Излучение тепла в физике — объяснение с примерами
В холодном помещении мы растапливаем камин (рис. 29) и, устроившись напротив, получаем удовольствие от тепла, идущего от него. Но как в данном случае передается к нам тепловая энергия? Ни теплопроводность, ни конвекция не могут быть причиной такой передачи энергии. Теплопроводность у воздуха очень мала. Конвекционные потоки движутся вверх.
Существует еще один способ теплопередачи — излучение, который возможен и там, где нет среды (например, в космосе). Излучением к Земле переносится теплота от такого мощного источника, как Солнце. Костер (рис. 30), натопленная печь, камин и др. — все это примеры источников, которые наряду с конвекцией и теплопроводностью передают энергию более холодным телам посредством излучения.
Любое тело излучает и поглощает энергию. В результате теплообмена перенос энергии (теплоты) идет от более нагретого тела к менее нагретому. «Холодное» тело тоже излучает энергию, но меньше, чем поглощает (рис. 31). «Горячее» же тело, наоборот, излучает энергии больше, чем поглощает. В итоге «горячее» тело охлаждается, а «холодное» — нагревается.
Механизм излучения сложен. С ним вы познакомитесь в 11-м классе. Здесь подчеркнем то, что при излучении происходит перенос энергии не частицами вещества, а электромагнитными волнами. Именно поэтому для излучения не требуется среда.
От чего зависит, насколько эффективно будет идти излучение? Проведем опыт. Два теплоприемника соединим с коленами манометра (рис. 32). Поднесем их черными сторонами к сосуду с горячей водой, одна половина которого зачернена, а другая — белая. Уровень жидкости в колене l
манометра стал ниже, чем в колене 2. Значит, давление в теплоприемнике I выше, чем в теплоприемнике II. А это говорит о том, что воздух в теплоприемнике, обращенном к зачерненной поверхности сосуда, нагрелся сильнее. Следовательно, тела с темной поверхностью излучают больше энергии (теплоты), чем тела со светлой поверхностью. Поэтому тела с темной поверхностью остывают быстрее, чем со светлой.
А есть ли различие в поглощении энергии этими телами? Видоизменим опыт. К сосуду с горячей водой, вся поверхность которого зачернена, повернем теплоприемники разными сторонами: I — черной, II — белой (рис. 33). Уровень жидкости в колене 1 манометра стал ниже. Значит, воздух в теплоприемнике, обращенном к сосуду черной стороной, поглотил больше энергии и нагрелся сильнее. Таким образом, тела с темной поверхностью поглощают больше энергии, чем тела со светлой поверхностью, а поэтому и нагреваются быстрее.
Тело, которое больше поглощает энергии, больше и излучает.
Этот факт учитывается в технике и быту. Самолеты, скафандры космонавтов (рис. 34), холодильники, морозильные камеры окрашивают в серебристый или светлые цвета, чтобы они меньше нагревались. В жару носят светлую одежду. Бак для душа на дачном участке красят в черный цвет, чтобы использовать солнечную энергию для нагревания воды.
Достаточно сильно излучают энергию тела человека и животных. Современные приборы (тепловизоры) позволяют не только зафиксировать излучение, но и показать различие излучений участков тела, имеющих разную температуру. На снимке (рис. 35) представлен «тепловой портрет» кота.
В северных районах иногда лед на реках окрашивают с самолета в черный цвет еще до наступления наводка, чтобы избежать бурного ледохода.
Для любознательных:
Отметим важную роль площади излучающей (или поглощающей) поверхности.
Так как тепловое излучение происходит с каждой единицы площади поверхности, то чем больше поверхность, тем больше излучается (поглощается) теплоты. Поэтому, например, радиаторы водяного отопления (рис. 36) имеют сложную ребристую поверхность, хотя при производстве проще и дешевле было бы изготавливать радиаторы более простых форм (прямоугольной, цилиндрической). Большая площадь нагретого тела увеличивает теплопередачу и другими способами — теплопроводностью и конвекцией.
Главные выводы:
- Перенос энергии от более нагретых тел к более холодным может осуществляться излучением.
- Излучение — единственный способ теплопередачи, не требующий наличия среды.
- Все нагретые тела не только излучают, но и поглощают энергию.
- Тела, окрашенные в темные цвета, больше поглощают и больше излучают энергии, чем тела, имеющие светлую окраску.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Какое излучение поможет согреться физика
«Физика — 11 класс»
Инфракрасное излучение
Электромагнитное излучение с частотами в диапазоне от 3 • 10 11 до 3,75 • 10 14 Гц называется инфракрасным излучением.
Его испускает любое нагретое тело даже в том случае, когда оно не светится.
Например, батареи отопления в квартире испускают инфракрасные волны, вызывающие заметное нагревание окружающих тел.
Поэтому инфракрасные волны часто называют тепловыми.
Не воспринимаемые глазом инфракрасные волны имеют длины волн, превышающие длину волны красного света (длина волны λ = 780 нм — 1 мм).
Максимум энергии излучения электрической дуги и лампы накаливания приходится на инфракрасные лучи.
Инфракрасное излучение применяют для сушки лакокрасочных покрытий, овощей, фруктов и т. д.
Созданы приборы, в которых не видимое глазом инфракрасное изображение объекта преобразуется в видимое.
Изготовляются бинокли и оптические прицелы, позволяющие видеть в темноте.
Ультрафиолетовое излучение
Электромагнитное излучение с частотами в диапазоне от 8 • 10 14 до 3 • 10 16 Гц называется ультрафиолетовым излучением (длина волны λ = 10—380 нм).
Обнаружить ультрафиолетовое излучение можно с помощью экрана, покрытого люминесцирующим веществом.
Экран начинает светиться в той части, на которую падают лучи, лежащие за фиолетовой областью спектра.
Ультрафиолетовое излучение отличается высокой химической активностью.
Повышенную чувствительность к ультрафиолетовому излучению имеет фотоэмульсия.
В этом можно убедиться, спроецировав спектр в затемненном помещении на фотобумагу.
После проявления бумага почернеет за фиолетовым концом спектра сильнее, чем в области видимого спектра.
Ультрафиолетовые лучи не вызывают зрительных образов: они невидимы.
Но действие их на сетчатку глаза и кожу велико и разрушительно.
Ультрафиолетовое излучение Солнца недостаточно поглощается верхними слоями атмосферы.
Поэтому высоко в горах нельзя оставаться длительное время без одежды и без темных очков.
Стеклянные очки, прозрачные для видимого спектра, защищают глаза от ультрафиолетового излучения, так как стекло сильно поглощает ультрафиолетовые лучи.
Впрочем, в малых дозах ультрафиолетовые лучи оказывают целебное действие.
Умеренное пребывание на солнце полезно, особенно в юном возрасте: ультрафиолетовые лучи способствуют росту и укреплению организма.
Кроме прямого действия на ткани кожи (образование защитного пигмента — загара, витамина D2), ультрафиолетовые лучи оказывают влияние на центральную нервную систему, стимулируя ряд важных жизненных функций в организме.
Ультрафиолетовые лучи оказывают также бактерицидное действие.
Они убивают болезнетворные бактерии и используются с этой целью в медицине.
Итак,
Нагретое тело испускает преимущественно инфракрасное излучение с длинами волн, превышающими длины волн видимого излучения.
Ультрафиолетовое излучение — более коротковолновое и обладает высокой химической активностью.
Шкала электромагнитных волн
Длина электромагнитных волн изменяется в широком диапазоне. Независимо от длины волны все электромагнитные волны обладают одинаковыми свойствами. Существенные различия наблюдаются при взаимодействии с веществом: коэффициенты поглощения и отражения зависят от длины волны.
Длина электромагнитных волн бывает самой различной: от 10 3 м (радиоволны) до 10 -10 м (рентгеновские лучи).
Свет составляет ничтожную часть широкого спектра электромагнитных волн.
При изучении этой малой части спектра были открыты другие излучения с необычными свойствами.
На рисунке изображена шкала электромагнитных волн с указанием длин волн и частот различных излучений:
Принято выделять:
низкочастотное излучение,
радиоизлучение,
инфракрасные лучи,
видимый свет,
ультрафиолетовые лучи,
рентгеновские лучи,
γ-излучение.
Принципиального различия между отдельными излучениями нет.
Все они представляют собой электромагнитные волны, порождаемые заряженными частицами.
Обнаруживаются электромагнитные волны в основном по их действию на заряженные частицы.
В вакууме электромагнитное излучение любой длины волны распространяется со скоростью 300 000 км/с.
Границы между отдельными областями шкалы излучений весьма условны.
Излучения различных длин волн отличаются друг от друга по способам их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.
Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей.
В первую очередь это относится к рентгеновскому и у-излучениям, сильно поглощаемым атмосферой.
По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.
Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом.
Коротковолновые излучения (рентгеновское и особенно γ-лучи) поглощаются слабо.
Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений.
Коэффициент отражения электромагнитных волн также зависит от длины волны.
Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин
Излучение и спектры. Физика, учебник для 11 класса — Класс!ная физика
Тепловое излучение тел
Испускаемый источником свет уносит с собой энергию. Существует много различных механизмов подвода энергии к источнику света. В тех случаях, когда необходимая энергия сообщается нагреванием, т. е. подводом тепла, излучение называется тепловым или температурным. Этот вид излучения для физиков конца XIX века представлял особый интерес, так как в отличие от всех других видов люминесценции, тепловое излучение может находиться в состоянии термодинамического равновесия с нагретыми телами.
Изучая закономерности теплового излучения тел, физики надеялись установить взаимосвязь между термодинамикой и оптикой.
Если в замкнутую полость с зеркально отражающими стенками поместить несколько тел, нагретых до различной температуры, то, как показывает опыт, такая система с течением времени приходит в состояние теплового равновесия, при котором все тела приобретают одинаковую температуру. Тела обмениваются энергией только путем испускания и поглощения лучистой энергии. В состоянии равновесия процессы испускания и поглощения энергии каждым телом в среднем компенсируют друг друга, и в пространстве между телами плотность энергии излучения достигает определенного значения, зависящего только от установившейся температуры тел. Это излучение, находящееся в термодинамическом равновесии с телами, имеющими определенную температуру, называется равновесным или черным излучением. Плотность энергии равновесного излучения и его спектральный состав зависят только от температуры.
Если через малое отверстие заглянуть внутрь полости, в которой установилось термодинамическое равновесие между излучением и нагретыми телами, то глаз не различит очертаний тел и зафиксирует лишь однородное свечение всей полости в целом.
Пусть одно из тел в полости обладает свойством поглощать всю падающую на его поверхность лучистую энергию любого спектрального состава. Такое тело называют абсолютно черным. При заданной температуре собственное тепловое излучение абсолютно черного тела, находящегося в состоянии теплового равновесия с излучением, должно иметь тот же спектральный состав, что и окружающее это тело равновесное излучение. В противном случае равновесие между абсолютно черным телом и окружающем его излучением не могло бы установиться. Поэтому задача сводится к изучению спектрального состава излучения абсолютно черного тела. Решить эту задачу классическая физика оказалась не в состоянии.
Для установления равновесия в полости необходимо, чтобы каждое тело испускало ровно столько лучистой энергии, сколько оно поглощает. Это одна из важнейших закономерностей теплового излучения. Отсюда следует, что при заданной температуре абсолютно черное тело испускает с поверхности единичной площади в единицу времени больше лучистой энергии, чем любое другое тело.
Модель абсолютно черного тела
Абсолютно черных тел в природе не бывает. Хорошей моделью такого тела является небольшое отверстие в замкнутой полости (рис. 5.1.1). Свет, падающий через отверстие внутрь полости, после многочисленных отражений будет практически полностью поглощен стенками, и снаружи отверстие будет казаться совершенно черным. Но если полость нагрета до определенной температуры T, и внутри установилось тепловое равновесие, то собственное излучение полости, выходящее через отверстие, будет излучением абсолютно черного тела. Именно таким образом во всех экспериментах по исследованию теплового излучения моделируется абсолютно черное тело.
С увеличением температуры внутри полости будет возрастать энергия выходящего из отверстия излучения и изменяться его спектральный состав.
Распределение энергии по длинам волн в излучении абсолютно черного тела при заданной температуре T характеризуется излучательной способностью r (λ, T), равной мощности излучения с единицы поверхности тела в единичном интервале длин волн. Произведение r (λ, T) Δλ равно мощности излучения, испускаемого единичной площадкой поверхности по всем направлениям в интервале Δλ длин волн. Аналогично можно ввести распределение энергии по частотам r (ν, T). Функцию r (λ, T) (или r (ν, T)) часто называют спектральной светимостью, а полный поток R (T) излучения всех длин волн, равный
называют интегральной светимостью тела.
К концу XIX века излучение абсолютно черного тела было хорошо изучено экспериментально.
В 1879 году Йозеф Стефан на основе анализа экспериментальных данных пришел к заключению, что интегральная светимость R (T) абсолютно черного тела пропорциональна четвертой степени абсолютной температуры T:
Несколько позднее, в 1884 году, Людвиг Больцман вывел эту зависимость теоретически, исходя из термодинамических соображений. Этот закон получил название закона Стефана–Больцмана. Числовое значение постоянной σ, по современным измерениям, составляет
σ = 5,671·10 –8 Вт / (м 2 · К 4 ).
Спектральное распределение r (λ, T) излучения черного тела при различных температурах
К концу 90-х годов XIX века были выполнены тщательные экспериментальные измерения спектрального распределения излучения абсолютно черного тела, которые показали, что при каждом значении температуры T зависимость r (λ, T) имеет ярко выраженный максимум (рис. 5.1.2). С увеличением температуры максимум смещается в область коротких длин волн, причем произведение температуры T на длину волны λm, соответствующую максимуму, остается постоянным:
Это соотношение ранее было получено Вином из термодинамики. Оно выражает так называемый закон смещения Вина: длина волны λm, на которую приходится максимум энергии излучения абсолютно черного тела, обратно пропорциональна абсолютной температуре T. Значение постоянной Вина
При практически достижимых в лабораторных условиях температурах максимум излучательной способности r (λ, T) лежит в инфракрасной области. Только при T ≥ 5·10 3 К максимум попадает в видимую область спектра. Максимум энергии излучения Солнца приходится примерно на 470 нм (зеленая область спектра), что соответствует температуре наружных слоев Солнца около 6200 К (если рассматривать Солнце как абсолютно черное тело).
Успехи термодинамики, позволившие вывести законы Стефана–Больцмана и Вина теоретически, вселяли надежду, что, исходя из термодинамических соображений, удастся получить всю кривую спектрального распределения излучения черного тела r(λ, T). В 1900 году эту проблему пытался решить знаменитый английский физик Д. Релей, который в основу своих рассуждений положил теорему классической статистической механики о равномерном распределении энергии по степеням свободы в состоянии термодинамического равновесия. Эта теорема была применена Релеем к равновесному излучению в полости. Несколько позже эту идею подробно развил Джинс. Таким путем удалось получить зависимость излучательной способности абсолютно черного тела от длины волны λ и температуры T:
Это соотношение называют формулой Релея–Джинса. Оно согласуется с экспериментальными данными только в области достаточно длинных волн (рис. 5.1.3.). Кроме того, из нее следует абсурдный вывод о том, что интегральная светимость R (T) черного тела должна обращаться в бесконечность, а, следовательно, равновесие между нагретым телом и излучением в замкнутой полости может установиться только при абсолютном нуле температуры.
Сравнение закона распределения энергии по длинам волн r (λ, T) в излучении абсолютно черного тела с формулой Релея–Джинса при T = 1600 К
Таким образом, безупречный с точки зрения классической физики вывод приводит к формуле, которая находится в резком противоречии с опытом. Стало ясно, что решить задачу о спектральном распределении излучения абсолютно черного тела в рамках существующих теорий невозможно. Эта задача была успешно решена М. Планком на основе новой идеи, чуждой классической физике.
Планк пришел к выводу, что процессы излучения и поглощения электромагнитной энергии нагретым телом происходят не непрерывно, как это принимала классическая физика, а конечными порциями – квантами. Квант – это минимальная порция энергии, излучаемой или поглощаемой телом. По теории Планка, энергия кванта E прямо пропорциональна частоте света:
E = hν,
где h – так называемая постоянная Планка. h = 6,626·10 –34 Дж·с. Постоянная Планка – это универсальная константа, которая в квантовой физике играет ту же роль, что и скорость света в СТО.
На основе гипотезы о прерывистом характере процессов излучения и поглощения телами электромагнитного излучения Планк получил формулу для спектральной светимости абсолютно черного тела. Формулу Планка удобно записывать в форме, выражающей распределение энергии в спектре излучения абсолютно черного тела по частотам ν, а не по длинам волн λ.
Здесь c – скорость света, h – постоянная Планка, k – постоянная Больцмана, T – абсолютная температура.
Формула Планка хорошо описывает спектральное распределение излучения черного тела при любых частотах. Она прекрасно согласуется с экспериментальными данными. Из формулы Планка можно вывести законы Стефана–Больцмана и Вина. При hν << kT формула Планка переходит в формулу Релея–Джинса.
Решение проблемы излучения черного тела ознаменовало начало новой эры в физике. Нелегко было примириться с отказом от классических представлений, и сам Планк, совершив великое открытие, в течение нескольких лет безуспешно пытался понять квантование энергии с позиции классической физики.
Процессы лучистого нагрева
В земной атмосфере воздушную метеообстановку дополняет наличие излучения Солнца, которое может кардинально изменить впечатление человека о погоде. Так и в бане на климатические параметры накладывается влияние теплового излучения от нагретых стенок печи, потолка, стен, излучателей.
Тепловое излучение (называемое также инфракрасным излучением, лучистым нагревом, лучистой теплопередачей, лучистым теплопереносом, радиационной составляющей теплового потока и т. п.) представляет собой электромагнитное излучение светового диапазона (называемого также светом, световой радиацией, световыми лучами, световым излучением, световыми волнами, квантами и т. п.). Световой диапазон волн 10⁻⁸10⁻⁴метров (от 0,01 мкм до 100 мкм) располагается между диапазоном радиоволн и диапазоном рентгеновских волн и отличается тем, что поглощается биологическими тканями с выделением тепла. Световой диапазон в свою очередь подразделяется на ультрафиолетовые лучи с длиной волны менее 0,4 мкм (0,315-0,400 мкм А-диапазон; 0,28-0,315 мкм В-диапазон; 0,200-0,280 мкм С-диапазон, менее 0,2 мкм — вакуумный ультрафиолет), видимые лучи (фиолетовые 0,40-0,42 мкм, синие 0,42-0,49 мкм, зелёные 0,49-0,53 мкм, жёлтые 0,53-0,59 мкм, оранжевые 0,59-0,65 мкм, красные 0,65-0,75 мкм) и инфракрасные лучи с длиной волны более 0,75 мкм (0,75-1,5 мкм А-диапазон; 1,5-3,0 мкм В-диапазон; более 3,0 мкм С-диапазон). На рис. 38 представлен спектральный состав излучения Солнца, охватывающий и ультрафиолетовые, и видимые, и инфракрасные лучи. Излучение Солнца по спектральному составу близко к излучению абсолютно чёрного тела при температуре 5600°С. Столь высоких температур в бане не бывает: высокоинтенсивные источники света типа софитов имеют температуру порядка 3000°С, обычные лампочки накаливания 2000°С, раскалённые угли в печи 1500°С, внутренние стенки топливника кирпичной печи 1000°С, стенки металлической печи 500°С, внешние стенки топливника кирпичной печи 100°С. Спектральный состав излучения поверхностей аналогичен составу излучения абсолютно чёрного тела (рис. 39) с поправкой на степень черноты поверхности. С уменьшением температуры излучающей поверхности очень быстро уменьшается общая мощность излучения (теплоотдача излучением), равная площади под кривой Планка W=εσ(T+273)⁴, где σ=5,67•10⁻⁸ Вт/(м²град⁴) — постоянная Стефана-Больцмана, (Т+273) — абсолютная температура в градусах Кельвина, Т — температура в градусах Цельсия (рис. 40). Кроме того, с уменьшением температуры излучающей поверхности спектральный состав излучения сдвигается в сторону инфракрасного излучения, и потому всё меньшая доля приходится на видимый диапазон. Максимум (пик) спектральной зависимости мощности излучения Bλ (кривой Планка) приходится по закону Вина на длину волны λ max (мкм) = 2898/(Т+273), где Т — температура в градусах Цельсия °С. Если площадь под кривой Планка принять равной 100%, то площадь под восходящей ветвью λ< λ max составит 25%, а под нисходящей λ > λ max составит 75% суммарной площади. В результате с уменьшением температуры свечение раскалённой поверхности из ослепительно белого становится красным, а потом невидимым:
— ослепительно белый цвет — 1300°С и выше
— светло-жёлтый — 1200°С
— тёмно-жёлтый — 1100°С
— оранжевый — 1000°С
— красный — 900°С
— вишнёво-алый — 800°С
— тёмно-красный — 700°С
— коричнево-красный — 600°С
— тёмно-коричневый (заметен только в темноте) — 500°С
Рис. 38. Спектральный состав излучения Солнца в относительных единицах: 1 — до прохождения атмосферы, 2 — после прохождения атмосферы с учётом поглощения компонентами атмосферы. Длина волны 1 мкм (микрометр, микрон) равна одной тысячной миллиметра (мм) и одной миллионной метра (м). Иногда микрон обозначается как 1 мк. Тысячная доля микрона называется миллимикроном 1 ммк (или нанометром 1 нм=1 ммк), который в свою очередь равен десяти ангстремам (1 А=10⁻¹ºм). |
Рис. 39. Спектральный состав излучения абсолютно чёрного тела (кривая Планка) при различных температурах, указанных у кривых. Спектральный интервал V соответствует видимому диапазону. Спектральный интервал А соответствует ближнему диапазону инфракрасного излучения (А-диапазон 0,75-1,5 мкм). |
Рис. 40. Полная (интегральная по спектру) теплоотдача абсолютно чёрной поверхности с температурами 0-400°С во внешнюю среду с температурой 0°С: 1 — инфракрасным излучением, 2 — теплопроводностью (кондуктивной теплопередачей). Мощность инфракрасного излучения [σ(273+Т)⁴ — σ 273⁴], является суммарной по всему спектру излучения в полное полупространство (во все стороны). |
Таким образом, появление заметного видимого свечения поверхности, соответствующее температуре порядка 500°С, уже отвечает мощностям теплового излучения порядка 20 кВт/м². Такая величина теплового потока является порогом воспламеняемости наиболее легко воспламеняемой группы ВЗ горючих материалов по ГОСТ 30402-96. То есть появление видимого свечения поверхности, например печей, может свидетельствовать не только о возможности травматических последствий касания, но и об опасности возникновения пожара в помещении, в том числе за счёт воспламенения материалов, даже не касающихся нагретых поверхностей. Все знают, как горячо стоять у раскалённой печки-«буржуйки» или у сильно разгоревшегося костра. Поэтому в целях безопасности для нагрева помещения предпочитают использовать инфракрасные излучатели с как можно более низкой температурой излучающей поверхности. Но меньшая мощность излучения низкотемпературных излучателей приводит к необходимости использования больших площадей излучателей для обеспечения заданного уровня теплоотдачи. С этой точки зрения инфракрасными излучателями в оптимальном случае должны быть сами поверхности стен и потолка помещения. В этом смысле поступающее со всех сторон на тело человека инфракрасное излучение создаёт ощущение обычного тепла (как от тёплого воздуха) и ассоциируется в быту с более тёплыми метеорологическими условиями.
Наиболее знакомый для человека уровень мощности инфракрасного излучения — солнечная постоянная 1,4 кВт/м², равная интенсивности солнечного излучения, достигающего орбиты Земли. При прохождении через земную атмосферу солнечное излучение ослабляется на 20% за счёт поглощения молекулами кислорода, азота, углекислого газа, воды и озона и ещё на 40% за счёт пыли и дыма (рис. 38). В утренние и вечерние часы путь прохождения лучей в атмосфере очень сильно увеличивается, что приводит к ещё большему ослаблению интенсивности солнечного излучения на уровне моря. Таким образом, в полдень характерный уровень интенсивности солнечного излучения может достигать 1 кВт/м² в горах и тропиках и 0,5 кВт/м² в средней полосе России. Эта величина относится к плоскости, ориентированной строго на Солнце, и не зависит от времени года. С учётом наклона Солнца над горизонтом на садовый участок площадью 6 соток даже зимой в солнечный день поступает до 100 кВт солнечной энергии в полдень. Эта пиковая полуденная величина летом ещё более возрастает до 150 кВт и является основой жизни.
Тепловое воздействие прямого солнечного излучения отчётливо ощущается человеком и может привести к тепловому (солнечному) удару уже при температурах 25-30°С. Это свидетельствует о том, что тепловые потоки 0,5-1 кВт/м² и в бане могут оказать определяющее влияние на тепловой режим человеческого организма. Человек одинаково воспринимает воздействие теплового излучения при сухой и мокрой коже. Что касается нагрева «неживых» материалов, то солнечное излучение способно раскалить, например, песок на пляже или в пустыне до температур порядка 100°С. Действительно, подъём температуры доски на солнце продолжается до тех пор, пока теплоотвод от поверхности доски за счёт собственного излучения доски и кондуктивного охлаждения (см. рис. 40) не сравняется с мощностью падающего солнечного излучения порядка 1 кВт/м², что и происходит при температурах порядка 100°С. С другой стороны, температура потолка в бане на уровне 100°С обеспечивает мощность инфракрасного излучения на уровне обычных в России мощностей солнечного излучения.
Инфракрасное излучение практически не поглощается воздухом в слоях 2-10 м, характерных для бань, и не разогревает его, распространяется прямолинейно и поступает из излучателя непосредственно на стены, пол, потолок, разогревая их. «Управлять» мощностью инфракрасного излучения можно только регулируя температуру излучателя, а также устанавливая на пути излучения различного рода экраны. Такими экранами окружают, например, раскалённые металлические стенки топливников печей (в виде кожухов-калориферов), загораживают особо холодные стены портьерами, ширмами и т. п.
Рис. 41. Спектральная зависимость коэффициента отражения оптического излучения кожей человека. V — спектральный интервал видимого излучения, А — спектральный интервал A-диапазона инфракрасного излучения. |
Рис. 42. Мощность инфракрасного излучения (интегральная по всему спектру) с 1 м² абсолютно чёрного тела во все стороны (в полупространство) при температурах от 0 до 100°С: 1 — рассчитанная по формуле σ(273+Т)⁴, 2 — экстраполяционная прямая 0,54+0,007(Т-40), где Т в °С. |
Инфракрасное излучение исходит и от тела человека, охлаждая его. Поскольку инфракрасное излучение при температурах ниже 100°С является длинноволновым (λ>3 мкм), для которого степень черноты кожи человека (а также древесины) близка к единице ε=1-R
=1 (где R — коэффициент отражения, приведённый на рис. 41), то мощность излучения тела человека (и древесины) близка к мощности излучения абсолютно чёрного тела (рис. 42). Все рассуждения предыдущих разделов относились к случаю отсутствия инфракрасного нагрева или охлаждения тела человека, то есть предполагалось, что стены бани (или иного помещения) имеют температуру человеческого тела порядка 40°С. Но если стены бани имеют температуру большую или меньшую, чем температура тела человека, то тело человека дополнительно нагревается или охлаждается.
При слабых (до 20°С) бытовых отклонениях температур стен от тем-пературы человека ΔТ<20°С тело отдаёт или получает лучистое тепло в количестве qлyч=αлΔT, где αл =7 Вт/(м²•град) — коэффициент бытовой лучистой теплопередачи (рис. 42). При температурах 60-120°С коэффициент лучистой теплопередачи возрастает до 10 Вт/(м² град). При температуре стен помещения порядка 0°С раздетый человек даже с сухой кожей отчётливо ощущает «леденящий холод стен» даже при температурах воздуха 40°С и максимальной влажности воздуха, поскольку теряет за счёт собственного инфракрасного излучения 0,5 Вт/м², а получает за счёт поглощения инфракрасного излучения, исходящего от холодных стен, всего 0,3 Вт/м². В результате суммарный баланс отрицателен и очень велик 0,2 Вт/м². Для компенсации столь высоких теплопотерь необходимо поднять температуру воздуха в помещении на 20-30°С, то есть до 60-70°С. Если же температуры стен и потолка составляют 100°С, то суммарный тепловой баланс (по лучистому теплу) раздетого человека с сухой кожей будет положительным 0,5 Вт/м², и воздух можно охладить до минус 10°С.
В обыденной жизни человек отчётливо ощущает изменения лучистых потоков при изменениях температуры стен всего в несколько градусов (при постоянстве температуры воздуха). Так, строительные нормы и правила СНиП 41-01-2003 рекомендуют не использовать на постоянных рабочих местах в промышленных производствах потоки лучистого тепла более 35 Вт/м², что соответствует наличию излучающих поверхностей с температурой на 5°С выше температуры человека. А при величинах лучистого потока более 140 Вт/м² необходимо применять воздушное душирование (обдув открытых частей тела человека воздухом). Если человека окружают излучающие поверхности с разной температурой, то необходимо соответствующим образом суммировать и усреднить мощности излучений, достигающих тела человека, с разных поверхностей. В связи с этим отметим, что упомянутые выше экраны могут значительно изменить картину лучистых потоков, «забирая» тепловую энергию из воздуха и преобразуя её в лучистое тепло, или, наоборот, поглощая потоки лучистой энергии и преобразовывая её в тепловую энергию воздуха. Например, застеклённый оконный проём в морозную погоду представляет собой холодный элемент помещения, «забирающий» лучистую энергию (а точнее, слабо излучающий тепло элемент и слабо отражающий падающее на него излучение). Но если загородить окно экраном (например, в виде матерчатой шторы), то экран приобретает температуру, близкую к комнатной, и будет излучать обратно в помещение значительно больше лучистой энергии. Этот эффект издавна применялся в жилищном строительстве, например, при обшивке тканью (гобеленами) каменных стен замков в Западной Европе Средневековья, при отгораживании шторами спальных мест и т. п. При этом практически не важна плотность или теплопроводность тканей, значительно большее влияние имеет количество экранов (слоёв экранирования). Также ясно, что в пасмурную ночь теплее, чем в ясную звёздную, поскольку со всех предметов на Земле тепловое излучение в ясную погоду (даже днём) безвозвратно «улетает» в космос (имеющий температуру минус 273°С), а облака частично компенсируют эти теплопотери собственным излучением с температурой капель воды в облаке, например, 0°С. Напомним также, что атмосфера имеет «окна» оптической прозрачности 3,4-4,2 мкм и 8-12 мкм. Эти «окна» ограничены с обеих сторон спектральными полосами поглощения молекул воды и углекислого газа. Поэтому при высокой влажности воздуха атмосфера «закрывает» эти «окна» прозрачности, и излучение уже не может «улетать в космос» (парниковый эффект).
В заключение рассмотрим вопрос физического взаимодействия инфракрасного излучения с телом человека. При падении светового потока на кожу часть лучистой энергии отражается, а другая часть проникает внутрь тканей, ослабляясь по мере углубления за счёт поглощения компонентами биологической ткани. Спектральная зависимость коэффициента отражения представлена на рис. 41, откуда видно, что кожа отражает только видимый и ближний инфракрасный (ИК) свет (так называемый А-диапазон ИК-излучения 0,75-1,5 мкм). В этом легко убедиться, посветив в темноте фонариком на ладонь и наблюдая отражённый свет на белом экране (стене). Инфракрасное же излучение с длиной волны более 1,5 мкм практически не отражается и поглощается тканями с эффектом обычного нагрева.
Теперь прислоним рефлектор фонарика к ладони (или загородимся ладонью от света электрической лампочки). Мы увидим, что промежутки между сомкнутыми пальцами красные. Это значит, что биологические ткани пропускают (частично) красный цвет (рис. 43). То есть красный цвет глубоко проникает под кожу. Действительно, если посветить фонариком в закрытые глаза, то отчётливо почувствуем свет, проникающий через ткань век и воспринимаемый как «свет, который мешает уснуть». Экспериментальные измерения показывают, что коэффициент поглощения тканей минимален в видимой красной и ближней (коротковолновой) инфракрасной области (в A-диапазоне ИК-излучения). Таким образом, излучение с длинами волн 0,75-1,5 мкм хорошо отражается от кожи, но в то же время неотразившаяся часть излучения глубоко проникает в ткань. Считается, что глубоко проникающее излучение обеспечивает прогрев тканей, причём мягкий и безболезненный прогрев, поскольку поглощение тепла «размыто» по большому объёму подкожной ткани и по большому количеству терморецепторов. Этому способствует и очень высокое рассеивание красного и инфракрасного излучения в тканях человека. Так, просвечивая мощным источником света ладонь, вы не сможете увидеть костей на фоне общего красного свечения. Поэтому источники света с большой долей ближнего инфракрасного излучения (Солнце, юпитеры, софиты, лампы накаливания, в том числе широко известные синие лампы-рефлекторы Минина и красные с поляризованным светом типа Биотрон) используются в физиотерапии как лечебное средство. В действительности же на значительные глубины 1-4 см проникают лишь доли процента излучения, поэтому даже когерентный красный свет в гелий-неоновой лазеротерапии поглощается преимущественно кожей, которая может воспринимать поглощенное излучение как ожог. В то же время, охлаждая кожу (водой, стеклом) и облучая её мощным ИК-излучением A-диапазона можно добиться очень интересных эффектов. Например, если облучать ванну мощным ИК-излучением А-диапазона, то можно с комфортом находиться даже в ледяной воде не замерзая. Или можно приложить к коже оптически прозрачную пластинку стекла и облучить через неё кожу импульсом очень мощного ИК-излучения A-диапазона (сотни кВт/м²). Тогда верхний слой кожи, в котором находятся высокочувствительные терморецепторы, не успевает нагреваться из-за контакта со стеклом и не чувствует боли от ожога, но тем не менее глубинные области кожи, где располагаются луковицы волос, на мгновение прогреваются до температур порядка 70°С. Это оказывается достаточным, чтобы погибли зародыши волос, что приводит к эффективной и безболезненной эпиляции, используемой в косметологии.
Рис. 43. Коэффициент поглощения к, определяющий ослабление интенсивности луча света I=I₀•exp(-кх), где I₀ — интенсивность света, падающего на слой вещества толщиной х, I — интенсивность света прошедшего слой вещества толщиной х. 1 — спектральная зависимость коэффициента поглощения света мягкими тканями организма человека, 2 — спектральная зависимость коэффициента поглощения света водой, V — спектральный интервал видимого излучения, А — спектральный интервал А-диапазона инфракрасного излучения (см. В.И. Карандашов и др., Фототерапия, М.: Медицина, 2001 г.). |
Выделить инфракрасное излучение A-диапазона из общего потока инфракрасного излучения легко, достаточно поместить между источником и человеком лист самого обыкновенного оконного стекла. Стекло поглощает излучение В и С-диапазонов, но пропускает излучение А-диапазона. Так, если источником инфракрасного излучения является металлическая печь или камфорка электроплиты, то лист стекла, помещённый между источником излучения и человеком, полностью поглотит поток лучистого тепла и не пропустит его на лицо или ладонь, поскольку нагретые до 400-1000°С поверхности излучают только инфракрасные лучи С-диапазона. Но если источником инфракрасного излучения является лампа накаливания (например, лампа Минина с рефлектором), а тем более Солнце, то лист стекла практически не ослабит поток лучистого тепла, поскольку нагретые до 2000-6000°С поверхности излучают преимущественно инфракрасные лучи A-диапазона. Аналогичными оптическими свойствами обладают многие прозрачные пластические массы и жидкости, в частности вода, являющаяся основным компонентом мягких тканей организма человека (рис. 43). Проверить это так же легко: надо между ладонью и печью пролить воду (плоской струёй или душем) и почувствовать разницу. А так как кожа наполовину состоит из воды, то кожа тоже поглотит ИК-излучение С-диапазона. Аналогично, вода (пот) на теле человека поглощает излучение с λ>1,5 мкм от печи, но практически не ослабляет инфракрасное излучение от Солнца или электрической лампочки. Можно использовать и отражательные свойства материалов. Если мощной лампой накаливания (или Солнцем) осветить древесину (лучше колотую или строганую), натуральную поделочную кожу (крупного рогатого скота) или даже кожу человека (см. рис. 41), то отразится преимущественно именно ближний инфракрасный свет А-диапазона. Аналогичного эффекта можно достичь при отражении на стёклах, в том числе с отражающим слоем (зеркалах). Так фильтры ИКС-1 и ИКС-7 пропускают излучение с длинами волн 0,8-3 мкм, кварц — 0,2-6 мкм, флюорит CaF₂ до 10 мкм.
Японские производители инфракрасных саун (ИК-кабин) в целях рекламы беспочвенно утверждают, что длинноволновое ИК-излучение С-диапазона с длиной волны порядка 10 мкм, испускаемое кожей человека, якобы обладает способностью глубоко проникать в ткани организма человека в силу каких-то особых «резонансных свойств», присущих «живому» излучению. Эти особые свойства обуславливают якобы «полезный» эффект чудотворного глубокого прогрева тканей методом «возложения рук» колдунами-целителями при приближении ладоней без касания к телу. Кроме того, такое излучение якобы жизненно необходимо человеку, так как именно им он согревается с момента зачатия в утробе матери. Поэтому такое длинноволновое излучение в рекламе ИК-саун названо «лучами жизни». Безусловно, все эти красивые утверждения являются крайне удачной находкой рекламы, но не имеют ничего общего с фундаментальной истиной. Каждый вправе верить или не верить в колдовские возможности «лучей жизни», чудотворных «возложений рук» и «объятий» ИК-саун. Но отметим, что в ИК-кабинах речь идёт о самом обычном нагреве, таком же, как от обычных печей. Кроме того, согласно физическому закону Кирхгофа, если какая-либо (любая) поверхность сильно излучает в каком-либо спектральном диапазоне, то она и сильно поглощает в этом диапазоне (и плохо отражает). Поэтому если понимать «резонанс» в обычном смысле как пик поглощения, то кожа ребёнка как раз и не даёт «лучам жизни» пройти через себя вглубь тела. Более того температуры трубчатых (в том числе керамических) электронагревателей — инфракрасных излучателей японских ИК-саун — вовсе не равны температуре человеческого тела и достигают 500°С, что полностью перечёркивает все рекламные «доводы» производителей. Если бы были справедливы утверждения рекламы о «лучах жизни», то более полезными были бы обычные бани с температурой стен и потолка 40-100°С, особенно турецкие хаммамы. К сожалению, доказательств высокой прозрачности тела человека в длинноволновой области спектра нет (см. рис. 43).
Вслед за японскими фирмами выпуск ИК-саун (как новой престижной продукции) наладили фирмы США, Германии, Финляндии, Нидерландов и России, и, что характерно, с излучателями самых разных температур (и соответственно, совсем разных спектральных составов), причём каждая фирма утверждает, что её спектральный состав наиболее полезен для здоровья. Если отбросить псевдомедицинские доводы, то можно сообразить, что все эти ИК-кабины являются, по существу, аналогами ИК-камер (сушилок) для полимеризационного отверждения («сушки») лакокрасочных автомобильных покрытий.
Малая мощность ИК-облучения, присущая всем этим кабинам, не превышает энергетический уровень привыкания 0,2 кВт/м². При таких мощностях облучения всё равно, нагревается ли только кожа или вся подкожная ткань. Так что в ИК-саунах речь идёт о самом обычном нагреве, иногда, может быть, и полезном (как и любой иной нагрев, например, обогрев у батареи центрального отопления).
Вместе с тем отметим, что некоторые нагретые керамические материалы на самом деле имеют спектр излучения, отличный от спектра излучения абсолютно чёрного тела. Так, известные штифты Нернста с температурой более 2000°С дают белое излучение с весьма резкими максимумами в области длин волн 2 и 6 мкм, что определяется спектральной зависимостью черноты керамики. Биологических особенностей воздействия штифтов Нернста на человека не отмечалось.