Где находится ядро
Перейти к содержимому

Где находится ядро

Где находится ядро

Ядро клетки и ядерная оболочка

Основные положения:
• Ядро является самой крупной клеточной органеллой и ограничено оболочкой, состоящей из двух мембран
• Часть ядра занимает генетический материал
• Ядерные поры служат средством транспорта больших молекул через ядерную оболочку, обеспечивая вход их в ядро и выход из него

Как показано на рисунке, ядро обычно представляет собой самый крупный видимый компартмент эукариотической клетки, содержит почти весь ее генетический материал (фактически весь, за исключением небольшого числа генов, присутствующих в митохондриях и хлоропластах).

Размеры ядра зависят от количества содержащейся в нем ДНК. Поэтому занимаемый им объем широко варьирует; обычно для клеток дрожжей он составляет 1-2% от всего объема клетки, а для большинства соматических клеток животных около 10% (В зависимости от типа организма и клеток ядро выглядит по-разному). Генетический материал образует массу, называемую хроматин, который занимает часть ядра.

Ядро окружено оболочкой, которая состоит из двух концентрически расположенных мембран, наружной и внутренней (Ядро окружено ядерной оболочкой). Между двумя мембранами находится люмен. Внешняя мембрана оболочки ядра переходит в мембраны ЭПР, а люмен оболочки сливается с люменом ЭПР. Внутренняя ядерная мембрана обычно поддерживается сетью филаментов, которая называется ядерная ламина. Эта сеть находится внутри ядра и заякорена во внутреннюю мембрану.

Поскольку небольшие молекулы свободно перемещаются между цитозолем и ядром, то водная среда в компартментах имеет одинаковый состав. Однако вещества с молекулярной массой, превышающей примерно 40 000 Д (что соответствует небольшим белкам), могут поступать в ядро и выходить из него только при участии системы транспорта через комплексы ядерных пор, которые закреплены в оболочке ядра.

Ядро клеткиХотя часть клетки, которую занимает ядро, для разных клеток различна,
в эукариотической клетке обычно оно представляет собой наиболее заметный внутриклеточный компартмент.

Поры ядерной оболочки наиболее заметны при исследовании ядра в электронном микроскопе (Ядерные поровые комплексы представляют собой симметричные каналы). Каждый комплекс имеет центральный канал, через который осуществляется импорт и экспорт молекул, по размерам превышающим предел, при котором возможна их свободная диффузия. Эти каналы обеспечивают различное содержание белков и других больших молекул в ядре и цитоплазме клетки.

В ядре находятся более мелкие компартменты, которые обладают специальными функциями, хотя они и не ограничены мембранами (Ядро содержит субкомпартменты, которые не окружены мембраной). Основным субкомпартментом в ядре является ядрышко, видимое в световом микроскопе. В ядрышке происходит синтез рибосомальных РНК и сборка субъединиц рибосом.

Зачем клеткам эукариот нужно ядро? Ядро защищает ДНК и обеспечивает клетке возможность сконцентрировать регуляторные белки и ферменты репарации в одном месте. Геном человека в 750 раз превышает геном Е. coli, и, таким образом, каждая определенная последовательность ДНК занимает, соответственно, меньшую часть генома. Различные регуляторные белки должны присутствовать в больших концентрациях для того, чтобы они могли найти свои мишени.

Это облегчается тем, что структура-мишень (например, геном) и регуляторные белки сосредоточены в небольшой части клетки (например, в ядре). Ядро также обеспечивает большую степень защиты генома от случайных повреждающих воздействий.

Ядро клеткиЯдро окружено оболочкой, состоящей из наружной и внутренней мембран.
Мембраны разделены люменом, переходящим в люмен эндоплазматического ретикулкума.

Наличие в клетке ядра имеет важные последствия. На рисунке ниже показано, что транспорт макромолекул между ядром и цитоплазмой носит двухсторонний характер. Все необходимые ядру белки (включая белки репликации и транскрипции) должны поступать из цитоплазмы. В то же время иРНК транскрибируются в ядре, но должны выходить в цитоплазму, где происходит синтез белка. Эта картина полностью отлична от характерной для клеток прокариот, у которых процессы транскрипции и трансляции сопряжены друг с другом, т. е. происходят в одно время и в одном месте.

Регуляция транспорта молекул в ядро и их выхода из него представляет собой один из важнейших регуляторных механизмов.

Обычно клетка эукариот содержит одно ядро. Однако в некоторых исключительных случаях образуются клетки, содержащие много ядер. Это особенно характерно на ранних этапах развития насекомых, например дрозофилы. В этом случае происходит большое количество делений ядра, не сопровождающихся клеточным делением, и образуется синцитий, содержащий сотни ядер, находящихся в общей цитоплазме. Другой пример образования синцития -слияние мышечных клеток млекопитающих.

В качестве иллюстрации другого крайнего случая назовем некоторые дифференцированные клетки, например зрелые эритроциты млекопитающих, у которых отсутствует ядро. (В подтверждение того, что они все-таки являются клетками, заметим, что эритроциты представляют собой продукты терминальной дифференцировки, которые произошли из клеток.)

Транспорт между ядром и цитоплазмойРНК транспортируется из ядра в цитоплазму,
а белки транспортируются в ядро (иногда они снова выходят из ядра).

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Строение и функции ядра

Вопрос 1. Каковы функции ядра клетки?
Ядро в клетке выполняет основные функции:
1. хранение и воспроизведение наследственной информации, которая хранится в ядре в виде молекул ДНК, входящих в состав хромосом;
2. регуляция обмена веществ в клетке осуществляется благодаря тому, что в ядре содержится наследственная информация о строении клеточных белков в составе ядерных хромосом.

Вопрос 2. Какие организмы относятся к прокариотам?
Прокариоты — это организмы, клетки которых не имеют оформленного ядра. К ним относят бактерии, сине-зеленые водоросли (цианобактерии) и археи.

Вопрос 3. Как устроена ядерная оболочка?
Ядерная оболочка – отделяет содержимое ядра от цитоплазмы. Ядерная оболочка состоит из двух мембран: наружной и внутренней, которые соединяются вместе в области пор. При повышении скорости обменных процессов между ядром и цитоплазмой количество пор увеличивается, т.е. можно судить об активности ядра по количеству пор. Из ядра через ядерные поры выходят: иРНК, тРНК, субъединицы рибосом. В ядро из цитоплазмы поступают ядерные и рибосомальные белки, нуклеотиды, жиры, углеводы, АТФ, вода и ионы. Наружная ядерная оболочка соединяется с гранулярной эндоплазматической сетью. Внутренняя ядерная оболочка контактирует с кариоплазмой (ядерным соком), лишена рибосом и в некоторых местах соединяется с хроматином.

Вопрос 4. Что собой представляет хроматин?
Хроматин – это комплекс ДНК и белков, в основном гистоновых. Молекулы гистонов с ДНК образуют группы – нуклеосомы. Молекула ДНК, соединенная с нуклеосомой, образует ДНП (дезоксирибонуклеопротеид)– это наименьшая единица хромосомы. В состав хроматина входят РНК, ионы Ca 2+ и Mg 2+ , а также фермент ДНК-полимераза, необходимый для репликации ДНК. Во время деления ядра хроматин спирализуется и становится видимым в световой микроскоп, т.е. начинают формироваться хромосомы (греч.chromo — цвет, soma — тело.).

Вопрос 5. Каковы функции ядрышек?
Ядрышки – это округлые, сильно уплотненные, не ограниченные мембраной участки ядра. Форма их, размеры и количество зависит от функционального состояния ядра. В клетке, выполняющей функцию синтеза большого количества белка, в ядре будет несколько ядрышек или они будут крупные и рыхлые, т.е. функция ядрышка – это синтез рРНК и сборка малой и большой субъединиц рибосом. В составе ядрышка находится: 80% белка, 10-15% РНК, небольшое количество ДНК и другие химические компоненты. В профазу деления клетки субъединицы рибосом через ядерные поры выходят в цитоплазму, ДНК ядрышка упаковывается на хромосомы, имеющие вторичную перетяжку или ядрышковый организатор, и соответственно, ядрышко как структура распадается и становится не видимой структурой, поэтому иногда говорят, что оно «растворяется».

Вопрос 6. Из чего состоит хромосома?
Хромосома представляет собой молекулу ДНК, соединенную с особым белком, придающим ей компактность.

Вопрос 7. Где располагаются хромосомы у бактерий?
В клетках бактерий нет оформленного ядра. Генетический аппарат бактерий представлен одной кольцевой молекулой ДНК (бактериальной хромосомой), которая присоединена в определенном месте к клеточной мембране и занимает в цитоплазме пространство, называемое нуклеоидом.

Вопрос 8. Что такое кариотип?
Кариотипом — это определенный набор хромосом, характерный для данного вида организмов. Кариотип характеризуется не только числом хромосом, но и их размерами, формой, расположением центромера.

Вопрос 9. Как называется набор хромосом в соматических клетках?
Как правило, соматические клетки содержат двойной набор хромосом, который называется диплоидным.

Вопрос 10. Какой набор хромосом в гаметах?
Гаметы содержат только по одной хромосоме каждого вида, т. е. имеют одинарный набор хромосом, который называется гаплоидным.

Вопрос 11. Какой гаплоидный набор хромосом в клетках рака, если диплоидный равен 118?
Если диплоидный набор хромосом в клетках равен 118, то гаплоидный будет в два раза меньше — 59 (118/2=59).

Вопрос 12. Может ли диплоидный набор содержать нечетное число хромосом?
Диплоидный набор хромосом может содержать нечетное количество хромосом. Существуют организмы, у которых в соматических клетках имеется только одна половая хромосома. Например, у некоторых насекомых (клопы, кузнечики) самки гомогаметны (XX), а самцы имеют только одну половую хромосому (ХО).

  • Назад
  • Вперёд
  • Вы здесь:  
  • Главная
  • Биология
  • А.А. Каменский-9кл
  • АТФ и другие органические соединения клетки | Параграф 1.7

Ядра атомов: в самом сердце материи


Рис. 1

Ядро атома получается крохотным, его радиус в 10 000–100 000 раз меньше всего атома. Каждое ядро содержит определённое количество протонов (обозначим его Z) и определённое количество нейтронов (обозначим его N), скреплённых вместе в виде шарика, по размеру не сильно превышающего сумму их размеров. Отметим, что протоны и нейтроны вместе часто называют «нуклонами», а Z+N часто называют A – общее количество нуклонов в ядре. Также Z, «атомное число» – количество электронов в атоме.

Типичное мультяшное изображение атома (рис. 1) чрезвычайно преувеличивает размер ядра, но более-менее правильно представляет ядро как небрежно соединённое скопление протонов и нейтронов.

Содержимое ядра

Откуда нам известно, что находится в ядре? Эти крохотные объекты просто охарактеризовать (и это было просто исторически) благодаря трём фактам природы.

1. Протон и нейтрон отличаются по массе всего лишь на тысячную часть, так что если нам не нужна чрезвычайная точность, можно сказать, что у всех нуклонов масса одинакова, и назвать её массой нуклона, mнуклон:

(≈ означает «примерно равно»)

2. Количество энергии, необходимой для удержания вместе протонов и нейтронов в ядре, относительно мало – порядка тысячной доли части энергии массы (E = mc 2 ) протонов и нейтронов, так что масса ядра почти равна сумме масс его нуклонов:

3. Масса электрона равняется 1/1835 массы протона – так что почти вся масса атома содержится в его ядре:

Тут подразумевается наличие четвёртого важного факта: все атомы определённого изотопа определённого элемента одинаковы, как и все их электроны, протоны и нейтроны.

Поскольку в самом распространённом изотопе водорода содержится один электрон и один протон:

масса атома Mатом определённого изотопа просто равна Z+N, помноженному на массу атома водорода

и погрешность этих уравнений примерно равна 0,1%.

Поскольку нейтроны электрически нейтральны, электрический заряд Qядро ядра просто равен количеству протонов, помноженному на электрический заряд протона («e»):

В отличие от предыдущих уравнений, это уравнение выполняется точно.

Эти уравнения проиллюстрированы на рис. 2


Рис. 2

Используя открытия последних десятилетий XIX века и первых десятилетий XX, физики знали, как измерить в эксперименте оба обозначенных красным значения: заряд ядра в e, и массу любого атома в атомах водорода. Так что эти значения были известны уже в 1910-х. Однако правильно интерпретировать их смогли только в 1932 году, когда Джеймс Чедвик определил, что нейтрон (идею которого предложил Эрнест Резерфорд в 1920-м) является отдельной частицей. Но как только стало понятно, что нейтроны существуют, и что их масса практически равна массе протона, сразу же стало ясно, как интерпретировать числа Z и N — количество протонов и нейтронов. А также сразу родилась новая загадка – почему у протонов и нейтронов почти одинаковая масса.

Честно говоря, физикам того времени с научной точки зрения страшно повезло, что всё это было так легко установить. Закономерности масс и зарядов настолько просты, что даже самые долгие загадки были раскрыты сразу после открытия нейтрона. Если бы хотя бы один из перечисленных мною фактов природы оказался неверным, тогда на то, чтобы понять, что происходит внутри атомов и их ядер, ушло бы гораздо больше времени.


Рис. 3

К сожалению, с других точек зрения было бы гораздо лучше, если бы всё оказалось сложнее. Вряд ли можно было подобрать худший момент для этого научного прорыва. Открытие нейтрона и понимание структуры атома совпало с мировым экономическим кризисом, известным, как Великая Депрессия, и с появлением нескольких авторитарных и экспансионистских правительств в Европе и Азии. Быстро началась гонка ведущих научных держав в области понимания и получения энергии и оружия из ядра атома. Реакторы, выдающие ядерную энергию, были получены всего за десять лет, а за тринадцать – ядерное оружие. И сегодня нам приходится жить с последствиями этого.

Откуда нам известно, что ядро атома маленькое?

Одно дело – убедить себя, что определённое ядро определённого изотопа содержит Z протонов и N нейтронов; другое – убедить себя, что ядра атомов крохотные, и что протоны с нейтронами, будучи сжатыми вместе, не размазываются в кашу и не разбалтываются в месиво, а сохраняют свою структуру, как подсказывает нам мультяшное изображение. Как это можно подтвердить?

Я уже упоминал, что атомы практически пусты. Это легко проверить. Представьте себе алюминиевую фольгу; сквозь неё ничего не видно. Поскольку она непрозрачная, вы можете решить, что атомы алюминия:
1. Настолько крупные, что между ними нет просветов,
2. Настолько плотные и твёрдые, что свет сквозь них не проходит.

Насчёт первого пункта вы будете правы; в твёрдом веществе между двумя атомами почти нет свободного пространства. Это можно наблюдать на изображениях атомов, полученных при помощи особых микроскопов; атомы похожи на маленькие сферы (краями которых служат края электронных облаков), и они довольно плотно упакованы. Но со вторым пунктом вы ошибётесь.


Рис. 4

Если бы атомы были непроницаемыми, тогда сквозь алюминиевую фольгу ничто не смогло бы пройти – ни фотоны видимого света, ни рентгеновские фотоны, ни электроны, ни протоны, ни атомные ядра. Всё, что вы направили бы в сторону фольги, либо застревало бы в ней, либо отскакивало бы – точно так же, как любой кинутый объект должен отскочить или застрять в гипсокартонной стенке (рис. 3). Но на самом деле электроны высокой энергии легко могут пройти через кусочек алюминиевой фольги, как и рентгеновские фотоны, высокоэнергетические протоны, высокоэнергетические нейтроны, высокоэнергетические ядра, и так далее. Электроны и другие частицы – почти все, если точнее – могут пройти через материал, не потеряв ни энергии, ни импульса в столкновениях с чем-либо, содержащимся внутри атомов. Лишь малая часть их ударится об атомное ядро или электрон, и в этом случае они могут потерять большую часть своей начальной энергии движения. Но большая часть электронов, протонов, нейтронов, рентгеновских лучей и всякого такого просто спокойно пройдут насквозь (рис. 4). Это не похоже на швыряние гальки в стену; это похоже на швыряние гальки в сетчатый забор (рис. 5).


Рис. 5

Чем толще фольга – к примеру, если складывать всё больше и больше листов фольги вместе – тем вероятнее частицы, запущенные в неё, столкнуться с чем-либо, потеряют энергию, отскочат, изменят направление движения или даже остановятся. То же было бы верно, если бы вы наслаивали одну за другой проволочные сетки (рис. 6). И, как вы понимаете, из того, насколько далеко средняя галька может проникнуть сквозь слои сетки и насколько велики разрывы в сетке, учёные могут подсчитать на основании пройденной электронами или атомными ядрами дистанции, насколько атом пустой.


Рис. 6

Посредством таких экспериментов физики начала XX века установили, что внутри атома ничто – ни атомное ядро, ни электроны – не может быть большим, чем одна тысячная миллионных миллионных долей метра, то есть в 100 000 раз меньше самого атома. То, что такого размера достигает ядро, а электроны по меньшей мере в 1000 раз меньше, мы устанавливаем в других экспериментах – например, в рассеянии высокоэнергетических электронов друг с друга, или с позитронов.

Чтобы быть ещё более точным, следует упомянуть, что некоторые частицы потеряют часть энергии в процессе ионизации, в котором электрические силы, действующие между летящей частицей и электроном, могут вырвать электрон из атома. Это дальнодействующий эффект, и столкновением на самом деле не является. Итоговая потеря энергии значительна для летящих электронов, но не для летящего ядра.

Вы можете задуматься над тем, похоже ли то, как частицы проходят сквозь фольгу, на то, как пуля проходить сквозь бумагу – расталкивая части бумаги в стороны. Возможно, первые несколько частиц просто расталкивают атомы в стороны, оставляя большие отверстия, через которые проходят последующие? Мы знаем, что это не так, поскольку мы можем провести эксперимент, в котором частицы проходят внутрь и наружу контейнера, сделанного из металла или стекла, внутри которого вакуум. Если бы частица, проходя через стенки контейнера, создавала отверстия по размеру превышающие атомы, тогда внутрь устремились бы молекулы воздуха, и вакуум бы исчез. Но в таких экспериментах вакуум остаётся!

Также довольно легко определить, что ядро – это не особенно структурированная кучка, внутри которой нуклоны сохраняют свою структуру. Об этом уже можно догадаться по тому факту, что масса ядра очень близка к сумме масс содержащихся в нём протонов и нейтронов. Это выполняется и для атомов, и для молекул – их массы почти равны сумме масс их содержимого, кроме небольшой коррекции на связывающую энергию – и это отражено в том факте, что молекулы довольно легко разбить на атомы (к примеру, нагрев их так, чтобы они сильнее сталкивались друг с другом), и выбить электроны из атомов (опять-таки, при помощи нагрева). Сходным образом относительно легко разбить ядра на части, и этот процесс будет называться расщеплением, или собрать ядро из более мелких ядер и нуклонов, и этот процесс будет называться синтезом. К примеру, относительно медленно двигающиеся протоны или небольшие ядра, сталкивающиеся с более крупным ядром, могут разбить его на части; нет необходимости, чтобы сталкивающиеся частицы двигались со скоростью света.


Рис. 7

Но чтобы понять, что это не является неизбежным, упомяну, что этими свойствами не обладают сами протоны и нейтроны. Масса протона не равняется примерной сумме масс содержащихся в нём объектов; протон нельзя разбить на части; а для того, чтобы протон продемонстрировал что-нибудь интересное, необходимы энергии, сравнимые с энергией массы самого протона. Молекулы, атомы и ядра относительно просты; протоны и нейтроны чрезвычайно сложны.

Где находится ядро

Вы будете перенаправлены на Автор24

  • Telegram
  • Whatsapp
  • Вконтакте
  • Одноклассники
  • Email

Ядро – центр управления клетки

Для всех живых организмов характерны исключительно упорядоченное строение и поведение. Эти процессы контролируются информацией, которая сосредоточена главным образом в ядре эукариот и в ядерном участке (нуклеоиде) прокариот

Генетическая информация в каждой клетке закодирована в виде определённой последовательности нуклеотидов в молекулах ДНК и РНК и составляет её информационную систему.

Благодаря тому, что ДНК находится в ядре клеток эукариот, оно является её информационным центром, местом, где сохраняется и воспроизводится наследственная информация, которая определяет все признаки клетки и целого организма.

Ядро это и центр управления обмена веществ в клетке, поскольку РНК, образующаяся в нём, определяет, когда и какие белки должны синтезироваться на рибосомах в цитоплазме. Потому удаление ядра из клетки, как правило, ведёт к её быстрой гибели.

Ядра клеток имеют очень изменчивые форму и размеры, зависящие от вида организма, типа ткани, функционального состояния клетки и возраста. Оно может быть шарообразным (15 – 20 мкм в диаметре), в виде линзы, веретенообразным.

Клетки паутинных желез пауков и некоторых насекомых имеют многолопастные ядра. Благодаря такой форме значительно увеличивается площадь контакта ядерной оболочки с цитоплазмой и одновременно увеличивается и скорость биохимических реакций.

Общий план строения идентичен у всех клеток.

Ядерная оболочка

Ядро отсоединено от цитоплазмы двойной мембраной, или ядерной оболочкой.

Внешняя мембрана ядерной оболочки, граничащая с гиалоплазмой, имеет складчатую структуру и в некоторых местах соединяется с каналами эндоплазматической сетки, на которой расположены рибосомы.

Внутренняя мембрана, которая контактирует с нуклеоплазмой, рибосом не содержит.

Пространство между мембранами ядерной оболочки называют перинуклеарным.

Готовые работы на аналогичную тему

Ядерная оболочка. Автор24 — интернет-биржа студенческих работ

Ядерную оболочку пронизывают множество пор диаметром 30 – 100 нм. В зависимости от типа и физиологического состояния клетки и её типа на 1 мкм2 ядерной оболочки их может быть от 10 до 30. Молодые клетки содержат всегда больше пор, чем старые. Благодаря порам, которые обеспечивают выборочную проницаемость, ядерная оболочка способна контролировать обмен веществ между цитоплазмой и ядром.

Новая ядерная оболочка образуется из цистерн эндоплазматической сетки и, частично, из фрагментов прежней ядерной оболочки, распавшейся после деления ядра.

Внутреннее строение ядра. Хромосомы

Внутри ядро заполняет желеобразный матрикс – нуклеоплазма (ядерный сок). Она заполняет пространство между ядерными структурами. В ней расположены ядрышка (одно или несколько), большое количество ДНК и РНК, различные белки, в том числе большое количество ядерных ферментов, а также аминокислоты, свободные нуклеотиды, продукты обмена веществ. Взаимосвязь всех ядерных структур осуществляет нуклеоплазма.

На окрашенных препаратах клетки в состоянии покоя хроматин представляет собой сетку тонких фибрилл и мелких гранул. Основу хроматина составляют нуклеопротеиды – длинные нитеобразные молекулы ДНК, связанные со специфическими белками – гистонами.

Комплекс, состоящий из восьми молекул гистонов и обмотанного вокруг него участка молекулы ДНК, называют нуклеосомой.

Схема многостадийной упаковки молеку ДНК в хромосому. Автор24 — интернет-биржа студенческих работ

Участок молекулы ДНК образует 1,75 оборота вокруг сердцевины нуклеосомы. Нуклеосомы – это эллипсоиды около 10 нм длиной и 5 – 6 нм шириной.

Наличие нуклеосом – характерный признак хроматина эукариот.

Благодаря нуклеосомам образуется нуклеосомная нить – спираль первого порядка. Плотная упаковка ДНК достигается благодаря тому, что нуклеосомная нить образует спираль высшего порядка – соленоид, который в свою очередь компактизуется и образует ещё более сложную суперспираль. Благодаря этому ДНК уплотняется и хромосомы укорачиваются в сравнении с интерфазными в несколько тысяч раз.

Самая длинная (первая) хромосома человека длиной 6,8 – 1,4 мкм, а каждая её хроматида содержит двойную сплошную спираль ДНК длиной 7,3 см. Значит, в компактизованном состоянии длина спирали уменьшается в 19 тыс. раз.

Морфология хромосом лучше всего выражена в метафазе митоза.

В цитологически благоприятных объектах в световом микроскопе видно, что хромосома состоит из двух морфологически одинаковых палочкообразных частей – хроматид, между которыми есть щель.

Каждая хроматида является дочерней хромосомой и содержит безпрерывно компактизованную молекулу ДНК.

Хромосомы содержат РНК, кислые белки, липиды и минеральные вещества (ионы кальция и магния), а также необходимый для репликации ДНК фермент ДНК-полимеразу.

Каждая хромосома имеет первичную перетяжку (истончённый участок, который не спирализируется) – центромеру, делящую хромосому на два плеча.

Строение хромосомы. Автор24 — интернет-биржа студенческих работ

Центромера регулирует движение хромосом во время клеточного деления: к ней прикрепляются нити веретена деления, которые растягивают хромосомы (или хроматиды) к полюсам.

В зависимости от расположения центромеры хромосомы бывают:

  • равноплечие (метацентрические);
  • неравноплечие (субметацентрические);
  • резконеравноплечие (акроцентрические).

Некоторые хромосомы имеют одну или несколько вторичных перетяжек, которые не связаны с присоединением к веретену деления. В этом участке контролируется синтез ядрышка (ядрышковый организатор).

Ядрышка

В зависимости от функционального состояния ядра изменяются и форма, размеры и количество ядрышек: чем больше ядрышек, тем выше активность ядра.

В ядре могут содержаться от 1 до 10 ядрышек, а иногда, например в ядрах клеток дрожжей, их нет совсем.

В состав ядрышек входят около 80% белка, 10 – 15% РНК, некоторое количество ДНК и других химических компонентов.

Во время деления ядра ядрышка разрушаются. В конце деления ядрышка снова формируются вокруг определённых участков хромосом – генов, которые называются ядрышковыми организаторами. Под их контролем осуществляется синтез рибосомальной РНК и других структурных компонентов ядрышек.

В ядрышке РНК объединяется с белком, вследствие чего образуются рибонуклеопротеиды – предшественники рибосом. Последние сквозь поры ядерной оболочки переходят в цитоплазму, где и заканчивается их формирование.

Ядрышко является местом синтеза РНК и самособирания хромосом.

У большинства клеток ядро одно, иногда попадаются двухядерные (клетки печени) и многоядерные (многие протисты, водоросли и грибы, молочные сосуды растений, поперечнополосатые мышцы). Некоторые клетки во взрослом состоянии вовсе не имеют ядра (эритроциты млекопитающих и клетки ситовидных трубок цветковых растений).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *