/б ткани, пропитанную резольной смолой. По сравнению с другим изоляционным материалом, гетинаксом имеет более высокую механическую прочность, но худшие некоторые характеристики, такие, как влагостойкость и цена. Выпускается в форме цилиндров, стержней, трубок и листов. Имеет две основные марки: А — которая обладает высокой электрической прочностью, и Б — с лучшими механическими свойствами и хорошей влагостойкостью. Текстолит хорошо механически обрабатывается. Из него изготавливаются каркасы катушек, диэлектрические щиты, платы, штанги, прокладки. Благодаря хорошим износостойким свойствам из него делают шестеренки, вкладыши для подшипников.
Стеклотекстолит
Стеклотекстолит изготовляют та же, как и текстолит, только из стеклоткани, пропитанной теплостойкой смолой. Характеристики стеклотекстолита выше, чем у текстолита и гетинакса. Стеклотекстолит имеет высокую электрическую прочность (20 кВ/мм), большую механическую прочность, нагревостойкость (от 180 до 225° С) и влагостойкостью. Но имеет себестоимость выше текстолита.
Гетинакс
Гетинакс изготовляют из прессованной бумаги, пропитанной бакелитовой смолой. Современная промышленность выпускает в виде листов толщиной от 0,4 до 50 мм. Так же гетинакс выпускается в виде стержней различного диаметра. Гетинакс маркируется А, Б, В, Вс. Диэлектрическая прочность гетинакса составляет 20 – 25 кВ/мм и может работать как на воздухе, так и в масле. Гетинакс превосходно обрабатывается как ручным инструментом, так и станками. Из гетинакса могут изготовляться диэлектрические щиты, штанги, прокладки, платы, каркасы катушек и трансформаторов. К недостаткам можно отнести низкую нагревостойкость. При нагреве поверхность гетинакса обугливается и начинает проводить электрический ток.
Физические и химические показатели диэлектриков
В диэлектриках содержится определенное число высвобожденных кислот. Количество едкого калия в миллиграммах, необходимое для избавления от примесей в 1 г вещества, носит название кислотного числа. Кислоты разрушают органические материалы, оказывают отрицательное действие на изоляционные свойства.
Характеристика электротехнических материалов дополняется коэффициентом вязкости или трения, показывающим степень текучести вещества. Вязкость делят на условную и кинематическую.
Степень водопоглощения определяется в зависимости от массы воды, впитанной элементом испытательного размера после суток нахождения в воде при заданной температуре. Эта характеристика указывает на пористость материала, повышение показателя ухудшает изоляционные свойства.
Магнитные материалы
Показатели оценки магнитных свойств носят название магнитных характеристик:
- магнитная абсолютная проницаемость;
- магнитная относительная проницаемость;
- термический магнитный коэффициент проницаемости;
- энергия максимального магнитного поля.
Магнитные материалы подразделяются на твердые и мягкие. Мягкие элементы характеризуются небольшими потерями при отставании величины намагниченности тела от действующего магнитного поля. Они более проницаемы для магнитных волн, имеют небольшую коэрцитивную силу и повышенную индукционную насыщаемость. Используют их при устройстве трансформаторов, электромагнитных машин и механизмов, магнитных экранов и других приборов, где нужно намагничивание с малыми энергетическими упущениями. К ним относят чистое электролитное железо, железо – армко, пермаллой, электротехническую сталь в листах, никелево-железные сплавы.
Твердые материалы характеризуются значительными потерями при отставании степени намагниченности от внешнего магнитного поля. Получив один раз магнитные импульсы, такие электротехнические материалы и изделия намагничиваются, и долгое время сохраняют накопленную энергию. Они обладают большой коэрцитивной силой и большой емкостью остаточной индукции. Элементы с такими характеристиками применяют для изготовления стационарных магнитов. Представителями элементов служат сплавы на железной основе, алюминиевые, никелевые, кобальтовые, кремниевые компоненты.
Область использования ферромагнетиков
Их используют наиболее эффективно для создания сердечников трансформаторных катушек. Применение материала позволяет намного увеличить магнитное поле трансформатора, при этом, не изменяя показания силы тока. Такие вставки из ферритов позволяют экономить расход электричества при работе прибора. Электротехнические материалы и оборудование после выключения внешнего магнитного воздействия сохраняют магнитные показатели, и поддерживает поле в соседнем пространстве.
Элементарные токи не проходят после выключения магнита, таким образом, создается стандартный постоянный магнит, который эффективно работает в наушниках, телефонах, измерительных приборах, компасах, звукозаписывающих устройствах. Очень популярны в применении постоянные магниты, не проводящие электричество. Получают их соединением железных окислов с другими различными оксидами. Магнитный железняк относится к ферритам.
Полупроводниковые материалы
Это элементы, которые имеют значение удельной проводимости, находящееся в промежутке этого показателя для проводников и диэлектриков. Проводимость этих материалов напрямую зависит от проявления примесей в массе, внешних направлений воздействия и внутренних дефектов.
Характеристика электротехнических материалов группы полупроводников говорит о существенном отличии элементов друг от друга по структурной решетке, составу, свойствам. В зависимости от указанных параметров, материалы подразделяют на 4 вида:
- Элементы, содержащие в себе атомы одного вида: кремний, фосфор, бор, селен, индий, германий, галлий и др.
- Материалы, содержащие в составе металлические окислы – медь, окись кадмия, цинка и др.
- Материалы, объединенные в группу антимонид.
- Материалы органики – нафталин, антрацен и др.
В зависимости от кристаллической решетки, полупроводники подразделяют на поликристаллические материалы и монокристаллические элементы. Характеристика электротехнических материалов позволяет разделять их на немагнитные и слабомагнитные. Среди магнетических компонентов различают полупроводники, проводники и непроводящие элементы. Четкое распределение выполнить затруднительно, так как многие материалы по-разному ведут себя в изменяющихся условиях. Например, работу некоторых полупроводников при пониженных температурах можно сравнить с действием изоляторов. Те же диэлектрики при нагревании работают, как полупроводники.
Композиционные материалы
Материалы, которые подразделяются не по функционированию, а по составу, называются композиционными материалами, это тоже электротехнические материалы. Их свойства и применение обусловлены сочетанием применяемых при изготовлении материалов. Примером служат листовые стекловолокнистые компоненты, стеклопластик, смеси электропроводного и тугоплавкого металлов. Применение равноценных смесей позволяет выявить сильные стороны материала и применять их по назначению. Иногда сочетание композитных составляющих приводит к созданию абсолютно нового элемента с другими свойствами.
Керамические изоляционные материалы
Фарфор
Фарфор или, так называемая, электротехническая керамика. Обладает такими свойствами, как нагревостойкость ( 150—170°С), диэлектрическая прочность (20—28 кВ/мм), высокая механическая прочность, устойчивость к проникновению воды ( воду не поглощает), устойчив к агрессивным средам, радиационным излучениям. Электротехническая керамика используется в таких отраслях, как электрика, электроника, автоматика и телемеханика, вычислительная техника. Из электротехнического фарфора делают различные изоляторы, изоляционные тяги.
Стеатит
Стеатит это керамический материал. Обладает высокой диэлектрической прочностью (30—50 кВ/мм). Благодаря хорошим диэлектрическим свойствам стеатит применяется для изготовления особо ответственных изоляторов и изоляционных узлов.
Пленочные материалы
Большую область применения в электротехнике завоевали пленки и ленты, как электротехнические материалы. Свойства их отличаются от других диэлектриков гибкостью, достаточной механической прочностью и отличными изоляционными характеристиками. Толщина изделий варьируется в зависимости от материала:
- пленки делают толщиной 6-255 мкм, ленты выпускают 0,2-3,1 мм;
- полистирольные изделия в виде лент и пленок производят толщиной 20-110 мкм;
- полиэтиленовые ленты делают толщиной 35-200 мкм, шириной от 250 до 1500 мм;
- фторопластовые пленки изготавливают толщиной от 5 до 40 мкм, ширину предусматривают 10-210 мм.
Классификация электротехнических материалов из пленки позволяет выделить два вида: ориентированные и неориентированные пленки. Первый материал применяется наиболее часто.
Асбестовые материалы
Асбест — природный минерал, который имеет волокнистое строение. Качественным показателем асбеста является его высокая нагревостойкость (300 – 400°С) и низкая теплопроводность. Из асбеста изготавливают материалы в виде листов разной толщины в виде веревок разного диаметра и асбестовых тканей. У асбеста плохие электроизоляционные свойства (диэлектрическая прочность 0,6 – 1,2 кВ/мм). Чаще всего асбест применяют в качестве теплоизолятора. В качестве электроизолятора используется только в низковольтных установках.
Лаки и эмали для электрической изоляции
Растворы веществ, образующих при застывании пленку, представляют собой современные электротехнические материалы. К этой группе относят битумы, высыхающие масла, смолы, целлюлозные эфиры или соединения и сочетания этих компонентов. Превращение вязкого компонента в изолятор происходит после испарения из массы нанесенного растворителя, и образования плотной пленки. По способу нанесения пленки подразделяют на клеящие, пропиточные и покрывающие.
Пропиточные лаки используют для обмоток электроустановок с целью повысить коэффициент теплопроводности и сопротивление влаге. Покрывающие лаки создают верхнее защитное покрытие от влаги, мороза, масла для поверхности обмоток, пластмассы, изоляции. Клеящие компоненты способны склеивать пластинки слюды с другими материалами.
Компаунды для электрической изоляции
Эти материалы представляются жидким раствором в момент использования с последующим застыванием и отвердеванием. Вещества характерны тем, что в составе не содержат растворителей. Компаунды также относятся к группе «электротехнические материалы». Виды их бывают заливочные и пропиточные. Первый вид применяют для заполнения полостей в муфтах кабелей, а вторая группа используется для пропитки обмоток двигателя.
Компаунды производят термопластичными, они размягчаются после повышения температур, и термореактивными, стойко сохраняющими форму отвердевания.
Хлопчатобумажные ленты
Промышленность выпускает хлопчатобумажные ленты следующих разновидностей: киперную, тафтяную, батистовую и миткалевую. Ленты производятся следующих видов и размеров:
- Киперная лента ЛЭ изготавливается по ГОСТ4514-78 из х/б нити и имеет ширину 10—60 мм, а толщину 0,45 мм, используется в электромонтажных работах, для стягивания кабелей и проводов, для обвязки катушек, обмоток двигателей и трансформаторов;
Волокнистые непропитанные электроизоляционные материалы
Для производства таких материалов используют волокна органики и искусственно созданные составляющие. Природные растительные волокна натурального шелка, льна, дерева переделывают в материалы органического происхождения (фибра, ткань, картон). Влажность таких изоляторов колеблется в пределах 6-10%.
Органические материалы из синтетики (капрон) содержат влаги только от 3 до 5%, такое же насыщение влагой и у неорганических волокон (стекловолокно). Неорганические материалы отличаются неспособностью к возгоранию при значительном нагревании. Если материалы пропитать эмалями или лаками, то горючесть повышается. Поставка электротехнических материалов производится на предприятие по изготовлению электрических машин и приборов.
Слюдяные изоляционные материалы
Слюдяные изоляционные материалы изготавливаются из слюды — минерала кристаллического строения. Слюду расщепляют на отдельные пластинки и склеивают с помощью лака или смолы. Промышленность выпускает несколько видов слюдяных изоляционных материалов. Это мусковит, миканит, флогопит. Мусковит обладает самыми лучшими характеристиками и применяется при изготовлении конденсаторов, прокладок электроприборов. Миканиты бывают гибкие (марки ГФС, ГМС), твердые (марки ПМГ, ПФГ), чаще используются для прокладок и формовочные (мари ФФГ и ФМГ). Миканиты применяются для изготовление каркасов и используются в качестве прокладок и для загильзовки в обмотках электрических машин. Слюдяные изоляционные материалы имеют высокую нагревостойкость порядка 130—180° С, диэлектрическую прочность в пределах 15—20 кВ/мм и отличную влагостойкость.
Из щипаной слюды, наклеенной на ткань или бумагу изготовляют микаленту. Микалента имеет ширину 12—35 мм и толщину 0,08—0,17 мм. Микалента выпускается марками ЛФЧ, ЛМЧ, ЛМС, ЛФС. В конце марки ставят римские цифры I или II. Миколента с цифрой I имеет повышенную электрическую прочность, а с цифрой II -нормальную электрическую прочность. В настоящее время из за дефицита слюды как сырья и ее дороговизны, часто стали использовать отходы слюды. Из отходов стали изготавливать слюдяную бумагу, слюдиниты, стеклослюдиниты и другие электроизоляционные материалы.
Летероид
Тонкая фибра выпускается в листах и скатывается в рулон для транспортировки. Применяется как материал для изготовления прокладок изоляции, фасонных диэлектриков, шайб. Бумагу с асбестовой пропиткой и асбестовый картон делают из хризолитового асбеста, расщепляя его на волокна. Асбест обладает сопротивлением к щелочной среде, но разрушается в кислотной.
В заключение следует отметить, что с применением современных материалов для изоляции электрических приборов значительно увеличился срок их службы. Для корпусов установок применяют материалы с выбранными характеристиками, что дает возможности для выпуска новой функциональной техники с улучшенными показателями.
Непропитанные волокнистые и изоляционные материалы
Электрокартон
Выпускается в нескольких видах. Электрокартон для работы в воздушной среде (марки ЭВТ и ЭВ) толщина (0,1мм—3 мм). Электрокартон для работы в масле (марки ЭМТ и ЭМЦ), толщина (1мм—3 мм). Выпускается как в листах (листовой), так и в рулонах (рольный). Если электрокартон выпущен в непропитанном виде, то является невлагостойким материалом, и хранят его надо в сухом помещении. Диэлектрическая прочность сухого электрокартона марки ЭВ, который имеет влажность около 8%, равна 8—11 кВ/мм, а марки ЭМТ уже 20—30 кВ/мм.
Изоляционные бумаги
Изготовляется из измельченной древесины хвойных пород и обрабатывается щелочью. Имеется несколько видов изоляционной бумаги. Это телефонная бумага, кабельная бумага и конденсаторная бумага. Телефонная бумага. Марка бумаги КТ-05 выпускается толщиной 0,04 — 0,05 мм. Кабельная бумага марки К-120. Ее толщина 0,12 ми она пропитана трансформаторным маслом, имеющим хорошие диэлектрические свойства. Такими же свойствами обладает конденсаторная бумага, только толщина ее гораздо меньше.
Фибра
Изготовляется из бумаги и обрабатывается раствором хлористого цинка. Имеет малую механическую прочность по этому хорошо обрабатывается. Диэлектрическая прочность фибры составляет 5 – 11 кВ/мм. Не стойкая к щелочам и кислотам. Выпускается в виде листов и имеет толщину 0,6— 12 мм. Так же выпускается в виде трубок и круглых стержней. Из фибры делают каркасы катушек, прокладки.
Летероид
Электроизоляционный материал, который представляет собой одну из разновидностей фибры, имеющей малую толщину. Летероид выпускается в виде рулонов и листов и имеет толщину 0,1—0,5 мм.
Классификация электротехнических материалов по свойствам и областям применения
Каждый специалист, работающий в области электро- и радиотехники должен знать перечень основных электрических, магнитных, механических и др. характеристик, которыми обладают материалы диэлектрические, полупроводниковые, проводниковые, магнитные и конструкционные. При изготовлении и ремонте радио и электротехнического оборудования необходимы детали и узлы, выполненные из материалов определенных классов и обладающие конкретными электрическими и магнитными характеристиками, а для несущих деталей – и механическими характеристиками. Зная для каждого класса материалов перечень этих характеристик, необходимо знать единицы их измерения и порядок величины, а также то, как (и почему) эти характеристики изменяются под действием температуры, величины и частоты напряжения, механической нагрузки и т.д.
Хочу вас обрадовать, определенный запас знаний по данному курсу у вас уже имеется. Так, например, покупая одежду, обувь и другие товары, вы выбираете их, руководствуясь не только формой, размером и условиями эксплуатации (зимой или летом, в дождливую или влажную погоду и т.д.), но и характеристиками материалов, из которого они изготовлены, — цветом, теплопроводностью, стойкостью к воде, солнечному свету и т.д.
Материаловедение – наука, занимающая изучением состава, структуры, свойств материалов, поведением материалов при различных воздействиях: тепловых, электрических, магнитных и т.д., а также при сочетании этих воздействий.
Электротехническое материаловедение – раздел материаловедения, который занимается материалами для электротехники и энергетики, т.е. материалами, обладающими специфическими свойствами, необходимыми для конструирования, производства и эксплуатации электротехнического оборудования.
В настоящем курсе «Материаловедение», ч. II будут рассмотрены:
ü Строение и свойства металлических и неметаллических электротехнических материалов;
ü Мы подробно рассмотрим особенности поляризации, электропроводности, диэлектрических потерь и пробоя диэлектриков, изучим процесс электрического старения изоляции;
ü Будут изучены новые электротехнические материалы: активные диэлектрики, проводники, сверхпроводники, применяемые в современных устройствах.
ü Будут рассмотрены физика явлений, имеющих место в диэлектриках, полупроводниках, проводниках и магнитных материалах, находящихся в электрическом или магнитном поле;
Для лучшего понимания изучаемого материала на лекционных занятиях будет использоваться мультипроектор, некоторая информация будет представлена в виде раздаточного материала.
На изучение курса предусмотрено 6 часов лекций и лабораторных занятий, 36 часов самостоятельной работы. По окончанию – зачет.
Для изучения курса вам понадобится следующая литература:
1. Н.П. Богородицкий. Электротехнические материалы: Учебник для вузов / Н.П. Богородицкий, В.В. Пасынков, Б.М. Тареев. – Л.: Энергоатомиздат., 1985.
2. Колесов С.Н. Материаловедение и технология конструкционных материалов: Учебник для вузов / С.Н. Колесов, И.С. Колесов. – 2-е изд., перераб. и доп. — М.: Высш. шк., 2007. — 535 с.: ил.
3. Пасынков В.В. Материалы электронной техники: Учебник для вузов / В.В. Пасынков, В.С. Сорокин. – М.: Высш. шк., 2003.
4. Новиков Л.И. Методические указания к лабораторным занятиям № 1, 2, 3, 4: Методические указания / Л.И. Новиков. — Киров, изд. ВятГУ, 2007.
5. Новиков Л.И. Методические указания к лабораторным занятиям № 6: Методические указания / Л.И. Новиков. — Киров, изд. ВятГУ, 2007.
Роль материалов в развитии электро- и радиотехники
Современное электрооборудование представляет собой сложное устройство с большим количеством разнообразных деталей, для изготовления которых требуется широкий ассортимент различных электротехнических и конструкционных материалов с вполне определенными электрическими, механическими и химическими свойствами, которые зависят от их химического состава и строения, а также интенсивности внешнего энергетического воздействия (напряженности и частоты электрического поля, температуры, давления и т.п.). Без знания основных свойств ЭТМ, без понимания физических процессов, протекающих в ЭТМ при помещении их в электрическое или магнитное поле, без понимания связи этих процессов с химическим составом и строением материала нельзя спроектировать и изготовить электротехническую аппаратуру, невозможно грамотно ее эксплуатировать. Поэтому, главной задачей науки материаловедение является:
1. Изучение основных физических процессов, протекающих в материалах при воздействии на них электрического, магнитного или теплового полей и механического напряжения;
2. Изучение зависимости электрических, механических и других свойств материалов от их химического состава и строения;
3. Описание свойств и знакомство с материалами, наиболее часто применяемыми в производстве электрооборудования.
Классификация электротехнических материалов по свойствам и областям применения
Для начала отметим, что же такое материал.
Материал – это объект, обладающий определенным составом, структурой и свойствами, предназначенный для выполнения определенных функций.
Материалы различаются по:
1. Агрегатному состоянию:
d. Плазменное (состояние ионизированного газа, в котором концентрация положительных и отрицательных зарядов равны).
2. Выполняемым функциям.Функции, которые выполняют материалы разнообразны:
a. Обеспечение протекания тока – проводниковые материалы;
b. Сохранение определенной формы при механических нагрузках (КМ);
c. Обеспечение изоляции – диэлектрические материалы;
d. Превращение электрической энергии в тепловую – резистивные материалы.
Обычно материал выполняет несколько функций. Например, диэлектрик обязательно испытывает какие-то механические нагрузки, то есть является конструкционным материалом.
Классификация веществ по электрическим свойствам:
В процессе изготовления и в различных условиях эксплуатации радиоэлектронной аппаратуры на ЭТМ воздействуют электрическое и магнитное поля (в отдельности и совместно). ПО поведению в электрическом поле эти материалы подразделяют на проводниковые, полупроводниковые и диэлектрические.
Классификация ЭТМ по электрическим свойствам основана на представлениях зонной теории электропроводности твердых тел, сущность которой состоит в следующем.
Общеизвестно, что в подавляющем большинстве твердых тел электрический ток обусловлен движением электронов. Такие электроны называются электронами проводимости. Они появляются во внешних, удаленных от ядра областях атома. Эти области формируют в твердом теле валентные зоны. Чтобы возник электрический ток, электроны должны из валентной зоны взобраться выше по энергетической шкале и перейти в зону проводимости, преодолев при этом зону запрещенных значений энергии, или запрещенную зону. Если все три упомянутые зоны разместить по оси энергии, то зона с меньшей энергией будет валентной, далее идет запрещенная зона и потом зона с наибольшей энергией — зона проводимости.
Как валентная зона, так и зона проводимости представляют собой очень плотную упаковку из множества доступных для электронов дискретных уровней энергии — энергетических «изолиний». Эти уровни расположены так близко друг к другу, что практически сливаются в непрерывную полосу, которая и называется энергетической зоной. Напротив, в запрещенной зоне доступных для электрона энергетических уровней вообще нет, и электроны там находиться не могут. Итак, чтобы возник электрический ток, необходимо, чтобы электроны из валентной зоны перескочили через запрещенную зону и попали в зону проводимости.
Как известно из школьного курса физики, вещества, в зависимости от того, как они проводят электрический ток, можно разделить на металлы, полупроводники и диэлектрики. С точки зрения зонной теории металлы — это твердые тела, у которых запрещенная зона отсутствует, вместо нее наблюдается сильное перекрытие валентной и проводящей зон. Получается, что электронам в металле нет необходимости тратить энергию на преодоление запрещенной зоны, а потому под внешним воздействием — в электрическом поле — они легко переходят в зону проводимости. Отсюда легко понять, почему металлы — хорошие проводники.
В диэлектриках ширина запрещенной зоны значительно больше тепловой энергии электронов даже при комнатной температуре, а значит, подавляющее большинство потенциальных носителей тока не могут перепрыгнуть в зону проводимости — им не хватает энергии. Преодоление запрещенной зоны может произойти лишь при очень сильных полях (тогда наблюдается электрический пробой диэлектрика) или очень высоких температурах.
И наконец, если ширина запрещенной зоны сравнима с энергией теплового движения электронов, то мы имеем полупроводник. Повышение температуры экспоненциальным образом увеличивает количество электронов, прыгающих через запрещенную зону в зону проводимости.
Если W равна или близка к нулю, то электроны могут перейти на свободные уровни благодаря собственной тепловой энергии и увеличить проводимость вещества. Вещества с такой структурой энергетических зон относятся к проводникам. Проводниковые материалы служат для проведения электрического тока. Обычно к проводникам относятся вещества с удельным электрическим сопротивлением ρ < 10 -5 Ом×м. Типичными проводниками являются металлы.
Если значение запрещенной зоны превышает несколько электрон-вольт (1 эВ — энергия электрона, полученная им при перемещении между двумя точками электрического поля с разностью потенциалов 1 В), то для перехода электронов из валентной зоны в зону проводимости требуется значительная энергия. Такие вещества относятся к диэлектрикам. Диэлектрики имеют высокое удельное электрическое сопротивление и обладают способностью препятствовать прохождению тока. К диэлектрическим материалам относятся вещества с удельным электрическим сопротивлением р > 107 Ом м. Благодаря высокому удельному электрическому сопротивлению их используют в качестве электроизоляционных материалов.
Если значение запрещенной зоны составляет 0,1. 0,3 эВ, то электроны легко переходят из валентной зоны в зону проводимости благодаря внешней энергии. Вещества с управляемой проводимостью относятся к полупроводникам. Удельное электрическое сопротивление полупроводников составляет 10 -6 . 10 9 Ом×м. Полупроводниковые материалы обладают проводимостью, с помощью которой можно управлять напряжением, температурой, освещенностью и т.д.
В зависимости от структуры и внешних условий материалы могут переходить из одного класса в другой. Например, твердые и жидкие металлы — проводники, а пары металлов — диэлектрики; типичные при нормальных условиях полупроводники германий и кремний при воздействии высоких гидростатических давлений становятся проводниками; углерод в модификации алмаза — диэлектрик, а в модификации графита — проводник.
Диэлектрические | Полупроводниковые | Проводниковые | Магнитные |
Значения их удельного сопротивления находятся в соответствующих пределах | |||
Ширина запрещенной зоны (энергия активации) | |||
W=0.-0.05 эВ | W=0.05-3 эВ | W›3 эВ |
Диэлектрик обладает способностью поляризоваться под действием приложенного электрического поля и подразделяются:
1. Пассивные диэлектрики. Применяются:
a. Для создание электрической изоляции токопроводящих частей. Они препятствуют прохождение тока другими, нежелательными путями и являются материалами электроизоляционными.
b. В конденсаторах для создания определенной электрической емкости.
2. Активные диэлектрики. Применяются для изготовления активных элементов электрических схем. Служат для генерации, усиления, преобразования электрического сигнала.
Полупроводник по величине удельной электропроводности занимают промежуточное положение между диэлектриками и проводниками. Характерной их особенностью является существенная зависимость электропроводности от интенсивности внешнего энергетического воздействия: напряженности электрического поля, температуры, освещенности, длины волны падающего света, давления и т.п.
Проводники подразделяются на 4 подкласса:
1. Материалы высокой проводимости. Используются там, где необходимо, чтобы ток протекал с минимальными потерями. К таким материалам относят металлы: Cu, Al, Fe, Ag, Au, Pt и сплавы на их основе. Из них изготавливают провода, кабели, токопроводящие части электроустановок.
2. Сверхпроводники – материалы, у которых при температурах ниже некоторой критической Ткр сопротивление электрическому току становится равным 0.
3. Криопроводники – это материалы высокой проводимости, работающие при криогенных температурах (температуре кипения жидкости азота – 195 о С).
4. Проводниковые материалы высокого сопротивления – металлические сплавы, образующие твердые растворы.
Магнитные– материалы, предназначенные для работы в магнитном поле при непосредственном взаимодействии с этим полем. К ним относят ферромагнетики и ферриты. Собственное магнитное поле в сотни и тысячи раз больше, чем вызывающее его внешнее магнитное поле. Они способны сильно намагничиваться даже в слабых полях, а некоторые из них сохраняют намагниченность и после снятия внешнего магнитного поля. К наиболее широко используемым в технике магнитным материалам относятся Fe, Co, Ni.