Как подключить трехфазный двигатель на 380 к сети 380
Перейти к содержимому

Как подключить трехфазный двигатель на 380 к сети 380

Схемы подключения трехфазного электродвигателя

Когда электрик устраивается работать на любое промышленное предприятие, он должен понимать, что ему придётся иметь дело с большим количеством трехфазных электродвигателей. И любой уважающий себя электрик (я не говорю о тех, кто делает проводку в квартире) должен чётко знать схему подключения трёхфазного двигателя.

Сразу приношу извинения, что в данной статье я часто контактор называю пускателем, хотя подробно объяснял уже, что пускатель и контактор – это разные вещи. Что поделать, приелось это название.

В статье пойдёт речь о схемах подключения наиболее распространенного асинхронного электродвигателя через магнитный пускатель. Но не только. Расскажу также от способах и принципах защиты двигателя от перегрева и перегрузки.

Будут рассмотрены различные схемы подключения электродвигателей , их плюсы и минусы. От простого к сложному. Схемы, которые могут быть использованы в реальной жизни, обозначены: ПРАКТИЧЕСКАЯ СХЕМА. Итак, начинаем.

Подключение трехфазного двигателя

Имеется ввиду асинхронный электродвигатель, соединение обмоток – звезда или треугольник, подключение к сети 380В.

Для работы двигателя рабочий нулевой проводник N (Neutral) не нужен, а вот защитный (PE, Protect Earth) в целях безопасности должен быть подключен обязательно.

В самом общем случае схема будет выглядеть таким образом, как показано в начале статьи. Действительно, почему бы двигатель не включить как обычную лампочку, только выключатель будет “трехклавишный”?

СамЭлектрик.ру в социальных сетях:

Подписывайтесь! Там тоже интересно!

2. Подключение двигателя через рубильник или выключатель

Но даже лампочку никто не включает просто так, сеть освещения и вообще любая нагрузка всегда включается только через защитные автоматы.

Подробнее про замену и установку автоматических выключателей – здесь. А про их параметры и выбор – здесь.

Схема подключения трехфазного двигателя в сеть через автоматический выключатель

Поэтому более подробно общий случай будет выглядеть так:

3. Подключение двигателя через автоматический выключатель. ПРАКТИЧЕСКАЯ СХЕМА

На схеме 3 показан защитный автомат, который защищает двигатель от перегрузки по току (“прямоугольный” изгиб питающих линий) и от короткого замыкания (“круглые” изгибы). Под защитным автоматом я подразумеваю обычный трехполюсный автомат с тепловой характеристикой нагрузки С или D.

Напомню, чтобы ориентировочно выбрать (оценить) необходимый тепловой ток уставки тепловой защиты, надо номинальную мощность трехфазного двигателя (указана на шильдике) умножить на 2.

Защитный автомат для включения электродвигателя

Защитный автомат для включения электродвигателя. Ток 10А, через такой можно включать двигатель мощностью 4 кВт. Не больше и не меньше.

Схема 3 имеет право на жизнь (по бедности или незнанию местных электриков).

Она прекрасно работает, так же, как по многу лет может работать скрутка меди с алюминием. И в один “прекрасный” день сгорит скрутка. Или сгорит двигатель.

Если уж использовать такую схему, надо тщательно подобрать ток автомата, чтобы он был на 10-20% больше рабочего тока двигателя. И характеристику теплового расцепителя выбирать D, чтобы при тяжелом пуске автомат не срабатывал.

Например, движок 1,5 кВт. Прикидываем максимальный рабочий ток – 3А (реальный рабочий может быть меньше, надо измерять). Значит, трехполюсный автомат надо ставить на 3 или 4А, в зависимости от пускового тока.

Плюс этой схемы подключения двигателя – цена и простота исполнения и обслуживания. Например, там, где один двигатель, и его включают вручную на всю смену. Минусы такой схемы с включением через автомат –

  1. Невозможность регулировать тепловой ток срабатывания автомата. Для того, чтобы надежно защитить двигатель, ток отключения защитного автомата должен быть на 10-20% больше номинального рабочего тока двигателя. Ток двигателя надо периодически измерять клещами и при необходимости подстраивать ток срабатывания тепловой защиты. А возможности подстройки у обычного автомата нет(.
  2. Невозможность дистанционного и автоматического включения/выключения двигателя.

Эти недостатки можно устранить, в схемах ниже будет показано как.

Подключение трехфазного двигателя через ручной пускатель

4. Подключение двигателя через ручной пускатель. ПРАКТИЧЕСКАЯ СХЕМА

Поскольку у двигателей обычно большой пусковой ток, то у автоматов защиты двигателей (мотор-автоматов), как правило, характеристика тепловой защиты типа D. Т.е. он выдерживает кратковременные (пусковые) перегрузки примерно в 10 раз больше от номинала.

ручной пускатель с дополнительным контрольным контактом

Ручной пускатель двигателя с дополнительным контрольным контактом.

Вот что у него на боковой стенке:

Автомат защиты двигателя - характеристики

Автомат защиты двигателя – характеристики на боковой стенке

Ток уставки (тепловой) – от 17 до 23 А, устанавливается вручную. Ток отсечки (срабатывание при КЗ) – 297 А.

В принципе, ручной пускатель и мотор-автомат – это одно и то же устройство. Но пускателем, показанным на фото, можно коммутировать питание двигателя. А мотор-автомат постоянно подает питание (три фазы) на контактор, который, в свою очередь, коммутирует питание двигателя. Короче, разница – в схеме подключения.

Плюс схемы – можно регулировать уставку теплового тока. Минус тот же, что и в предыдущей схеме – нет дистанционного включения.

Схема подключения двигателя через магнитный пускатель

Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов. А в новых китайских простеньких станках используется и по сей день.

Электрик, который её не знает – как хирург, не умеющий отличить артерию от вены; как юрист, не знающий 1-ю статью Конституции РФ; так танцор, не отличающий вальс от тектоника.

Три фазы на двигатель идут в этой схеме не через автомат, а через пускатель. А включение/выключение пускателя осуществляется кнопками “ Пуск ” и “ Стоп ” , которые могут быть вынесены на пульт управления через 3 провода любой длины.

Пример такой схемы – в статье про восстановление схемы гидравлического пресса, см. последнюю в статье схему, пускатель КМ0. Про выбор, устройство и характеристики электромагнитных пускателей (контакторов) – прочитайте здесь.

5. Схема подключения двигателя через пускатель с кнопками пуск стоп

Здесь питание цепи управления поступает с фазы L1 (провод 1) через нормально замкнутую (НЗ) кнопку “Стоп” (провод 2).

Если теперь нажать на кнопку “Пуск”, то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх “силовых” контактов у пускателя есть ещё один дополнительный контакт. Его называют “блокировочным” или “контактом самоподхвата”.

Когда электромагнитный пускатель включается нажатием кнопки SB1 “Пуск”, замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка “Пуск” будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка “Стоп”.

Поскольку тема с магнитными пускателями очень обширная, она вынесена в отдельную статью Схемы подключения магнитного пускателя. Статья существенно расширена и дополнена. Там рассмотрено всё – подключение различных нагрузок, защита (тепловая и от кз), реверсивные схемы, управление от разных точек, и т.д. Нумерация схем сохранена. Рекомендую.

Подключение трехфазного двигателя через электронные устройства

Все способы пуска двигателя, описанные выше, называются Пуск прямой подачей напряжения. Часто, в мощных приводах, такой пуск является тяжелым испытанием для оборудования – горят ремни, ломаются подшипники и крепления, и т.д.

Поэтому, статья была бы неполной, если бы я не упомянул современные тенденции. Теперь всё чаще для подключения трехфазного двигателя вместо электромагнитных пускателей применяют электронные силовые устройства. Под этим я подразумеваю:

  1. Твердотельные реле (solid state relay) – в них силовыми элементами являются тиристоры (симисторы), которые управляются входным сигналом с кнопки либо с контроллера. Бывают как однофазные, так и трехфазные. Вот моя статья.
  2. Мягкие (плавные) пускатели (soft starter, устройства плавного пуска) – усовершенствованные твердотелки. Можно устанавливать ток защиты, время разгона/замедления, включать реверс, и др. И на эту тему есть статья. Практическое применение устройств плавного пуска – здесь. – самое совершенное устройство, что придумало человечество для подключения электродвигателя. Описывать частотники – дело не одной статьи.

Преимущества таких устройств очевидны (прежде всего – отсутствие контактов как таковых), недостаток пока один – цена. А вот как может выглядеть схема их включения:

10. Подключение трехфазного двигателя – общая схема с электронной силой

Двухскоростные электродвигатели

Старый специфический способ подключения двухскоростных двигателей описан в статье Подключение двухскоростных асинхронных двигателей.

На этом заканчиваю, спасибо за внимание, всего охватить не удалось, пишите вопросы в комментариях!

Скачать

Если тема интересует более глубоко, рекомендую ознакомиться с литературой, приведенной на странице Скачать.

Вот одна из книг, приведенных там:
• Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. / Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. Одна из лучших книг, посвящённых основам электротехники. Изложение начинается с самых основ: объясняется, что такое напряжение, сила тока и сопротивление, приводятся указания по расчёту простейших электрических цепей, рассказывается о взаимосвязи и взаимозависимости электрических и магнитных явлений. Объясняется, что такое переменный ток, как устроен генератор переменного тока. Описывается, что такое конденсатор и что собой представляет катушка индуктивности, какова их роль в цепях переменного тока. Объясняется, что такое трёхфазный ток, как устроены генераторы трёхфазного тока и как организуется его передача. Отдельная глава посвящена полупроводниковым приборам: в ней речь идёт о полупроводниковых диодах, о транзисторах и о тиристорах; об использовании полупроводниковых приборов для выпрямления переменного тока и в качестве полупроводниковых ключей. Коротко описываются достижения микроэлектроники. Последняя треть книги целиком посвящена электрическим машинам, агрегатам и оборудованию: в 10 главе речь идёт о машинах постоянного тока (генераторах и двигателях); 11 глава посвящена трансформаторам; о машинах переменного тока (однофазных и трёхфазных, синхронных и асинхронных) подробно рассказывается в 12 главе; выключатели, электромагниты и реле описываются в главе 13; в главе 14 речь идёт о составлении электрических схем. Последняя, 15 глава, посвящена измерениям в электротехнике. Эта книга — отличный способ изучить основы электротехники, понять основополагающие принципы работы электрических машин и агрегатов., zip, 13.87 MB, скачан: 3256 раз./

• Пуск и защита двигателей переменного тока / Пуск и защита двигателей переменного тока. Системы пуска и торможения двигателей переменного тока. Устройства защиты и анализ неисправностей двигателей переменного тока. Руководство по выбору устройств защиты. Руководство от Schneider Electric, pdf, 1.17 MB, скачан: 2465 раз./

Схемы подключения электродвигателя 220/380/660 Вольт

Схемы подключения электродвигателя 220/380/660 Вольт

Подключение асинхронного трехфазного электродвигателя АИР к сети с напряжением 220/380/660 Вольт — это упорядоченное схемой, соединение концов обмоток выводов в клеммной коробке. Подключение 6/3/8 проводов, через конденсаторы, с пусковой защитой, магнитными пускателями, частотники. Схемы подключения — звезда, треугольник, комбинированное. От правильного монтажа напрямую зависит срок службы и эффективность оборудования.

Предусмотрено подключение асинхронного трехфазного электродвигателя 220/380 Вольт к однофазной сети 220В при помощи фазосдвигающего конденсатора. Соединение обмоток двигателя производится соответствующей установкой перемычек в клеммной коробке.

Внимание! Использование электродвигателей без заземления, автомата, пусковой, защитной аппаратуры запрещено.

Выбор схемы подключения электродвигателя Звезда или Треугольник?

Завод производитель указывает на бирке двигателя АИР схему подключения электромотора «Δ / Y 220/380» или «Δ / Y 380/660».

  • Электродвигатели 220/380 Вольт — современные модели до 112 габарита — 7,5 кВт. Ранее выпускались серии 4А, 4АМ, 5А, 5АМ до 315 габарита — 132 кВт. Подключение к сети 220В треугольником, к 380В звездой.
  • Электродвигатели 380/660 Вольт — встречается в моделях, мощностью от 4 кВт. Схема для 380В — треугольник, для 660В — звезда.

Схема подключения электродвигателя звезда

Схема подключения асинхронного двигателя звездой 380 660 Вольт

Cоединение трёхфазного электродвигателя схемой подключения звездой, то на начало обмоток подают трехфазное напряжение, концы статорных обмоток соединяют в одной точке нейтральной, нулевой. Более высокое напряжение питания — 660В для двигателей 380/660 и 380В для двигателей 220/380, рабочие и пусковые токи будут ниже. Однако при этом невозможно достичь паспортной мощности электродвигателя.

Преимущества схемы подключения 380В, 660В:

  • Максимальный КПД мотора
  • Более надежная работа двигателя
  • Допускается не длительная перегрузка

Схема подключения электрического двигателя треугольник

Схема подключения электродвигателя с 6 проводами, с 3 проводами, с 8 проводами

При подключении двигателя с короткозамкнутым/фазным ротором треугольником конец одной статорной обмотки последовательно соединяется с началом следующей. Данный тип подключения при запуске имеет высокую силу тока и тяжелую пусковую нагрузку, что может привести к пробою изоляции.

Преимущества схемы подключения 220Вольт, 380Вольт:

  • Рабочая мощность соответствует паспортной
  • Улучшенное тяговое усилие
  • Маломощные электродвигатели могут быть подключены к однофазной сети питания 220 В через пусковые и рабочие конденсаторы. Паспортная мощность мотора ниже на 30%

Комбинированный тип подключения трехфазного асинхронного электродвигателя

Комбинированный тип подключения — электродвигатель 380/660В подключают звездой с напряжением треугольника — 380В. Пуск двигателя плавный, низкие пусковые токи. Переключение между схемами автоматически, вручную с помощью магнитного пускателя, пускового реле, пакетного переключателя. В случае с мощными электромоторами (начиная с 5,5/3000) важно обеспечить плавный пуск без перегрузок и дальнейшую работу на максимальной мощности. Комбинированная схема подключения асинхронного двигателя обезопасит мотор от высоких пусковых токов и обеспечит паспортную мощность двигателя. Запуск по схеме «звезда / треугольник» подходит для моторов с большими маховыми массами, у которых при номинальной скорости сразу набрасывается нагрузка. Схемы подключения скачать pdf. Актуально для техпроцессов с пропорциональным возрастанием нагрузки на вал — насосы, вентиляторы, пилы, компрессоры.

Подключение асинхронного двигателя к однофазной сети 220В

Для использования асинхронного электродвигателя от бытовой электрической сети 220 В применяют фазосдвигающий конденсатор. Таким образом достигается мягкий запуск агрегата. Методы подключения конденсаторов к бытовой сети 220В:

  • с выключателем
  • напрямую, без выключателя
  • параллельное включение двух электролитов

Конденсатор для двигателя должен превышать его по напряжению минимум в 1,5 раза. В противном случае возникнут скачки напряжения, что чревато поломками.

Подбор конденсатора для подключения двигателя к сети питания 220В

Правильный подбор конденсатора для подключения трехфазного двигателя к однофазной сети предполагает расчет емкости. Ее значение зависит от схемы подключения обмоток и других параметров.

Формула расчета емкости конденсатора для схемы «Звезда»

Формула расчета емкости конденсатора двигателей с 3/4/6/8 проводами в борне

Формула расчета емкости конденсатора для схемы «Треугольник»

Расчет емкости конденсатора электродвигателя с 3 проводами 220 вольт

Где Емк — емкость рабочего конденсатора в мкФ, I — ток в А, U — напряжение сети в В.

Напряжение сети питания электродвигателей АИР

Габариты электродвигателей АИР:

Проблемы с выбором и монтажом электродвигателя?

Современные электродвигатели производят с 6 проводами, реже 3/4/8 выводов. Определить схему подключения электродвигателя можно по бирке и данным в клеммной коробке. Менеджеры Слобожанского завода всегда готовы помочь определить схему подключения двигателя 220/380/660 Вольт. Купить асинхронный трехфазный электродвигатель АИР, однофазный двигатель для сети 220 Вольт. Специалисты подберут оптимальную схему подключения звездой, треугольником под оборудование и специфику применения. В сервисном центре СЛЭМЗ ремонтируем электродвигатели — замена контактов, перемычек, сальников, восстановление выводов.

Хитрости подключения трехфазного двигателя к сети 220 и 380 В

Различают две базовые схемы (видео и схемы в следующем подразделе статьи):

  • треугольник,
  • звезда.

Преимущество соединения треугольником – работа на максимальной мощности. Но при включении электродвигателя в намотках продуцируются высокие пусковые токи, опасные для техники. При подключении звездой пуск мотора плавный, поскольку токи при нем низкие. Но достичь максимальной мощности при этом не получится.

В связи с вышесказанным двигатели при питании от 380 Вольт соединяют только звездой. Иначе высокий вольтаж при включении треугольником способен развить такие пусковые токи, что агрегат выйдет из строя. Но при высокой нагрузке выдаваемой мощности может не хватать. Тогда прибегают к хитрости: запускают двигатель звездой для безопасного включения, а затем переключаются с этой схемы на треугольник для набора высокой мощности.

Треугольник и звезда

Перед тем, как рассмотрим эти схемы, условимся:

  • У статора есть 3 обмотки, у каждой из которых – по 1 началу и по 1 концу. Они выведены наружу в виде контактов. Поэтому для каждой намотки их 2. Будем обозначать: обмотка – О, конец – К, начало – Н. На схеме ниже 6 контактов, пронумерованных от 1 до 6. Для первой обмотки начало – 1, конец – 4. Согласно принятым обозначениям это НО1 и КО4. Для второй обмотки – НО2 и КО5, для третьей – НО3 и КО6.
  • В электросети 380 Вольт 3 фазы: A, B и C. Их условные обозначения оставим прежними.

При соединении обмоток электродвигателя звездой сначала соединяют все начала: НО1, НО2 и НО3. Тогда к КО4, КО5 и КО6 соответственно подают питание от A, B и C.

При подключении асинхронного электродвигателя треугольником каждое начало соединяют с концом намотки последовательно. Выбор порядка номеров обмоток произвольный. Может получиться: НО1-КО5-НО2-КО6-НО3-КО2 .

Соединения звездой и треугольником выглядят так:

Смотрите видео, которое поможет разобраться в способах соединения намоток.

Переходная схема

Для плавного включения электродвигателя 380 в 3х фазную электросеть и высокой отдачи мощности запускают его звездой. После разгона он автоматически переключается со схемы и начинает работать треугольником. Недостаток метода – невозможность смены направления вращения вала.

Переходная схема подразумевает подключение через магнитный пускатель (смотрите также видео). Таких понадобится 3:

  1. Первый на схеме обозначен МП1 (магнитный пускатель 1). Он соединяет начала намоток статора НО1, НО2 и НО3 с фазами сети напряжением 380 Вольт: А, В и С.
  2. Второй пускатель – МП2. Он соединяет концы обмоток КО4, КО5 и КО6 с фазными проводами А, В и С треугольником.
  3. Третий пускатель – МП3. Необходим для соединения концов намоток с 3х фазной сетью звездой.

Внимание! Пускатель 2 и 3 нельзя включать одновременно, потому что возникнет короткое замыкание. В связи с этим произойдет защитное отключение на аварийном щитке. Чтобы случайно пускатель 2 не включился одновременно с 3, необходима электрическая блокировка. Тогда третий магнитный пускатель включится только после того, как выключится второй. И наоборот.

  1. Включается первый пускатель;
  2. Срабатывает реле времени, которое включает третий магнитный пускатель (пуск звездой);
  3. Через заданное время реле отключает третий и включает второй пускатель (работа треугольником).

Работу прекращают через размыкание МП1. При повторном запуске пункты 1-3 повторятся.

Схемы подключения

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Существует две схемы подключения:

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет.

Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.

Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора.

Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит.

Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Подключение трехфазного двигателя к сети 220В

Подключение трехфазного двигателя к однофазной сети так же возможно, как и включение его в трехфазную сеть. Разница будет лишь в способе подключения и в выдаваемой мотором рабочей мощности. Она не сможет превышать 50% от максимального значения, достигаемого при питании от сети 380 Вольт, если соединить обмотки звездой. При подключении методом треугольника можно развить 70% от максимально возможной мощности. Поэтому, если питание подается от сети 220В, имеет смысл подключать электродвигатель только вторым способом.

Внимание! Если в электросети напряжение составляет 220 Вольт, то токи при запуске не достигают критических значений даже при соединении в треугольник. Поэтому данная схема является оптимальной.

Схема подсоединения мотора 380 на 220

При питании от 380 на каждую намотку приходится одна фаза. Но при подключении к 220 Вольт к двум обмоткам подключается фазный и нулевой провод, третья остается свободной. Для компенсации отсутствия третьей фазы запуск электродвигателя происходит через конденсатор.

Важно! Запустить мотор на 380 Вольт от напряжения 220В можно только с использованием конденсаторов. Без них могут работать только двигатели, рассчитанные на питание от 220 изначально.

Если запускается в ход маломощный мотор (не более 1500 Вт) без начальной нагрузки, то подключать можно лишь через рабочий конденсатор. От него идут два провода. Первый нужно соединить с нулем, а второй – с 3-ей вершиной треугольника.

Внимание! Если вам необходимо обратить направление вращения двигателя, подключенного к сети 220 Вольт, то первый вывод от конденсатора включите не через нуль, а через фазный провод.

При запуске мощного асинхронного двигателя (от 1500 Вт) или при пуске маломощного, но с начальной нагрузкой, подсоединяют его к 220В через рабочий и пусковой конденсаторы. Последний подключается параллельно первому. Он необходим для увеличения пускового момента, поэтому его включение происходит только в момент запуска мотора в ход.

Пусковой конденсатор включают в схему через кнопку, а подача питания в 220В происходит путем перевода специального тумблера в положение «включено», отключение – в состояние «выключено». Вместо тумблера можно воспользоваться кнопкой с двумя позициями. Тогда запуск будет следующим:

  • Питание подается через тумблер или специальную кнопку;
  • Нажимается кнопка пускового конденсатора;
  • Она удерживается до тех пор, пока электродвигатель не разгонится;
  • Кнопка пуска отпускается, отчего ее пружины размыкают цепочку конденсатора.

При включении электродвигателя в сеть 220 Вольт с реверсом для изменения направления вращения вала понадобится еще один тумблер. При смене положения один из выводов рабочего конденсатора будет соединяться то с фазой, то с нулем.

На рисунке выше предусмотрена схема подсоединения двигателя 380 к сети 220 с реверсом с пусковой кнопкой. Она актуальна, если мотор не набирает обороты с отсутствием пускового накопителя (он на рисунке находится справа).

Подбор конденсатора

Не существует универсальных конденсаторов, которые бы подходили ко всем агрегатам без разбора. Их характеристикой служит емкость, которую они способны держать. Поэтому каждый придется подбирать индивидуально. Основным требованием для него будет работа при напряжении сети в 220 вольт, чаще они рассчитаны на 300 вольт. Чтобы определиться, какой именно элемент потребуется, необходимо воспользоваться формулой. Если соединение осуществляется звездой, тогда необходимо силу тока разделить на напряжение в 220 вольт и умножить на 2800. Показателем силы тока берется цифра, которая указана в характеристиках двигателя. Для подключения треугольником формула остается такой же, но последний коэффициент изменяется на 4800.

Например, если на агрегате написано, что номинальный ток, который может протекать по его обмоткам составляет 6 ампер, тогда емкость рабочего конденсатора будет 76 мкФ. Это при подключении звездой, для подключения треугольником результат будет 130 мкФ. Но выше говорилось, что если агрегат испытывает нагрузку при старте или имеет мощность больше 1,5 кВт, тогда понадобится еще один конденсатор – пусковой. Его емкость обычно в 2 или в 3 раза больше рабочего. То есть для соединения звездой понадобится второй конденсатор с емкостью 150–175 мкФ. Подбирать его придется опытным путем. В продаже может не быть конденсаторов требуемой емкости, тогда можно собрать блок для получения требуемой цифры. Для этого доступные конденсаторы соединяются параллельно, чтобы их емкость сложилась.

Обратите внимание! Есть некоторое ограничение по мощности трехфазных агрегатов, которые можно запитать от однофазной сети. Оно составляет 3 кВт. При превышении этого значения может выйти из строя проводка.

Почему пусковые конденсаторы лучше подбирать опытным путем начиная с наименьшего? Дело в том, что при недостаточном его значении будет подаваться ток большего значения, что может вывести из строя обмотки. Если его значение будет больше требуемого, тогда агрегату будет недостаточно импульса для запуска. Более наглядно представить себе подключение можно с помощью видео.

Как переключить схему двигателя в “Звезду” и в “Треугольник” вручную

Если не нужна никакая автоматика, а двигатель работает постоянно в “Звезде” или в “Треугольнике”, то используя рожковый ключ, можно переключить схему соединения обмоток вручную.

Шильдик двигателя 220 / 380 В 0,37 кВт

На оборотной стороне крышки борно, как обычно, приведена схема:

Схема подключения 220 – 380 на крышке двигателя

Двигатель питался напрямую от трехфазной сети 380 В через контактор и был собран в “Звезду:

Клеммы двигателя в подключены в схеме “Звезда”

Откручиваем гайки М4, снимаем перемычки и провода питания:

Разбираем схему, откидываем провода

Собираем схему в треугольник, на пониженное напряжение 220 В:

Собираем треугольную схему на 220 В

Переделка понадобилась в связи с тем, что нужно изменить скорость вращения двигателя, а для этого применить частотник. А частотники на такую мощность, как правило, однофазные. В результате – поехали!

Кстати, по частотникам планирую цикл статей, подписывайтесь!

Подключение с фазным ротором

Асинхронные электродвигатели с фазным ротором имеют высокие пусковые и регулировочные характеристики, благодаря чему применяются в высокомощных машинах и приборах малой мощности. Конструктивно этот асинхронный двигатель отличается от обычного трехфазного тем, что на роторе есть своя трехфазная обмотка со сдвинутыми катушками.

Для подключения электродвигателей с фазным ротором применяются описанные выше схемы звезда и треугольник (для 380 В и 220 В сетей соответственно). Стоит заметить, что для того или иного двигателя может быть использована только одна схема, указанная в паспорте. Пренебрежение этим требованием может привести к сгоранию мотора.

Соединение обмоток в клеммной коробке производится так же, как на схемах из предыдущего способа. Изменение рабочих характеристик так же закономерно: треугольник выдает практически в полтора раза большую мощность, а звезда, в свою очередь, мягче функционирует и управляется.

В отличие от моделей с короткозамкнутым ротором, асинхронный двигатель с трехфазным ротором имеет более сложную конструкцию, но это позволяет получать улучшенные пусковые характеристики и обеспечивать плавную регулировку вращения. Используются такие машины в оборудовании, требуемом регулировки частоты вращения и запускаемом под нагрузкой, к примеру, в крановых механизмах.

Трехфазные драйверы нового поколения

Направления разработок 5-го поколения интегральных драйверов IR для электропривода

Поскольку современные разработки массового электропривода для промышленных приложений и бытовой техники ориентированы в основном на применение трехфазных асинхронных электродвигателей и бесконтактных двигателей постоянного тока, компания International Rectifier уделяет большое внимание совершенствованию соответствующей элементной базы, в том числе высоковольтных микросхем драйверов МОП-затворов. ИС трехфазных драйверов являются наиболее перспективным техническим решением для управления инверторами приводов мощностью до нескольких киловатт. Они позволяют интегрировать на одном кристалле необходимый набор функций управления и защиты силовой электроники, создавать наиболее простую, компактную и стабильную схему управления, не требуют сложных схем питания, обладают высоким быстродействием. Рост требований к силовой электронике массового привода, прежде всего по цене, компактности, КПД, надежности, отражается и на требованиях к драйверам. Технология драйверов 5-го поколения была разработана компанией IR специально для того, чтобы иметь возможность удовлетворять эти растущие требования на длительную перспективу. Эта технология позволяет повысить уровень интеграции функциональных возможностей при сохранении площади кристалла и цены.

В новых разработках драйверов IR для электропривода мощностью до нескольких киловатт можно выделить два основных направления.

Первое преследует цель создания максимально компактных ИС с минимальной ценой при ограниченном росте функциональных возможностей. Эти ИС предназначены для замены ИС предыдущего поколения при модернизации электроники привода, с целью снижения цены и упрощения схемотехники.

Второе направлено на разработку ИС для привода нового поколения с существенно более высокой эффективностью, широким набором функциональных возможностей при сохранении уровней цены и сложности схемотехники.

В рамках этих направлений IR уже приступила к серийному производству нескольких новых семейств драйверов.

Трехфазные драйверы для модернизации серийной продукции

Первым из новых семейств этого направления является серия IRS2336Dx, которая должна заменить популярную серию IR2136x предыдущего поколения.

Общая характеристика серии

В семейство входят 600-вольтовые драйверы IRS2336D и IRS23364D. Диапазон выходных напряжений первого равен 10…20 В (предназначен для управления силовыми МОП-транзисторами), второго 12…20 В (предназначен для управления IGBT). Драйверы выпускаются в 28-выводных корпусах DIP, SOIC и 44-выводном PLCC в бессвинцовом исполнении. Температурный диапазон эксплуатации микросхем от -40 до 125°С, хранения — от -55 до 150°С. Изделия этой серии относятся к классу ИС для индустриальных приложений по стандарту JEDEC JESD 47-E. Микросхемы в корпусах для поверхностного монтажа отвечают требованиям устойчивости к воздействию влажности уровня MSL-3 по JEDEC J-STD-020C. Схема включения этих микросхем представлена на рис. 1.

Рис. 1. Схема включения ИС серии IRS2336xD

Она во многом схожа со схемой для драйверов серии IR2136x, отсутствует лишь цепь бутстрепного ультрабыстрого диода.

Для упрощения перехода со старых ИС серии IR2136x на новые сохранено расположение и назначение выводов. ИС имеет 6 входов управления ключами инвертора (HIN-верхними, LIN-нижними), совместимых с КМОП- и ТТЛ-логикой любого уровня (включая 3,3 В), что позволяет реализовать управление драйвером напрямую от микроконтроллера. Выходы управления ключами инвертора (HO-верхние, LO-нижние) синфазны со входами HIN, LIN у драйвера IRS23364D и находятся в противофазе у IRS2336D.

Типовой уровень выходных токов драйверов новой серии (выводы HO, LO микросхемы) составляет 180 мА и 330 мА (втекающий/вытекающий ток затвора). Графики из справочных листов драйверов серии IRS2336xD (рис. 2) помогут подобрать частоту переключения драйверов при известных величине заряда затвора ключей инвертора и напряжении шины постоянного тока.

Рис. 2. Зависимость максимальной частоты переключения драйвера от заряда затвора транзистора и напряжения шины постоянного тока

Вход En (Enable) предназначен для дистанционного управления драйвером. Разрешение на работу драйвера дается при высоком логическом уровне на входе, запрещение при низком (уровень 0,8 В). Входной фильтр ИС на этом входе устраняет возможность срабатывания от ложных импульсов длительностью до 200 нс.

Интегрированный бутстрепный контур

В новых драйверах роль бутстрепного диода выполняют BootFET — бутстрепные МОП-транзисторы, интегрированные в кристалл ИС, что во многих случаях исключает необходимость применения внешних бутстрепных ультрабыстрых диодов и резисторов. Три бутстрепных транзистора подсоединены ко входу питания Vcc и к выходам Vв1, Vв2, Vв3 источников питания с плавающим уровнем, как показано на рис. 3.

Рис. 3. Подключение BootFET в ИС IRS2336xD

Интегральные BootFET включены только при высоком уровне выходов LO управления нижними ключами инвертора (рис. 4).

Рис. 4. График состояния BootFET

Напряжение Vвs на конденсаторе между выходами B и S циклически повышается в зависимости от времени нахождения выхода LO на низком уровне, емкости конденсатора, напряжения исток-сток (коллектор-эмиттер) и падения напряжения на антипараллельном диоде инвертора. Временные диаграммы бустрепных транзисторов примерно повторяют состояние выходов LO. BootFET находятся в проводящем состоянии при высоком уровне выхода LO и когда Vвs не превышает напряжение питания микросхемы Vcc (равное 15 В) более чем на 10%.

Интегральные бутстрепные транзисторы способны заменить внешние бутстрепные диоды в большинстве практических приложений. Ограничения в их применении могут быть связаны или со специфической схемотехникой (например, при реализации схем 6-шаговой модуляции) или с более низким, чем у ультрабыстрых диодов, быстродействием (в типовых бутстреных цепях обычно применяют диоды со временем обратного восстановления 100 нс). В этих случаях задача может быть решена дополнением схемы включения обычной бутстрепной цепью с ультрабыстрым диодом.

Повышенная устойчивость к помехам

С целью обеспечения высокой помехоустойчивости в драйверах новой серии сохранено разделение сигнальной и силовой земли, как это ранее было сделано в серии IR2136x. Выход сигнальной земли Vss используется в схемах защиты от перегрузки по току и формирования управления на входах HIN, LIN. Выход силовой земли COM совместно с выходами LO применяется при формировании управления нижними ключами инвертора. Помимо этого в новых драйверах применяются усовершенствованные входные фильтры. Отличие в логике работы такого фильтра иллюстрирует рис. 5.

Рис. 5. Логика работы обычного и усовершенствованного входных фильтров

Входной фильтр с обычной логикой работы бланкирует появление высокого уровня на выходе на время фильтрации tFIL,IN, и длительность выходного импульса по отношению ко входному уменьшается на время фильтрации (пунктирная линия на рис. 5). В усовершенствованном фильтре выходной сигнал также появляется с задержкой tFIL,IN, но длительность выходного импульса совпадает с длительностью входного (сплошная линия). Это позволяет эффективно устранять срабатывание схемы как от положительных, так и от отрицательных импульсных помех длительностью менее tFIL,IN. При более длинных входных импульсах длительность входных и выходных импульсов совпадает с достаточно высокой точностью (рис. 6).

Рис. 6. Длительность импульса на выходе усовершенствованного входного фильтра

В драйверах серии IRS2336xD усовершенствованные входные фильтры установлены на входах HIN, LIN управления инвертором (время фильтрации 350 нс) и на входе EN (200 нс).

Обеспечение надежного управления ключами инвертора

Временные задержки между сигналами управления на входе и выходными сигналами меняются в диапазоне 400…750 нс, а времена нарастания и спада на выходе — в диапазонах 110…190 нс и 35…75 нс соответственно. В трехфазных драйверах предусмотрено несколько ступеней функциональной защиты для предотвращения одновременного включения транзисторов инвертора и возникновения сквозных токов.

Специальная логическая схема устанавливает низкий уровень на выходах управления затворами верхнего и нижнего ключей при одновременном появлении высокого логического уровня на входах управления, тем самым блокируя работу драйвера.

В динамическом режиме работы драйвера разброс времен задержки между входным и выходным сигналами и фронтов выходных сигналов каналов драйвера может привести к перекрытию выходных сигналов и нежелательному срабатыванию ключей инвертора. Для предотвращения этого в схеме драйвера предусмотрен логический узел, который обеспечивает одинаковое время срабатывания верхнего и нижнего каналов драйвера, управляющих стойкой инвертора. Максимальная разница времен срабатывания составляет 50 нс (параметр МТ справочного листа). Помимо этого устраняется разница во временах срабатывания как между нижними, так и между верхними ключами.

Для предотвращения сквозных токов инвертора в драйверах предусмотрен узел формирования фиксированной паузы на переключение. Номинальная длительность паузы 300 нс (диапазон 190…420 нс). Схема формирования пауз обеспечивает для каналов управления верхним и нижним ключом разброс длительности пауз не более 60 нс. Это же относится и к разбросу длительности пауз между схемами управления всеми тремя стойками инвертора.

Высокая устойчивость к отрицательному смещению на выходе

Напряжение на выходах трехфазного инвертора (средние точки стоек) при идеальных условиях работы меняется от нуля (шина нулевого потенциала) до напряжения шины постоянного тока. На средней точке стойки Vs может за короткое время возникнуть значительное отрицательное смещение, которое будет передано на выход драйвера. Причиной этого может быть наличие индуктивной нагрузки, паразитные индуктивности в стойках инвертора, коммутация больших токов в течение коротких промежутков времени. Такая ситуация может происходить как в рабочем режиме, так и в режиме короткого замыкания, выключения при перегрузке по току и т.д. Драйверы новой серии способны успешно противостоять таким воздействиям. График на рис. 7 иллюстрирует возможность работы драйверов серии IRS2336xD при ударных отрицательных смещениях напряжения до минус 60 В.

Рис. 7. Устойчивость к отрицательному смещению на выходе (средней точке стойки) в зависимости от времени

С учетом этого драйверы новой серии являются гораздо более надежными силовыми ИС для управления инверторами приводов в реальных условиях эксплуатации.

Функции защиты

В новых ИС сохранены функции защиты, реализованные ранее в ИС серии IR2136x.

Вывод FAULT предназначен для передачи информации об аварийной ситуации за время работы таймера, программируемого внешней цепью RRCIN, CRCIN. Номинал резистора может быть выбран в диапазоне от 0,5 до 2 Мом, керамический конденсатор может иметь емкость до 1 нФ. Работа драйвера блокируется в двух случаях — при низком напряжении питания (уровень 8,9…8,2 В) и при наличии высокого уровня на входе ITRIP.

Рисунок 8 иллюстрирует вторую из этих ситуаций. При высоком уровне сигнала на выводе ITRIP напряжение на выводах VRCIN и VFAULT снижается до уровня на выводе Vss (сигнальная земля).

Рис. 8. Временные диаграммы работы таймера и выхода FAULT

Когда уровень сигнала на выводе ITRIP становится низким, запускается таймер, который спустя время tFLTCLR (определяется постоянной времени RС-цепи) производит сброс входа FAULT, уровень сигнала на котором снова становится высоким.

Вход ITRIP может быть использован для обнаружения перегрузки по току в шине нулевого потенциала инвертора. В этом случае выходы ИС переводятся на низкий уровень и выдается сигнал аварийной ситуации по выходу FAULT. Номиналы делителя R0, R1, R2 (рис. 9) определяются исходя из порогового уровня 0,46 В на входе ITRIP и уровня тока срабатывания защиты.

Рис. 9. Схема обнаружения перегрузки по току

Аналогичным образом может быть обеспечена защита от перегрева. Параметры термистора Rt и резисторов R3, R4 должны быть выбраны таким образом, чтобы пороговое напряжение 0,46 В было достигнуто при максимально допустимой температуре. Рисунок 9 показывает, как обеспечить одновременную реализацию этих возможностей с помощью развязывающих диодов.

Литература

1. Data sheet IR2136x

2. Data sheet IRS2336xD.

International Rectifier Простое бездатчиковое управление вентильными электродвигателями для бытового и промышленного привода

Получение технической информации, заказ образцов, поставка — e-mail

Силовой миниблок для сильноточных POL-конверторов

Компания International Rectifier анонсировала iP1206 — новое техническое решение для реализации понижающих синхронных конверторов, применяемых при питании телекоммуникационного и сетевого оборудования. Микросхема является новейшим дополнением в семействе iPOWIRTM силовых миниблоков, содержащих все пассивные компоненты и полупроводниковые приборы для реализации силовой части синхронных преобразователей. На базе iP1206 можно реализовать однофазный конвертор с выходным током до 30 А и двухфазный конвертор с двумя независимыми выходами на токи по 15 А. Обе опции основаны на противофазной работе каналов с целью снижения пульсаций входного напряжения и тока. Для достижения высокой объемной плотности в iP1206 применены полноценный ШИМ-контроллер и оптимизированный силовой каскад на современных полупроводниковых приборах.

Поскольку новая микросхема содержит все важные с точки зрения качества преобразования полупроводниковые и пассивные компоненты, то для создания высококачественного преобразователя требуется дополнительно всего несколько пассивных мощных компонентов. При этом существенно снижаются требования к квалификации разработчика и печатной плате. Особенностями iP1206PBF являются постоянная частота ШИМ 600 кГц в каналах, ограничение тока без потерь, защита от перенапряжения и перегрева, режим старта со смещением, трэкинг выходного напряжения.

Диапазон входных напряжений составляет 7,5…14,5 В, выходных 0,8…5,5 В. Микросхема выпускается в корпусе LGA. Для упрощения освоения применения iP1206 компания предлагает демонстрационный преобразователь IRDCiP1206-B 2х15А и онлайн-моделирование работы преобразователя iP1206 Spice circuit simulation.

Схема подключения трехфазного электродвигателя к трехфазной сети

подключения трехфазного электродвигателя к трехфазной сети

Электродвигатели

При этом нет необходимости добавлять в схему подключения какие-то пусковые устройства, потому что магнитное поле будет образовываться в обмотках статора сразу же после пуска двигателя. Давайте рассмотрим один вопрос, который сегодня встречается часто на форумах электриков. Вопрос звучит так: как правильно провести подключение трехфазного электродвигателя к трехфазной сети?

Трехфазный двигатель

Схемы подключения

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Существует две схемы подключения:

  • Звезда.
  • Треугольник.

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет.

Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.

Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит.

Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда.

Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт.

При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.

Схема звезда-треугольник

Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.

Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.

Схема звезда-треугольник

Внимание! Одновременно включать второй и третий пускатели нельзя. Произойдет короткое замыкание между подключенными к ним фазами, что приведет к сбрасыванию автомата. Поэтому между ними устанавливается блокировка. По сути, все будет происходить так – при включении одного, размыкаются контакты у другого.

Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.

Подключение электрического двигателя через магнитный пускатель

В принципе, схема подключения 3 фазного двигателя через магнитный пускатель практически точно такая же, как и через автомат. Просто в нее добавляется блок включения и выключения с кнопками «Пуск» и «Стоп».

Подключение электрического двигателя

Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (она нормально замкнутая). То есть, при ее нажатии смыкаются контакты, и ток начинает поступать на электродвигатель. Но тут есть один момент. Если отпустить Пуск, то контакты разомкнуться, и ток поступать не будет по назначению.

Поэтому в магнитном пускателе есть еще один дополнительный контактный разъем, который называется контактом самоподхвата. По сути, это блокировочный элемент. Он необходим для того чтобы при отжатой кнопке «Пуск» цепь подачи электроэнергии на электродвигатель не прерывалась. То есть, разъединить ее можно было бы только кнопкой «Стоп».

Что можно дополнить к теме, как подключить трехфазный двигатель к трехфазной сети через пускатель? Обратите внимание вот на какой момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя кнопка «пуск» перестает работать. Основная причина – подгорели контакты кнопки, ведь при пуске двигателя появляется пусковая нагрузка с большой силой тока. Решить эту проблему можно очень просто – почистить контакты.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *