Как рождается энергия Солнца?
Есть одна причина, по которой Земля является единственным местом в Солнечной системе, где существует и процветает жизнь. Конечно, ученые подозревают, что под ледяной поверхностью Европы или Энцелада может тоже существовать микробная или даже водная форма жизни, также ее могут найти и в метановых озерах Титана. Но до поры до времени Земля остается единственным местом, которое обладает всеми необходимыми условиями для существования жизни.
Одна из причин этому заключается в том, что Земля расположена в потенциально обитаемой зоне вокруг Солнца (так называемой «зоне Златовласки»). Это означает, что она находится в нужном месте (не слишком далеко и не слишком близко), чтобы получать обильную энергию Солнца, в которую входит свет и тепло, необходимые для протекания химических реакций. Но как именно Солнце обеспечивает нас энергией? Какие этапы проходит энергия на пути к нам, на планету Земля?
Все самые свежие новости из мира высоких технологий вы также можете найти в Google News.
Ответ начинается с того, что Солнце, как и все звезды, может вырабатывать энергию, поскольку является, по сути, массивным термоядерным реактором. Ученые считают, что оно началось с огромного облака газа и частиц (т. е. туманности), которое коллапсировало под силой собственной тяжести — это так называемая теория туманности. В этом процессе родился не только большой шар света в центре нашей Солнечной системы, но и водород, собранный в этом центре, начал синтезироваться с образованием солнечной энергии.
Технически известный как ядерный синтез, этот процесс высвобождает огромное количество энергии в виде тепла и света. Но на пути из центра Солнца к планете Земля эта энергия проходит через ряд важных этапов. В конце концов, все сводится к слоям Солнца, и роль каждого из них играет важную роль в процессе обеспечения нашей планеты важнейшей для жизни энергией.
Ядро Солнца — это область, которая простирается от центра до 20-25% радиуса светила. Именно здесь, в ядре, производится энергия, порождаемая преобразованием атомов водорода (H) в молекулы гелия (He). Это возможно благодаря огромному давлению и высокой температуре, присущим ядру, которые, по оценкам, эквивалентны 250 миллиардам атмосфер (25,33 триллиона кПа) и 15,7 миллионам градусов по Цельсию, соответственно.
Конечным результатом является слияние четырех протонов (молекул водорода) в одну альфа-частицу — два протона и два нейтрона, связанных между собой в частицу, идентичной ядру гелия. В этом процессе высвобождается два позитрона, а также два нейтрино (что меняет два протона на нейтроны) и энергия.
Ядро — единственная часть Солнца, которая производит значительное количество тепла в процессе синтеза. По сути, 99% энергии, произведенной Солнцем, содержится в пределах 24% радиуса Солнца. К 30% радиуса синтез почти целиком прекращается. Остаток Солнца подогревается энергией, которая передается из ядра через последовательные слои, в конечном счете достигая солнечной фотосферы и утекая в космос в виде солнечного света или кинетической энергии частиц.
Солнце высвобождает энергию, преобразуя массу в энергию со скоростью 4,26 миллиона метрических тонн в секунду, что эквивалентно 38,460 септиллионам ватт в секунду. Чтобы вам было понятнее, это эквивалентно взрывам 1 820 000 000 «царь-бомб» — самой мощной термоядерной бомбы в истории человечества.
Зона лучистого переноса
Эта зона находится сразу после ядра и простирается на 0,7 солнечного радиуса. В этом слое нет тепловой конвекции, но солнечная материя очень горячая и достаточно плотная, чтобы тепловое излучение запросто передавало интенсивное тепло из ядра наружу. В основном она включает ионы водорода и гелия, испускающие фотоны, которые проходят короткое расстояние и поглощаются другими ионами.
Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.
Температура этого слоя пониже, примерно от 7 миллионов градусов ближе к ядру до 2 миллионов градусов на границе конвективной зоны. Плотность тоже падает в сто раз с 20 г/см³ ближе к ядру до 0,2 г/см³ у верхней границы.
Конвективная зона
Это внешний слой Солнца, на долю которого приходится все, что выходит за рамки 70% внутреннего радиуса Солнца (и уходит примерно на 200 000 километров ниже поверхности). Здесь температура ниже, чем в радиационной зоне, и тяжелые атомы не полностью ионизированы. В результате радиационный перенос тепла проходит менее эффективно, и плотность плазмы достаточно низка, чтобы позволить появляться конвективным потокам.
Из-за этого поднимающиеся тепловые ячейки переносят большую часть тепла наружу к фотосфере Солнца. После тог, как эти ячейки поднимаются чуть ниже фотосферической поверхности, их материал охлаждается, а плотность увеличивается. Это приводит к тому, что они опускаются к основанию конвективной зоны снова — где забирают еще тепло и продолжают конвективный цикл.
На поверхности Солнца температура падает до примерно 5700 градусов по Цельсию. Турбулентная конвекция этого слоя Солнца также вызывает эффект, который вырабатывает магнитные северный и южный полюса по всей поверхности Солнца.
Именно в этом слое также появляются солнечные пятна, которые кажутся темными по сравнению с окружающей область. Эти пятна соответствуют концентрациям потоков магнитного поля, которые осуществляют конвекцию и приводят к падению температуры на поверхности по сравнению с окружающим материалом.
Фотосфера
Наконец, есть фотосфера, видимая поверхность Солнца. Именно здесь солнечный свет и тепло, излученные и поднятые на поверхность, распространяются в космос. Температуры в этом слое варьируются между 4500 и 6000 градусами. Поскольку верхняя часть фотосферы холоднее нижней, Солнце кажется ярче в центре и темнее по бокам: это явление известно как затемнение лимба.
Толщина фотосферы — сотни километров, именно в этой области Солнце становится непрозрачным для видимого света. Причина этого в уменьшении количества отрицательно заряженных ионов водорода (H-), которые с легкостью поглощают видимый свет. И наоборот, видимый свет, который мы видим, рождается в процессе реакции электронов с атомами водорода с образованием ионов H-.
Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.
Энергия, испускаемая фотосферой, распространяется в космосе и достигает атмосферы Земли и других планет Солнечной системы. Здесь, на Земле, верхний слой атмосферы (озоновый слой) фильтрует большую часть ультрафиолетового излучения Солнца, но пропускает часть на поверхность. Затем эта энергия поглощается воздухом и земной корой, согревает нашу планету и обеспечивает организмы источником энергии.
Солнце находится в центре биологических и химических процессов на Земле. Без него жизненный цикл растений и животных закончился бы, циркадные ритмы всех земных существ были бы сорваны, и жизнь на Земле перестала бы существовать. Важность Солнца была признана еще в доисторические времена, и многие культуры рассматривали его как божество (и зачастую помещали его в качестве главного божества в свои пантеоны).
Однако только в последние несколько столетий мы начали понимать процессы, которые питают Солнце. Благодаря постоянным исследованиям физиков, астрономов и биологов, мы теперь можем понять, как Солнце производит энергию и как она проходит через нашу Солнечную систему. Изучение известной Вселенной с ее разнообразием звездных систем и экзопланет также помогает нам провести аналогию с другими типами звезд.
Солнечная энергия — огромный, неисчерпаемый и чистый ресурс
Солнечная выработка электроэнергии представляет собой чистую альтернативу электроэнергии из добываемого топлива, без загрязнения воздуха и воды, отсутствием глобального загрязнения окружающей среды и без каких-либо угроз для нашего общественного здравоохранения. Всего 18 солнечных дней на Земле содержит такое же количество энергии, какая хранится во всех запасах планеты угля, нефти и природного газа. За пределами атмосферы, солнечная энергия содержит около 1300 ватт на квадратный метр. После того, как она достигнет атмосферы, около одной трети этого света отражается обратно в космос, в то время как остальные продолжают следовать к поверхности Земли.
Усредненные по всей поверхности планеты, квадратный метр собирает 4,2 киловатт-часов энергии каждый день, или приблизительный энергетический эквивалент почти барреля нефти в год. Пустыни, с очень сухим воздухом и небольшим количеством облачности, могут получить более чем 6 киловатт-часов в день на квадратный метр в среднем в течение года.
Преобразование солнечной энергии в электричество
Фотоэлектрические (PV) панели и концентрация солнечной энергии (CSP) объектов захвата солнечного света могут превратить его в полезную электроэнергию. Крыши PV панели делают солнечную энергию жизнеспособной практически в каждой части Соединенных Штатов. В солнечных местах, таких как Лос-Анджелес или Феникс, система 5 киловатт производит в среднем 7000 до 8000 киловатт-часов в год, что примерно эквивалентно использованию электроэнергии типичного домохозяйства США.
В 2015 году почти 800 000 фотоэлектрических систем были установлены на крышах домов по всей территории Соединенных Штатов. Крупномасштабные PV проекты используют фотоэлектрические панели для преобразования солнечного света в электричество. Эти проекты часто имеют выходы в диапазоне сотен мегаватт, а это миллионы солнечных панелей, установленных на большой площади земли.
Как работают панели солнечных батарей
Солнечные фотоэлектрические (PV) панели на основе высокой, но удивительно простой технологии, которая преобразует солнечный свет непосредственно в электричество.
В 1839 году французский ученый Эдмонд Беккерель обнаружил, что некоторые материалы будут испускать искры электричества при ударе с солнечным светом. Исследователи обнаружили, что в ближайшее время это свойство, называемое фотоэлектрический эффект, может быть использовано; первая фотоэлектрическая (PV) ячейка изготовлена была из селена в конце 1800-х годов. В 1950 году ученые в Bell Labs пересматривали технологии и, используя кремний, произведенный в фотоэлементы, смогли преобразовать энергию солнечного света непосредственно в электричество.
Компоненты PV ячейки
Наиболее важными компонентами PV ячейки являются два слоя полупроводникового материала, обычно состоящего из кристаллов кремния. Сам по себе кристаллизирующийся кремний является не очень хорошим проводником электричества, поэтому в него намеренно добавляют примеси — процесс, называемый допинг-этап.
Нижний слой из фотоэлементов обычно состоит из легированного борома, который в связке с кремнием создает положительный заряд (p), в то время как верхний слой, легированный фосфором, взаимодействуя с кремнием — отрицательный заряд (n).
Лишние электроны из n-слоя могут покидать свои атомы, тогда как p-слой эти электроны захватывает. Лучи света «выбивают» электроны из атомов n-слоя, после чего они летят в p-слой занимать пустующие места. Таким способом электроны бегут по кругу, выходя из p-слоя, проходя через нагрузку и возвращаясь в n-слой.
беспилотные самолеты на солнечной энергии
Каждая ячейка генерирует очень мало энергии (несколько ватт), поэтому они сгруппированы в виде модулей или панелей. Панели затем либо используются как отдельные единицы или сгруппированы в более крупные массивы.
Переход к электрической системе с большим количеством солнечной энергии дает много преимуществ.
Стоимость солнечных батарей быстро уменьшается (в 1970 году -1кВт-ч электроэнергии, вырабатываемой с их помощью стоил 60 долларов, в 1980 году – 1доллар, сейчас -20-30 центов). Благодаря этому спрос на солнечные батареи растет на 25% в год, а ежегодный объем от продаваемых батарей превышает (по мощности) 40мВт. КПД солнечных батарей, достигавший в середине 70-х годов в лабораторных условиях 18%, составляет в настоящее время 28,5% для элементов из кристаллического кремния и 35% — из двухслойных пластин из арсенида галлия и антимода галлия. Разработаны многообещающие элементы из тонкопленочных (толщиной 1-2мкм) полупроводниковых материалов: хотя их КПД низок (не выше 16%), стоимость очень мала (не более 10% от стоимости современных солнечных батарей). В скором времени ученые предполагают, что стоимость 1кВт-ч будет равна 10 центам, что поставит солнечную энергетику на первые места в энергетической независимости многих стран.
Перовскит «удешевит» солнечную энергию
Еще в 2013 году новость разнеслась по просторам сети: минерал перовскит произведет революцию в солнечной энергетике. Применение вместо кремния перовскита позволит снизить стоимость производства электроэнергии при помощи солнечных батарей. Перовскит (титанат кальция) был обнаружен в начале 19 века в Уральских горах, назван в честь Л.А. Перовского (известного любителя минералов). Как компонент фотоэлемента начал использоваться в 2009 году.
Батареи покрываются инновационным недорогим фотоэлементом, основное достоинство которого в том, что он может конвертировать в энергию намного большее количество частей солнечного света. Перовскиты представляют собой кристаллическую структуру, которая позволяет с максимальной эффективностью впитывать солнечный свет. По предварительным оценкам использование батарей на основе перовскита может снизить стоимость киловатта энергии в семь раз.
«Главное преимущество новых фотоэлементов заключается не столько в эффективности, сколько в том, что материал чертовски дешев. Батареи на основе перовскита, в которых не используется кремний, могут сделать солнечную энергетику по-настоящему массовой».
Солнечная энергия для ЦОД
10 % всей производимой в мире электроэнергии потребляют серверные фермы. Так как энергоэффективные сети и возобновляемые источники энергии сейчас внедряются во всех отраслях, ЦОД не остались в стороне. Негативное влияние серверных ферм на окружающую среду давно уже на устах экологов. Поэтому владельцы дата-центров стремятся к снижению негативного воздействия своих ЦОД, прибегая к передовым энергосберегающим и «зеленым» технологиям выработки электроэнергии, сюда можно отнести фрикулинг, системы локальных генерирующих мощностей на базе возобновляемых источников энергии.
Как выход — солнечная электростанция рядом с серверной фермой, в тех странах, где это позволяют климатические условия. Она идеальна для серверных ферм, которые развернуты в тропиках или субтропиках. Ведь использование солнечных панелей на крыше ЦОД, кроме того что предоставит «зеленую энергию», так еще и поможет уменьшить тепловую нагрузку на здание, так как создаваемая ими тень минимизирует количество поглощаемого крышей тепла. Гелиоэлектростанция снизит общий негативный эффект дата-центра на экологию, и повысит надежность ЦОД расположенных в регионах, где наблюдаются перебои в работе центральной электросети.
крупная электростанция на базе возобновляемых источников энергии рядом с дата-центром Apple в городе Мейден, штат Северная Каролина (США)
Switch совместно с энергетической компанией Nevada Power начала сооружение рядом с Лас-Вегасом солнечной станции Switch Station мощностью 100 МВт. В американских СМИ компанию Switch называют «возмутителям спокойствия» на рынке коммерческих ЦОД, это один из крупнейших игроков, данной отрасли. Компания занимается сооружением и поддержкой datacenter facilities – зданий и и инженерной инфраструктуры без собственно вычислительной аппаратуры, ее основная модель взаимодействия с клиентами – colocation.
крупнейшая в мире гелиотермальная электростанция Айванпа мощностью 400 МВт
В 2015 году США и Япония начали разрабатывать новый механизм электроснабжения ЦОД за счет солнечной энергии. Проект предполагает исследование новых возможностей «… использования связки генерирующих мощностей на базе солнечной энергии и систем класса HVDC (высокое напряжение постоянного тока), применяемых для распределения генерируемой солнечными батареями электроэнергии на уровне ЦОД». Такое комбинирование HVDC и солнечных панелей даст возможность развернуть единую систему резервного электропитания на базе аккумуляторных батарей, при этом можно будет экономить на капитальных и эксплуатационных расходах.
Интересно
Немецкий архитектор Андре Броезель из компании Rawlemon создал солнечую батарею в форме движущего стеклянного шара. Он называет его генератором нового поколения, который будет ловить максимальное количество лучей, так как он оснащен системой отслеживания перемещения солнца и датчиками смены погоды, а это на 35 % эффективней в сравнении с стандартными солнечными батареями.
Японская энергетическая компания Shimizu Corporation в 2015 году обьявила о своем намерение построить крупную солнечную электростанцию на естественном спутнике нашей планеты — Луне. Электростанция в виде колец с солнечными батареями будет опоясывать Луну по примеру планеты Сатурн и передавать энергию на Землю. От такой солнечной станции Shimizu Corporation ожидает 13 тысяч тераватт энергии/ год. Еще не известна стоимость и дата начала такого космического строительства.
В институте прогрессивной архитектуры в Каталонии разработали солнечную панель, которая может функционировать на растениях, мхе и почве. Плюсом такой технологии является отказ от опасных токсичных материалов и тяжелых металлов в производстве солнечных панелей. Тут используются специальные бактерии в крохотных топливных ячейках, размещенных в земле под корнями растений. Бактерии нужны для выработки дешевой энергии в мини-батареях. Растения будут обеспечивать жизненный цикл бактерий, а вода служить в качестве подпитки для всей системы. Такая инновационная система может работать на территориях, где солнечного света не так уж и много, если заменить растения мхом, так как он может расти в тени.
Как образуется солнечная энергия
Как производится солнечная энергия? Солнечная энергия появляется в результате превращения водорода в гелий путем реакции ядерного синтеза в центральной части нашей звезды. Это означает, что имеющиеся в ядре в огромном количестве атомы водорода максимально сближаются и затем сливаются в атомы гелия. Полученная энергия Солнца затем излучается из ядра и передается в межзвездное пространство Солнечной системы. Конечно, это не исчерпывающий ответ на вопрос, поэтому ниже более подробно описано, как именно энергия передается от ядра Солнца к Земле и другим объектам в Солнечной системе.
Процесс ядерного синтеза в ядре Солнца
Ядро Солнца простирается от центра звезды до четверти ее радиуса. Оно имеет плотность около 150 г/см3, а температура его вещества близка к 13 600 000 К. Энергия, производимая в результате ядерного синтеза, получается в ходе серии протон-протонных циклов превращения водорода в гелий. Ядро является единственной частью Солнца, которая производит значительное количество энергии посредством синтеза (почти 99%).
Остальная часть звезды нагревается солнечной энергией, которая передается из центра. Прежде чем уйти в космическое пространство в виде кинетической энергии (в данном случае, в виде солнечных лучей), энергия проходит через множество слоев к солнечной фотосфере. Протон-протонные циклы происходят около 9,2 × 10 37 раз в секунду. Реакция превращения водорода в гелий высвобождает около 0,7% синтезированной массы в виде энергии, и это составляет около 4,26 млн тонн в секунду.
Следующая зона – зона излучения Солнца. Здесь плазма достаточно плотная и горячая, чтобы тепловое излучение могло передаваться от слоя к слою, и тепловая конвекция отсутствует. Температура вещества падает по мере удаления от центра. Градиент температуры меньше адиабатического градиента, поэтому конвекция здесь физически невозможна. Тепло передается фотонами, испускаемыми ионами гелия и водорода, которые проходят небольшое расстояние и опять поглощаются.
Далее идет солнечная зона конвекции. Здесь солнечная плазма недостаточно плотная и горячая для передачи внутреннего тепла путем излучения. Конвекция происходит путем переноса слоев, несущих горячее вещество, наружу – в фотосферу. Как только плазма остывает в фотосфере, она обратно погружается во внутреннюю часть зоны конвекции и нагревается от наружной части зоны излучения. На поверхности Солнца температура плазмы снижается до 5 700 К. Турбулентная конвекция этого слоя вызывает эффект, который приводит к появлению магнитных полюсов по всей поверхности звезды
Наконец, в фотосфере появляется солнечный свет, который может свободно распространяются (перемещаться) по межзвездному пространству. Эта энергия излучается на поверхность или в атмосферу тел Солнечной системы. Атмосфера Земли фильтрует часть ультрафиолетовых лучей, но определенное количество этой энергии все же достигает земной поверхности, затем отражается от нее обратно в атмосферу. После такого рикошета Земля поглощает часть энергии, и наша планета нагревается. Технологический прогресс позволил создать солнечные батареи, позволяющие использовать естественную солнечную энергию в бытовых целях.
Солнечная энергия — как преобразуют в электрическую, практическое применение
Чтобы найти наиболее эффективные методы преобразования энергии Солнца, ученым нужно было понять, какое превращение является источником солнечной энергии. Для получения ответа на данный вопрос было проведено огромное количество опытов и исследований. Существуют разные гипотезы, призванные объяснить это явление. Но экспериментальным путем в процессе долгих исследований было доказано, что реакция, во время которой с помощью ядер углерода водород превращается в гелий, выступает тем самым основным источником солнечной энергии.
Солнце как источник энергии Солнечной системы
Мы уже знаем, что источником солнечной энергии являются водород и гелий, но ведь и сама солнечная энергия – это источник для определенных процессов. Все земные природные процессы осуществляются благодаря энергии, полученной от Солнца.
Без солнечных излучений был бы невозможным:
- Круговорот воды в природе. Именно благодаря воздействию Солнца испаряется вода. Именно этот процесс запускает циркуляцию влаги на Земле. Повышение и понижение температуры влияет на образование облаков и выпадение осадков.
- Фотосинтез. Процесс, благодаря которому поддерживается баланс углекислого газа и кислорода, образуются необходимые для развития и роста растений вещества также происходит с помощью солнечных лучей.
- Циркуляция атмосферы. Солнце влияет на процессы перемещения воздушных масс и теплорегуляции.
Солнечная энергия – это основа существования жизни на Земле. Но на этом ее благотворное воздействие не заканчивается. Для человечества солнечная энергия может быть полезной как альтернативный источник энергии.
Что является источником солнечной энергии?
В солнечном ядре протекают термоядерные реакции. Из ядер водорода образуется гелий. Для образования одного ядра гелия требуется 4 ядра водорода. На промежуточных стадиях образуется ядра тяжёлого водорода (дейтерия) и ядра изотопа. Эта реакция называется протон-протонной. При реакции небольшое количество массы реагирующих ядер водорода теряется, преобразуясь в огромное количество энергии. Выделяющаяся энергия поддерживает излучение Солнца.
Гелиотермальная энергетика как вид автономного питания
В настоящее время активное развитие технологий сделало возможным преобразование энергии Солнца в другие применяющиеся человеком виды. Как возобновляемый источник энергии солнечная энергия получила широкое распространение и активно используется, как в промышленных масштабах, так и локально на небольших частных участках. И с каждым годом сфер, где применение гелиотермальной энергии является обыденным делом, становится все больше.
Сегодня солнечный свет как источник энергии используется:
- В сельском хозяйстве для отопления и электроснабжения различных хозяйственных построек таких, как теплицы, ангары и прочие.
- Для обеспечения электричества в медицинских центрах и зданий спортивного назначения.
- Для снабжения электроэнергией населенных пунктов.
- Для обеспечения более дешевого освещения на улицах городов.
- Для поддержания налаженной работы всех коммуникационных систем в жилых домах.
- Для ежедневных бытовых потребностей населения.
Исходя из этого, мы видим, что солнечная энергия в действительности может стать отличным источником питания практически в каждой сфере человеческой деятельности. Поэтому продолжение исследований в данной отрасли могут изменить привычное нынешнее существование в корни.
Активные и пассивные системы преобразования солнечной энергии
На сегодняшний день благодаря различным разработкам и методам солнечная энергия как альтернативный источник энергии может быть преобразована и аккумулирована разными способами. Сейчас существуют системы активного использования гелиоэнергии, и пассивные системы. В чем их суть?
- Пассивные (подбор стройматериалов и проектировка помещений для максимального применения энергии солнечного света) по большей части направлены на использование прямой солнечной энергии. Пассивные системы – это здания, в которых проектирования происходило таким способом, чтобы как можно больше световой и тепловой энергии получать от Солнца.
- Активные (фотоэлектрические системы, солнечные электростанции и коллекторы), в свою очередь, подразумевают действительно переработку полученной солнечной энергии в другие необходимые человеку виды.
Оба вида подобных систем применяются в тех или иных случаях в зависимости от потребностей, которые они должны удовлетворять. Будь то строительство экологически чистого солнечного дома или установка коллектора на участке – это в любом случае даст свой результат и будет выгодным вложением.
Солнечная электростанция как источник энергии
Что такое солнечная электростанция? Это специально организованное инженерное сооружение, благодаря которому происходят процессы преобразования солнечной радиации для дальнейшего получения электроэнергии. Конструкции подобных станций могут быть совершенно различными в зависимости от того, какой способ переработки будет применяться.
Разновидности солнечных электростанций:
- СЭС, в основе сооружения которой находится башня.
- Станция, сооружающаяся по тарельчатому типу.
- Основанная на работе фотоэлектрических модулей.
- Станции, работающие с применением параболоцилиндрических концентраторов.
- С двигателем Стерлинга, взятым за основу работы.
- Станции аэростатного типа.
- Электростанции комбинированного типа.
Как мы видим, солнечная электростанция как источник энергии давно перестала быть частью утопических научно-фантастических романов и активно используется во всем мире для удовлетворения энергетических потребностей общества. В ее работе существуют как явные преимущества, так и недостатки. Но их правильный баланс дает возможность получать необходимый результат.
Плюсы и минусы солнечных электростанций
- Солнечная энергия является возобновляемым источником энергии. При этом сама по себе она общедоступная и бесплатная.
- Солнечные установки достаточно безопасны в использовании.
- Подобные электростанции являются полностью автономными.
- Они отличаются экономностью и быстрой окупаемостью. Основные затраты происходят только лишь на необходимое оборудование и в дальнейшем требуют минимальных вложений.
- Еще одна отличительная черта – это стабильность в работе. На подобных станциях практически не бывает скачков напряжения.
- Они не прихотливы в обслуживании и достаточно просты в использовании.
- Также для оборудования СЭС характерный долгий эксплуатационный период.
- Как источник энергии солнечной системы очень чувствительны к климату, погодным условиям и времени суток. Подобная электростанция не будет эффективно и продуктивно работать ночью или в пасмурный день.
- Более низкая продуктивность в широтах с яркой сменой сезонов. Максимально эффективны в местности, где количество солнечных дней в году наиболее близко к 100%.
- Очень высокая и малодоступная стоимость оборудования для солнечных установок.
- Потребность в проведении периодических очисток от загрязнений панелей и поверхностей. Иначе меньшее количество радиации поглощается и падает продуктивность.
- Значительное повышение температуры воздуха в пределах электростанции.
- Потребность в использовании местности с огромной площадью.
- Дальнейшие трудности в процессе утилизации составляющих станции, в особенности фотоэлементов, после окончания срока их эксплуатации.
Как и в любой производственной сфере, в переработке и преобразовании солнечной энергии есть свои сильные и слабые стороны. Очень важно, чтобы преимущества перекрывали недостатки, в таком случае работа будет оправдана.
Сейчас большинство разработок в данной отрасли направлены на оптимизацию и улучшение функционирования и использования уже существующих методов и на разработку новых, более безопасных и продуктивных.
Солнечная энергия – энергия будущего
Чем дальше шагает в своем техническом развитии наше общество, тем больше источников энергии может потребоваться с каждым новым этапом. Но традиционных ресурсов становится все меньше, а цена на них растет. Поэтому люди начали активнее задумываться об альтернативных вариантах энергоснабжения. И тут пришли на помощь возобновляемые источники. Энергия ветра, воды или Солнца – это новый виток, позволяющий и дальше развиваться обществу, снабжая его необходимыми ресурсами.
Солнечная энергия как альтернативный источник энергии
Способы преобразования энергии солнца для получения различных видов энергии, используемой человеком, можно разделить по видам получаемой энергии и способам ее получения, это:
Преобразование в электрическую энергию
Путем применения фотоэлектрических элементов
Фотоэлектрические элементы используются для изготовления солнечных панелей, которые служат приемниками солнечной энергии в системах солнечных электрических станций. Принцип работы основан на получении разности потенциалов внутри фотоэлемента при попадании на него солнечного света.
Панели различаются по структуре (поликристаллические, монокристаллические, с напылением кремния), габаритным размерам и мощности.
Путем применения термоэлектрических генераторов.
- Термоэлектрический генератор – это техническое устройство, позволяющее получать электрическую энергию из тепловой энергии. Принцип действия основан на преобразовании энергии получаемой из-за разности температур на разных частях элементов конструкции (термоэлектродвижущая сила).
Преобразование в тепловую энергию
Путем использования коллекторов различных типов и конструкций.
Преимущества и недостатки солнечной энергии
Преимущества
- Бесплатно. Одно из главных преимуществ энергии солнца – это отсутствие платы за неё. Солнечные панели делаются с использованием кремния, запасов которого достаточно много;
- Нет побочного действия. Процесс преобразования энергии происходит без шума, вредных выбросов и отходов, воздействия на окружающую среду. Этого нельзя сказать о тепловой, гидро и атомной энергетике. Все традиционные источники в той или иной мере наносят вред ОС;
- Безопасность и надёжность. Оборудование долговечное (служит до 30 лет). После 20─25 лет использования фотоэлементы выдают до 80 процентов от своего номинала;
- Рециркуляция. Солнечные панели полностью перерабатываются и могут быть снова использованы в производстве;
- Простота обслуживания. Оборудование довольно просто разворачивается и работает в автономном режиме;
- Хорошо адаптированы для использования в частных домах;
- Эстетика. Можно установить на крыше или фасаде здания не в ущерб внешнему виду;
- Хорошо интегрируются в качестве вспомогательных систем энергоснабжения.
Недостатки
- Эффективность зависит от времени суток и погоды. Нерентабельно использовать в высоких широтах;
- Требуется аккумулировать преобразованную энергию;
- Первоначальные вложения высокие. Особенно это ощутимо для обычных людей при покупке оборудования для частного дома;
- Периодически нужно делать очистку панелей от загрязнения;
- Для размещения требуется большая площадь;
- Некоторые фотоэлементы имеют в своём составе Pb, Cd, мышьяк, что усложняет и переработку.
Сферы применения солнечной энергии
Направлений использования довольно много. Ниже рассматриваются самые востребованные и распространённые.
Энергоснабжение частного дома
Совсем недавно такие системы были чем-то из фантастических фильмов. Но сейчас у многие можно встретить комплекты солнечных модулей на крыше или фасаде дома. КПД таких систем пока не превышает 10─15 процентов. Напряжение 12 или 24 вольта. Но для частного дома или дачи этого вполне достаточно.
Здесь стоит сказать, что современные панели вырабатывают электричество даже в сумерках и пасмурную погоду. Заряда аккумуляторных батарей хватает на тёмное время суток. Кроме того, солнечные панели подключаются как вспомогательные, и при необходимости их подменяет основная энергетическая система.
Солнечный коллектор для отопления и горячего водоснабжения
Здесь энергия солнца преобразуется в тепловую. Наверное, у многих на дачном участке есть душ с металлическим баком наверху. Он нагревается от солнца и можно мытья нагретой водой. Это простейший вариант такого коллектора.
Но современные системы работают значительно эффективнее. В них есть поглощающий элемент, который передаёт тепловую энергию теплоносителю. Есть варианты с водой и воздухом в качестве теплоносителя.
Коллекторы чаще всего работают в составе систем горячего водоснабжения частных домов. Нагретый в них теплоноситель попадает в накопитель (бойлер), где нагревает воду. Схема практически такая же, как у электрического бойлера. Только электричество в этом случае не расходуется.
Компактные системы с коллектором могут обеспечить бесплатный нагрев воды в доме для семьи на 3─5 человек. Речь идёт об осенне-зимнем периоде. Зимой эффективность подобных систем значительно снижается. Параллельно с установкой таких систем проводятся работы по улучшению изоляции. Если зимы в вашем регионе не суровые, то коллектор вполне может использоваться и зимой.
Портативные источники энергии
Этот вид устройств предназначен для получения электрической энергии при отсутствии электрических сетей. Такие переносные аккумуляторы с возможностью зарядки от солнечной панели популярны среди туристов, дачников и т. п. Об этих устройствах можно прочитать в статьях:
- Солнечная батарея для ноутбука;
- Аккумулятор на солнечных батареях для телефона;
- Солнечная батарея для зарядки автомобильного аккумулятора.
Концентраторы
Этот вид устройств можно назвать экзотикой. Их можно встретить у туристов в составе походных кухонь. Они концентрируют свет параболическим зеркалом на ёмкости с теплоносителем.
Что такое солнечная энергия
Солнце – это звезда, внутри которой, в непрерывном режиме, происходят термоядерные реакции. Результатом происходящих процессов, с поверхности солнца выделяется колоссальное количество энергии, часть которой нагревает атмосферу нашей планеты.
Солнечная энергия — это источник жизни на планете Земля. Наша планета, и все живые организмы, существующие на ней, получает энергию солнца в виде солнечного света и тепла.
Солнечная энергия является источником возобновляемой и экологически чистой энергии.
Как можно оценить величину солнечной энергии
Специалисты используют для оценки такую величину, как солнечная постоянная. Она равна 1367 ватт. Именно столько энергии солнца приходится на квадратный метр планеты. В атмосфере теряется примерно четверть. Максимальное значение на экваторе – 1020 ватт на квадратный метр. С учётом дня и ночи, изменения угла падения лучей, эту величину следует уменьшить ещё в три раза.
Распределение солнечного излучения на карте планеты
Версии об источниках солнечной энергии высказывались самые разные. На данный момент специалисты утверждают, что энергии высвобождается в результате превращения четырёх атомов H2 в ядро He. Процесс протекает с выделением существенного количества энергии. Для сравнения представьте, что энергия превращения 1 грамма H2 сопоставима с той, что выделяется при сжигании 15 тонн углеводородов.
Преобразование солнечной энергии в электричество
Фотоэлектрические (PV) панели и концентрация солнечной энергии (CSP) объектов захвата солнечного света могут превратить его в полезную электроэнергию. Крыши PV панели делают солнечную энергию жизнеспособной практически в каждой части Соединенных Штатов. В солнечных местах, таких как Лос-Анджелес или Феникс, система 5 киловатт производит в среднем 7000 до 8000 киловатт-часов в год, что примерно эквивалентно использованию электроэнергии типичного домохозяйства США.
В 2015 году почти 800 000 фотоэлектрических систем были установлены на крышах домов по всей территории Соединенных Штатов. Крупномасштабные PV проекты используют фотоэлектрические панели для преобразования солнечного света в электричество. Эти проекты часто имеют выходы в диапазоне сотен мегаватт, а это миллионы солнечных панелей, установленных на большой площади земли.
Фотовольтарика
В этом случае электрический ток появляется вследствие фотовольтарического эффекта. Принцип такой: солнечный свет попадает на фотоэлемент, электроны поглощают энергию фотонов (частиц света) и приходят в движение. В итоге мы получаем электрическое напряжение.
Именно такой процесс происходит в солнечных панелях, основу которых составляют элементы, преобразующие солнечное излучение в электричество.
Сама конструкция фотовольтарических панелей достаточно гибкая и может иметь разные размеры. Поэтому в использовании они очень практичны. К тому же панели имеют высокие эксплуатационные свойства: устойчивы к воздействию осадков и перепадам температур.
А вот как устроен отдельный модуль солнечной панели:
Гелиотермальная энергетика
Тут подход немного другой, т.к. солнечное излучение используется для нагревания сосуда с жидкостью. Благодаря этому она превращается в пар, который вращает турбину, что приводит в выработке электричества.
По такому же принципу работают тепловые электростанции, только жидкость нагревается посредством сжигания угля.
Самый наглядный пример использования данной технологии – это станция Иванпа Солар в пустыне Мохаве. Она является крупнейшей в мире солнечной гелиотермальной электростанцией.
Работает она с 2014 года и не использует никакого топлива для производства электричества – только экологически чистая солнечная энергия.
Котёл с водой располагается в башнях, которые Вы можете видеть в центре конструкции. Вокруг расположено поле из зеркал, направляющих солнечные лучи на вершину башни. При этом компьютер постоянно поворачивает эти зеркала в зависимости от расположения солнца.
Солнечный свет концентрируется на башне
Под воздействием концентрированной солнечной энергии вода в башне нагревается и становится паром. Так возникает давление, и пар начинает вращать турбину, вследствие чего выделяется электричество. Мощность этой станции – 392 мегаватт, что вполне можно сопоставить со средней ТЭЦ в Москве.
Интересно, что подобные станции могут работать и ночью. Это возможно благодаря помещению части разогретого пара в хранилище и постепенном его использовании для вращения турбины.
Солнечные аэростатные электростанции
Это оригинальное решение хоть и не получило широкого применения, но всё же имеет место быть.
Сама установка состоит из 4 основных частей:
- Аэростат – располагается в небе, собирая солнечное излучение. Внутрь шара поступает вода, которая быстро нагревается, становясь паром.
- Паропровод – по нему пар под давлением спускается к турбине, заставляя её вращаться.
- Турбина – под воздействием потока пара она вращается, вырабатывая электрическую энергию.
- Конденсатор и насос – пар, прошедший через турбину, конденсируется в воду и поднимается в аэростат с помощью насоса, где снова разогревается до парообразного состояния.
Перспективы развития
Энергия Солнца на Земле неиссякаема. Это дает основания прочить постоянное развитие и продвижение технологий получения и переработки солнечной энергии, появление более эффективной аппаратуры, увеличение доли солнечной энергии в общем потреблении человечества. Статистика показывает, что за последние 10 лет в этом направлении сделан гигантский скачок, поэтому будущее у гелиоэнергетики во всех смыслах слова блестящее.
Распространение в России
Солнечная энергетика получает все более широкое распространение в разных странах и на разных континентах. Россия не является исключением из этой тенденции. Причиной более широкого распространения в последние годы стало:
- Развитие новых технологий, позволившее снизить стоимость оборудования;
- Желание людей иметь независимый источник энергии;
- Чистота производства получаемой энергии («зеленая энергетика»);
- Возобновляемый источник энергии.
Потенциалом для развития солнечной энергетики обладают южные районы нашей страны – республики Кавказа, Краснодарский и Ставропольский край, южные районы Сибири и Дальнего Востока.
Районы различаются по инсоляции в течение суток и времени года, так для разных регионов поток солнечной радиации, в летний период, составляет:
По состоянию на начало 2017 года мощность работающих солнечных электростанций на территории России составляет 0,03% от мощности электростанции энергетической системы нашей страны. В цифрах – это составляет 75,2 МВт.
- https://altenergiya.ru/sun/istochnik-solnechnoj-energii.html
- https://superresheba.by/resh/3299
- https://alter220.ru/solnce/solnechnaya-energiya.html
- https://akbinfo.ru/alternativa/solnechnaja-jenergija.html
- https://remont-system.ru/alternativnaya-energiya/primenenie-solnechnoy-energii-kak-alternativnogo-istochnika
Биогазовая установка в домашних условиях, принцип работы, виды
Зеленый тариф: как выгодно продавать электроэнергию государству
Солнечный коллектор для отопления дома, в чём плюсы подобного обогрева
Солнечная панель для зарядки автомобильного аккумулятора 12В: особенности и обзор зарядных устройств