Краткие теоретические сведения. Операционным усилителем (ОУ) называют усилитель с большим коэффициентом усиления
Операционным усилителем (ОУ) называют усилитель с большим коэффициентом усиления, имеющий два высокоомных входа и один низкоомный выход, с глубокой обратной связью. Они выполняются в виде интегральных микросхем и предназначены для построения на их основе разнообразных функциональных узлов электронной аппаратуры (разнообразных усилителей, интеграторов, фильтров, генераторов, коммутаторов и проч.)
ОУ в своём составе имеет входной каскад, каскад сдвига уровня напряжения и выходной каскад.
Входной каскад выполнен по хеме (рис .1), которая имеет два входа. Если обеспечить
Рис. 1 Входной каскад ОУ
условие R1=R2 и идентичность параметров транзисторов VT1 и VT2,то выходное напряжение будет равно разности входных напряжений, умноженной на коэффициент усилителя К .
Каскад сдвига уровня напряжения выполнен по схеме эмиттерного повторителя и исключает из сигнала уровень постоянной составляющей. Этим исключается искажение входного сигнала в усилителе.
Выходной каскад обеспечивает выходные характеристики ОУ.
На схемах интегральные ОУ обозначаются, как показано на рис.2.
Рис. 2. Обозначение ОУ
Основными параметрами ОУ являются:
Средний входной ток I вх и разность входных токов D Iвх :
где I1 и I2 соответственно токи инвертирующего и неинвертирующего входов при отсутствии сигналов на входах ОУ. Эти токи обусловлены базовыми токами биполярных транзисторов, или токами утечки затворов полевых транзисторов, на которых выполнены входные каскады ОУ. Входные токи проходят через внутреннее сопротивление источника входного сигнала и создают на нём падение напряжения. Это означает, что при отсутствии сигнала на входе ОУ имеется напряжение (Uвх ≠ 0), которое приводит к появлению выходного напряжения (Uвых ≠ 0).Чтобы избежать ошибки в работе ОУ это напряжение необходимо компенсировать.
Напряжение смещения U см – значение напряжения, которое необходимо подать на вход ОУ, чтобы при отсутствии сигнала напряжение на его выходе было равно нулю. Напряжение смещения Uсм можно вычислить, зная выходное напряжение (Uвых) при отсутствии входного сигнала и коэффициент усиления (К):
Коэффициент усиления напряжения постоянного тока К0 показывает во сколько раз усиливается входной сигнал. У идеального ОУ К0 ® ¥. Для реальных схем коэффициент усиления напряжения вычисляется по формуле:
где Rос и Rвх соответственно , сопротивление обратной связи и входное сопротивление. Входное сопротивление R вх . Различают две составляющие Rвх:
а) входное сопротивление по синфазному сигналу (сопротивление утечки между входом и “землёй” ):
где ΔUвх.сф – приращение входного синфазного напряжения за счёт приращения среднего входного тока ΔIвх.ср.
б) дифференциальное ( разностное) входное сопротивление:
где ΔUвх – изменение напряжения между входами ОУ, ΔIвх – изменение входного тока. Обычно Rвх. диф=10 кОм…10 МОм.
Выходное сопротивление Rвых=20…2000 Ом.
Скорость нарастания выходного напряжения. Определяется временем за которое выходное напряжение ОУ изменяется от 10% до 90%.
Усилители и повторители напряжения на ОУ. Основные схемы усилителей и повторителей напряжения показаны на рис. 3:
Рис. 3. Инвертирующий (а) и неинвертирующий (б) усилители и повторитель напряжения (в) на ОУ
Усилитель (рис.3,а) называется инвертирующим потому, что его выходной сигнал находится в противофазе с входным. Коэффициенты усиления по постоянному току K и в диапазоне частот K (jω) этого усилителя определяются формулами:
где ωгр – граничная частота ОУ по уровню 0,707K.
Для неинвертирующего усилителя (рис. 3, б) коэффициенты усиления по постоянному току K и в диапазоне частот равны:
Частным случаем усилителя (рис. 3,б) является усилитель (рис. 3,в) с коэффициентом усиления K=1, поэтому его называют повторителем напряжения.
Сумматоры напряжений на ОУ. Схема суммирующего усилителя изображена на рис. 4:
Рис. 4. Сумматор на ОУ
На основании схемы рис. 4 можно записать следующие выражения:
Дифференцирующие и интегрирующие ОУ. Дифференцирующие и интегрирующие устройства, созданные на основе ОУ изображены на рис. 5:
Рис. 5. Интегрирующий (а) и дифференцирующий (б) ОУ
Для инвертирующего устройства (рис. 5,а) выходное напряжение определяется выражением:
На начальном интервале интегрирования, когда t << τинт, изменение выходного напряжения Uвых будет достаточно близко к линейному, и скорость его изменения равна:
Для дифференцирующего устройства (рис.5,б) выходное напряжение Uвых пропорционально скорости изменения входного напряжения и равно:
Задание на подготовку к работе
1. Изучить схемы входного и выходного каскадов ОУ.
2. Изучить параметры и характеристики ОУ, сумматора, интегратора и дифференцирующего ОУ.
3. Изучить порядок выполнения работы и нарисовать необходимые схемы и таблицы.
Контрольные вопросы
1. По какой схеме собран входной каскад ОУ?
2. Почему входной каскад ОУ называется дифференциальным?
3. Объясните причину возникновения входных токов.
4. Почему при отсутствии входных сигналов на входе ОУ напряжение на выходе не равно 0?
Операционные усилители
Операционный усилитель (ОУ) — это усилитель постоянного тока с дифференциальным входом, характеристики которогоблизки к характеристикам так называемого “идеального усилителя». ОУ имеет большой коэффициент усиления по напряжению К>>1 (К = 10 4 — 10 6 ), большое входное (Rвх = 0.1-100 МОм) и малое выходное (Rвх = 10-100 Ом) сопротивления.
В линейных усилителях применяют ОУ только с цепями отрицательной обратной связи (ООС), которая уменьшает коэффициент усиления К по напряжению до 1-10 3 , но одновременно с этим уменьшает зависимость К от температуры, напряжения питания, увеличивает Rвх.ус и уменьшается Rвых.ус. Применение ОУ в усилителях без цепей ООС недопустимо, так какувеличивается опасность нарушения устойчивости ОУ и усложняются цепи коррекции частотной характеристики в широкой полосе частот.
ОУ (рис 15.1.) содержит в качестве первого каскада дифференциальный усилитель. Дифференциальный усилитель имеет высокий коэффициент усиления для разности входных сигналов U2 – U1 и низкий коэффициент усиления для синфазных сигналов, т.е. одинаковых сигналов, поданных одновременно на оба входа. Это позволяет уменьшить чувствительность к синфазным сигналам (внешним помехам) и напряжение сдвига, определяемое неидентичностью плеч ОУ.
Рис.15.1. Внутренняя структура операционного усилителя.
За входным каскадом следуют один или несколько промежуточных; они обеспечивают необходимое усиление по напряжению и по току.
Комплементарный выходной каскад должен обеспечивать низкое полное выходное сопротивление операционного усилителя и ток, достаточный для питания ожидаемых нагрузок. В качестве выходного каскада обычно используется простой или комплементарный эмиттерный повторитель.
Для снижения чувствительности схемы к синфазным сигналам и увеличения входного сопротивления ток эмиттера первого дифференциального каскада задается с помощью источника стабильного тока.
Основные параметры операционных усилителей
1. К – собственный коэффициент усиления ОУ ( без обратной связи).
2. Uсдв — Выходное напряжение сдвига. Небольшое напряжение, возникающее из-за несимметрии плеч ОУ при нулевом напряжении на обоих входах. Обычно Uсдв имеет значение 10 — 100 мВ.
3. Iсм — Входной ток смещения. Ток на входах усилителя, необходимый для работы входного каскада операционного усилителя.
4. Iсдв — Входной ток сдвига (). Разность токов смещения появляется вследствие неточного согласования входных транзисторов. .
5. Rвх — Входное сопротивление. Как правило, Rвх имеет значение до 1-10 мегаом.
6. Rвых — Выходное сопротивление. Обычно Rвых не превосходит сотен Ом.
7. Косс — Коэффициент ослабления синфазного сигнала. Характеризует способность ослаблять сигналы, приложенные к обоим входам одновременно.
8. Ток потребления. Ток покоя, потребляемый операционным усилителем.
9. Потребляемая мощность. Мощность, рассеиваемая операционным усилителем.
10. Максимальная скорость нарастания выходного напряжения (В/мкс) .
11. U пит. — Напряжение питания.
12. Переходная характеристика. Сигнал на выходе усилителя при подаче на его вход скачка напряжения.
ОУ имеет несколько вариантов схем включения, которые значительно отличаются по своим характеристикам.
Для анализа работы и расчета характеристик различных схем включения ОУ далее необходимо помнить, что, исходя из свойств ДУ:
1. Разность напряжений между входами ОУ очень мала и может быть принята равной нулю.
2. Операционный усилитель имеет высокое входное сопротивление, поэтому потребляет очень небольшой входной ток ( до 10 nA).
Основные схемы включения ОУ
В инвертирующем усилителе (рис.15.2.), входной и выходной сигналы сдвинуты по фазе на 180º. Если Uвх, положительное то напряжение в точке А, а значит и Uд , также станет положительным, а Uвых уменьшится, что приведет к уменьшению на инвертирующем входе до величины Uд = Uвых / К ≈ 0.
Точку А часто называют виртуальной землей, потому, что ее потенциал почти равен потенциалу земли, так как Uд, как правило, весьма мало
Рис. 15.2. Инвертирующий усилитель на ОУ
Чтобы получить выражение для коэффициента усиления с обратной связью, учтем, что , т.к.Rвх усилителя весьма велико. Так как и , то .
Полагая Uд = 0 (так как К → ∞), получим . Коэффициент усиления с обратной связью рассматриваемой схемы равен
Выходное напряжение инвертировано, о чем говорит и отрицательное значение Кос.
Так как, благодаря обратной связи, в точке А сохраняется приблизительно нулевой потенциал, входное сопротивление схемы инвертирующего усилителя равно R1.. Сопротивление R1 должно быть выбрано так, чтобы не нагружать источник входного сигнала, и, естественно, Rос должно быть достаточно большим, чтобы чрезмерно не нагружать операционный усилитель.
Неинвертирующий усилитель может быть также реализован на ОУ (рис.15.3) с высоким входным сопротивлением, коэффициент усиления которого по напряжению также может быть задан с помощью сопротивлений R1 и Rос.
Как и ранее, считаем, что , поскольку Rвх → ∞.
Напряжение на инвертирующем входе усилителя равно, поэтому
15.3. Неинвертирующий усилитель на ОУ
Так как Uвых = Uд · К и Uд=Uвых / К, при К → ∞ и Uд ≈ 0, можно написать, что . Решая уравнение , получим выражение для коэффициента усиления с замкнутой обратной связью Kос , (15.3)
которое справедливо при условии К » Kос.
В схеме повторителя напряжения на ОУ (рис.15.4) Uвых обратная связь поступает с выхода усилителя на инвертирующий вход. Так как усиливается разность напряжения на входах ОУ — Uд , то можно увидеть, что напряжение на выходе усилителя Uвых = Uд · К.
Рис.15.4. Повторитель напряжения на ОУ
Выходное напряжение ОУ Uвых = Uвх + Uд . Так как Uвых = Uд · К, получим, что Uд = Uвых/К. Следовательно, . Так как К велико (К → ∞), то Uвых/К стремится к нулю, и в результате получаем равенство Uвх = Uвых.
Входное напряжение связано с землей только через входное сопротивление усилителя, которое очень велико, поэтому повторитель может служить хорошим согласующим каскадом.
Усилитель с дифференциальным входом имеет два входа, причем инвертирующий и неинвертирующий входы находятся под одинаковым напряжением, в данном случае равным Uос, так как разность напряжений между инвертирующим и неинвертирующим входами очень мала (обычно меньше 1мВ),.
Рис. 15.5. Усилитель с дифференциальным входом
Если задать U1 равным нулю и подать входной сигнал по входу U2, то усилитель будет действовать как неинвертирующий усилитель, у которого входное напряжение снимается с делителя, образованного резисторами R2 и R?ос. Если оба напряжения U1 и U2 подаются на соответствующие входы одновременно, то сигнал на инвертирующем входе вызовет такое изменение выходного напряжения, что напряжение в точке соединения резисторов R1 и Rос станет равным Uос, где .
Вследствие того, что усилитель имеет очень высокое входное сопротивление,
Решая полученное уравнение относительно Uвых, имеем:
Подставляя выражение для Uос, получим:
Если положить R1 = R2 и Roc = R´oc (ситуация, которая наиболее часто встречается), получим . Полярность выходного напряжения определяется большим из напряжений U1 и U2.
Очевидно, что если U2 на рис.15.5 равно нулю, то усилитель будет действовать по отношению к U1 как инвертирующий усилитель.
Входное сопротивление схемы ОУ можно определитьследующим образом. К дифференциальному входному сопротивлению ОУ rд приложено напряжение. Uд . Благодаря наличию обратной связи это напряжение имеет малую величину.
где b = R1/(R1 + R2) — коэффициент передачи делителя в цепи обратной связи. Таким образом, через это сопротивление протекает только ток, равный U1/rд(1 + KUb). Поэтому дифференциальное входное сопротивление, благодаря действию обратной связи, умножается на коэффициент 1 + KUb.
Согласно рис. 12, для результирующего входного сопротивления схемы имеем:
Эта величина даже для операционных усилителей с биполярными транзисторами на входах превышает 10 9 Ом. Следует однако помнить, что речь идет исключительно о дифференциальной величине; это значит, что изменения входного тока малы, тогда как среднее значение входного тока может принимать несравненно бoльшие значения.
Рис. 15.6. Схема неинвертирующего усилителя с учетом собственных сопротивлений ОУ.
Выходное сопротивление ОУ операционного усилителя, не охваченного обратной связью, определяется выражением:
При подключении нагрузки происходит некоторое снижение выходного напряжения схемы, вызванное падением напряжения на rвых, которое передается на вход усилителя через делитель напряжения R1, R2. Возникающее при этом увеличение дифференциального напряжения компенсирует изменение выходного напряжения.
В общем случае выходное сопротивление может иметь достаточно высокое значение ( в некоторых случаях от 100 до 1000 Ом. Подключение цепи ОС поволяет уменьшить выходное сопротивление.
Для усилителя, охваченного обратной связью, эта формула принимает вид:
При этом величина Uд не остается постоянной, а изменяется на величину
Для усилителя с линейной передаточной характеристикой изменение выходного напряжения составляет
Величиной тока, ответвляющегося в делитель напряжения обратной связи в данном случае можно пренебречь. Подставив в последнее выражение величину dUд , получим искомый результат:
Если, например, b = 0,1, что соответствует усилению входного сигнала в 10 раз, а KU = 10 5 , то выходное сопротивление усилителя снизится с 1 кОм до 0,1 Ом. Вышеизложенное, вообще говоря, справедливо в пределах полосы пропускания усилителя fп, Гц. На более высоких частотах выходное сопротивление ОУ с обратной связью будет увеличиваться, т.к. величина |KU| с ростом частоты будет уменьшаться со скоростью 20дБ на декаду (см. рис. 3). При этом оно приобретает индуктивный характер и на частотах более fт становится равным величине выходного сопротивления усилителя без обратной связи.
Динамические параметры ОУ , характеризующие быстродействие ОУ, можно разделить на параметры для малого и большого сигналов. К первой группе динамических параметров относятся полоса пропускания fп, частота единичного усиления fт и время установления tу. Эти параметры называются малосигнальными, т.к. они измеряются в линейном режиме работы каскадов ОУ (DUвых < 1В).
Ко второй группе относятся скорость нарастания выходного напряжения r и мощностная полоса пропускания fр. Эти параметры измеряются при большом дифференциальном входном сигнале ОУ (более 50 мВ). Некоторые из этих парамеров рассмотрены выше. Время установления отсчитывается от момента подачи на вход ОУ ступеньки входного напряжения до момента, когда в последний раз станет справедливым равенство |Uвых.уст — Uвых(t)| = d, где Uвых.уст — установившееся значение выходного напряжения, d — допустимая ошибка.
Рабочая полоса частот или полоса пропускания ОУ определяется по виду амплитудно-частотной характеристики, снятой при максимально возможной амплитуде неискаженного выходного сигнала. Вначале на низких частотах устанавливают такую амплитуду сигнала от генератора гармонических колебаний, чтобы амплитуда выходного сигнала Uвых.макс немного не доходила до границ насыщения усилителя. Затем увеличивают частоту входного сигнала. Мощностная полоса пропускания fр соответствует значению Uвых.макс равному 0,707 от первоначального значения. Величина мощностной полосы пропускания снижается при увеличении емкости корректирующего конденсатора.
Эксплуатационные параметры ОУ определяют допустимые режимы работы его входных и выходных цепей и требования к источникам питания, а также температурный диапазон работы усилителя. Ограничения эксплуатационных параметров обусловлены конечными значениями пробивных напряжений и допустимыми токами через транзисторы ОУ. К основным эксплуатационным параметрам относятся: номинальное значение питающего напряжения Uп; допустимый диапазон питающих напряжений; ток, потребляемый от источника Iпот; максимальный выходной ток Iвых.макс; максимальные значения выходного напряжения при номинальном питании; максимально-допустимые значения синфазных и дифференциальных входных напряжений
Амплитудно-частотная характеристика операционного усилителя является важным фактором, от которого зависит устойчивость работы реальных схем с таким усилителем. В большинстве операционных усилителей отдельные каскады соединены между собой по постоянному току гальваническими связями, поэтому эти усилители не имеют спада усиления в области низких частот и у них необходимо анализировать спад коэффициента усиления с возрастанием частоты.
Рис.15.7. АЧХ операционного усилителя
На рис.15.7. показана типичная частотная характеристика операционного усилителя.
Рис. 15.8. Упрощенная эквивалентная схема ОУ
Каждый каскад операционного усилителя ( и весь ОУ в целом) можно представить в виде упрощенной эквивалентной схемы, состоящей из источника напряжения, сопротивления и паразитной емкости, как показано на рис. 15.8. Емкость в этом случае определяется емкостью каждого p-n – перехода в полупроводнике, а также емкостью монтажа и паразитными емкостями схемы.
При возрастании частоты емкостное сопротивление падает, что приводит к уменьшению постоянной времени τ = Rн*С. Очевидно, должна существовать частота, при превышении которой напряжение на выходе Uвых окажется меньше, чем КUд.
Выражение для коэффициента усиления К на любойчастоте:
имеет вид , где К – коэффициент усиления без обратной связи на низких частотах; f – рабочая частота; f1 – граничная частота или частота при 3 дБ, т.е. частота, на которой К(f) на 3 дБ ниже К, или равен 0,707·А.
Если, как это обычно бывает, Rн » Rвых, то .
Обычно амплитудно-частотная характеристика дается в общем виде. как:
где f — интересующая нас частота, в то время как f1 – фиксированная частота, которая называется граничной частотой и является характеристикой конкретного усилителя. С ростом частоты коэффициент усиления по напряжению падает. Кроме того, из выражения для θ видно, что при изменении частоты, фаза выходного сигнала сдвигается относительно фазы входного; — выходной сигнал отстает по фазе от входного.
Добавление отрицательной обратной связи так, например, как это сделано в инвертирующем или неинвертирующем усилителях, увеличивает эффективную полосу пропускания операционного усилителя.
Чтобы убедиться в этом, рассмотрим выражение для коэффициента усиления без обратной связи усилителя со спадом 6дБ / октава (при двукратном увеличении частоты):
, где К(f) – коэффициент усиления без обратной связи на частоте f; А – коэффициент усиления без обратной связи на низких частотах; f1 – сопрягающая частота. Подставляя это соотношение в выражение для коэффициента усиления при наличии обратной связи , получим
Это выражение можно переписать в виде , где f1oc = f1(1 + Аβ); K1 – коэффициент усиления с замкнутой обратной связью на низких частотах; f1oc – граничная частота при наличии обратной связи.
Граничная частота при наличии обратной связи равна граничной частоте без обратной связи, умноженной на (1 + Кβ) > 1, так что эффективная ширина полосы пропускания действительно увеличивается при использовании обратной связи. Это явление показано на рис.8, где f1oc > f1 для усилителя с коэффициентом усиления равным 40 дБ.
Если скорость спада усилителя составляет 6дБ/октава, произведение коэффициента усиления на полосу пропускания постоянно: Kf1 = const. Чтобы убедиться в этом, умножим идеальный коэффициент усиления на низких частотах на верхнюю частоту среза того же усилителя при наличии обратной связи.
Тогда получим произведение усиления на полосу пропускания:
, где К – коэффициент усиления без обратной связи на низких частотах.
Если раньше было показано, что для увеличения полосы пропускания с помощью обратной связи следует уменьшить коэффициент усиления, то теперь выведенное соотношение дает возможность узнать, какой частью коэффициента усиления необходимо пожертвовать для получения желаемой полосы пропускания.
Схема замещения операционного усилителя позволяет учитывать влияние неидеальности усилителя на характеристики схемы. Для этого удобно представить усилитель полной схемой замещения, содержащей существенные элементы неидеальности. Полная схема замещения ОУ для малых медленных изменений сигналов представлена на рис. 15.9.
Рис. 15.9.. Схема замещения операционного усилителя для малых сигналов
У операционных усилителей с биполярными транзисторами на входе входное сопротивление для дифференциального сигнала rд составляет несколько мегаом, а входное сопротивление для синфазного сигнала rвх несколько гигаом. Входные токи, определяемые этими сопротивлениями, имеют величину порядка нескольких наноампер. Существенно бoльшие значения имеют постоянные токи, протекающие через входы операционного усилителя и определяемые смещением транзисторов дифференциального каскада. Для универсальных ОУ входные токи находятся в пределах от 10 нА до 2 мкА, а для усилителей со входными каскадами, выполненными на полевых транзисторах, они составляют доли наноампер.
Параметры операционных усилителей
Так как ОУ является универсальным устройством, то для описания его свойств используется большое число параметров.
1. Коэффициент усиления К равен отношению выходного напряжения к вызвавшему это приращение дифференциальному входному сигналу при отсутствии обратной связи (составляет 10 3- 10 7 ) и определяется при холостом ходе на выходе. К = Uвых/Uвх.д.
2. Напряжение смещения нуля Ucm показывает, какое напряжение необходимо подать на вход ОУ для того, чтобы на выходе получить Uвых = 0 (составляет 0,5-0,15 мВ). Это является следствием неточного согласования напряжений эмиттер-база входных транзисторов.
3. Входной ток Iвх определяется нормальным режимом работы входного дифференциального каскада на биполярных транзисторах. Это ток базы входного транзистора ДУ. Если в дифференциальном каскаде используются полевые транзисторы, то это токи утечек.
При подключению к входам ОУ источников сигнала с разными внутренними сопротивлениями, создаются различные падения напряжений на этих сопротивлениях токами смещения. Появившийся дифференциальный сигнал, изменяет входное напряжение. Для его уменьшения, сопротивления источников сигнала должны быть одинаковы.
4. Разность входных токов DIвх равна разности значений токов, протекающих через входы ОУ, при заданном значении выходного напряжения, составляет 0,1-200 нА.
5. Входное сопротивление Rbx (сопротивление между входными выводами) равно отношению приращения входного напряжения к приращению входного тока на заданной частоте сигнала. Rbx определяется для области низких частот. В зависимости от характера подаваемого сигнала входное сопротивление бывает дифференциальное (для дифференциального сигнала) и синфазное (для синфазного сигнала).
Дифференциальное входное сопротивление – это полное входное сопротивление со стороны любого входа, когда другой вход соединен с общим выводом, составляет десятки кОм – сотни МОм. Такое большое Rbx получается за счет входного ДУ и стабильного источника постоянного напряжения. Синфазное входное сопротивление – это сопротивление между замкнутыми выводами входов и землей. Оно характеризуется изменением среднего входного тока при приложении ко входам синфазного сигнала и на несколько порядков выше Rвх диф.
6. Коэффициент ослабления синфазного сигнала Косл сф определяется как отношение напряжения синфазного сигнала, подаваемого на оба входа, к дифференциальному входному напряжению, вызывающему тоже значение выходного напряжения. Коэффициент ослабления показывает во сколько раз коэффициент усиления дифференциального сигнала больше коэффициента усиления синфазного входного сигнала и составляет 60-120 дБ:
С ростом коэффициента ослабления синфазного сигнала точнее можно выделить дифференциальный входной сигнал на фоне синфазной помехи, тем лучше качество ОУ. Измерения проводят в диапазоне низких частот.
7. Выходное сопротивление Rвых определяется отношением приращения выходного напряжения к приращению активной составляющей выходного тока при заданном значении частоты сигнала и составляет единицы–сотни Ом.
8. Температурный дрейф напряжения смещения равен отношению максимального изменения напряжения смещения к вызвавшему его изменению температуры и оценивается в мкВ/град .
Температурные дрейфы напряжения смещения и входных токов являются причиной температурных погрешностей устройств с ОУ.
9. Коэффициент влияния нестабильности источника питания на выходное напряжение показывает изменение выходного напряжения при изменении напряжений питаний на 1 В и оценивается в мкВ/В.
10. Максимальное выходное напряжение Uвых макс определяется предельным значением выходного напряжения ОУ при заданном сопротивлении нагрузки и напряжении входного сигнала, обеспечивающим стабильную работу ОУ и искажения не превышающие заданного значения. Uвых макс на 1-5 В ниже напряжения питания.
11. Максимальный выходной ток Iвых макс ограничивается допустимым коллекторным током выходного каскада ОУ.
12. Потребляемая мощность – мощность, рассеиваемая ОУ при отключенной нагрузке.
13. Частота единичного усиления f1 – это частота входного сигнала, при которой коэффициент усиления ОУ равен 1: |K(f1)| = l. У интегральных ОУ частота единичного усиления имеет предельное значение 1000 МГц. Выходное напряжение на этой частоте ниже, чем для постоянного тока примерно в 30 раз.
14. Частота среза fc ОУ – частота, на которой коэффициент усиления снижается в раз. Она оценивает полосу пропускания ОУ и составляет десятки МГц.
15. Максимальная скорость нарастания выходного напряжения Vмакс определяется наибольшей скоростью изменения выходного напряжения ОУ при действии на входе импульса прямоугольной формы с амплитудой равной максимальному значению входного напряжения и лежит в пределах 0,1-100 В/мкс. При воздействии максимального входного напряжения выходной каскад ОУ попадает в область насыщения по обеим полярностям. Этот параметр указывается для широкополосных и импульсных устройств на основе ОУ и приводит к наличию фронтов выходного сигнала с конечными значениями длительности. Vмакс характеризует быстродействие ОУ в режиме большого сигнала.
16. Время установления выходного напряжения tycт (время затухания переходного процесса) – это время необходимое для возвращения усилителя из состояния насыщения по выходу в линейный режим.
Время установления – это время в течение которого после скачка входного напряжения, выходное напряжение отличается от установившегося значения на величину допустимой относительной погрешности dUвых. За время установления выходное напряжение ОУ при воздействии входного напряжения прямоугольной формы изменяется от уровня 0,1 до уровня 0,9 установившегося значения.
17. Напряжение шумов, приведенное ко входу, определяется действующим значением напряжения на выходе усилителя при нулевом входном сигнале и нулевом сопротивлении источника сигнала деленным на коэффициент усиления ОУ. Спектральная плотность шумов оценивается как корень квадратный из квадрата приведенного напряжения шума деленного на полосу частот, в которой выполнено измерение напряжения шума. Размерность данного параметра . В ТУ на ОУ иногда задают коэффициент шума (дБ), определяемый как отношение приведенной мощности шума усилителя, работающего от источника с внутренним сопротивлением Rг, к мощности шума активного сопротивления
где Uш – приведенное напряжение шумов при Rг=0;
4kTRг – спектральная плотность теплового шума резистора.
Требования, предъявляемые к параметрам ОУ, зависят от выполняемых им функций. Желательно во всех практических случаях уменьшить погрешность выполняемых операций, повысить надежность, быстродействие. Одновременное улучшение всех параметров выдвигает противоречивые требования к схеме и ее изготовлению. Все это объясняется большим разнообразием ОУ, у которых оптимизированы лишь конкретные параметры за счет ухудшения других.
Так в измерительной аппаратуре используются прецизионные ОУ, обладающие большим коэффициентом усиления, большим входным сопротивлением, малым напряжением смещения нуля и малыми шумами. А быстродействующие ОУ должны обладать большой скоростью нарастания выходного напряжения, большой полосой пропускания и малым временем установления выходного напряжения. Такие ОУ нашли применение в импульсных и широкополосных усилительных устройствах и в устройствах аналого-цифровых преобразователей.
Для создания компараторов, которые служат для сравнения мгновенных значений двух напряжений, используются скоростные ОУ, работающие в режиме переключения.
Научная электронная библиотека
Входной каскад ОУ определяет следующие основные параметры всего усилителя: входное сопротивление Rвх, входной ток Iвх, разность входных токов ΔIвх, напряжение смещения Uсм, рабочий диапазон синфазных ΔUсф и дифференциальных ΔUдф входных сигналов, коэффициент ослабления синфазного сигнала Kос.сф. и т.д.. Для перестраиваемых ОУ все эти параметры должны лежать в заданных пределах во всем диапазоне изменения статического режима таких усилителей.
На рис.3-5,а представлена типовая функциональная схема входного и согласующего каскадов перестраиваемого ОУ [133. Она состоит из дифференциального каскада, построенного на основе многополюсников 1 и 2 (VT1,VТ2); многополюсника 3 — цепь активной нагрузки (АН); согласующего каскада — многополюсник 4 (VT5); нагрузки Rн ; управляемых источников тока Iу1 , Iу2 : переключателя режимов ПР, вырабатывающего сигналы управления Uу1 , Uу2. В качестве подсхемы АН используется повторитель тока (рис.3.5,б), при необходимости получения повышенных параметров повторителя рекомендуется использование схемы АН, представленной на рис.3.5,в [89].
Работа данной схемы при неизменном статическом режиме подробно рассмотрена в литературе [71-76]. Рассмотрим влияние изменения задающих токов Iy1 , Iy2 при переключении режимов элементом ПР на основные параметры ОУ. Напряжение смещения такого входного каскада (рис.3.5) определяется следующим выражением:
В нем первое слагаемое – Uсм1 обусловлено неидентичностью многополюсников 1 и 2, второе слагаемое — Uсм2 образуется из-за неидентичности элементов активной нагрузки, третье слагаемое — Uсм3 является результатом ответвления тока во входную цепь согласующего многополюсника 4. Очевидно, что для получения нулевого значения напряжения смещения необходимо, чтобы один из слагаемых выражения (3.9) компенсировал оставшиеся. Так как варьировать первым и третьим слагаемыми во многих случаях не представляется возможным, то очевидным путем компенсации напряжения Uсм является введение регулировки в цепь активной нагрузки. При этом должно выполняться соотношение:
Рассмотрим подробнее составляющие напряжения Uсм для схемы рис.3-5. Первое слагаемое определяется выражением:
Считая, что a ≈ 1 полагаем Iэ ≈ Iк, тогда,
где Кан==I2/I1 — коэффициент передачи активной нагрузки. Полагая
где h21э.5 — коэффициент передачи тока многополюсника 5, получаем
Рассмотрим случай построения перестраиваемых ОУ без регулировки напряжения смещения. Тогда на основании выражений (3.11) – (3.14) получаем выражение для максимального напряжения Uсм:
На основании выражения (3. 15) построен график (рис.3.6) при условии h21э.5=100 и jтln(Is1/Is2)=2 мВ (что является типичными значениями параметров для транзисторов в интегральном исполнении). Нормированная характеристика (рис.3.6) отражает зависимость относительного коэффициента смещения Ксм =Uсм./Uсм1 от величины отношения задающих токов Iyi/Iy2 и коэффициента Kан2 (Кан1=1, Kан2=1,1, Кан2 =1,2). Во многих случаях реализации перестраиваемых ОУ целесообразно, чтобы максимальное значение коэффициента Ксм не превышало 5. Тогда из рассмотрения графика (рис.3.6) очевидно, что отношение токов Iу1/Iу2 не может быть меньше 0,1 (при Кан =1). С увеличением коэффициента Кан это отношение будет увеличиваться. Следует отметить, что принципиально невозможно обеспечить Ксм<5, если коэффициент Кан превышает значение 1,3. Таким образом, при каждом переключении токов Iу1, Iу2 должны выполняться указанные выше рекомендации.
Рассмотрим случай, когда в перестраиваемом ОУ предусмотрена регулировка напряжения смещения. С учетом выражений (3.10), (3.11), (3-14) и (3.15) получаем:
Выражение (3.16) удобно представить в виде
Из соотношения (3.16) на первый взгляд следует, что любые значительные составляющие Uсм1 и Uсм2 могут быть компенсированы составляющей Uсм2 и не нужно особенно заботиться о минимизации составляющей Uсм2. Но идти по этому пути — значит получить большой температурный дрейф напряжения смещения. Действительно, температурное изменение тока Iэ , как правило, велико (2 раза при изменении температуры на 100°С), что обусловлено увеличением параметра h21э.5 с ростом температуры. Поэтому даже при использовании в перестраиваемых ОУ регулировки напряжения смещения необходимо стремиться к минимизации составляющей Uсм2 (Uсм3<<Uсм1) и компенсировать технологическую составляющую Uсм1 асимметрией токов I1 и I2 .
Рассмотрим зависимость слагаемого Uсм2 в выражении (3.9) от статического режима входного каскада. Повторитель тока с резисторным смещением (рис.3.5,б) позволяет уменьшить до нуля напряжение U путем подстройки резисторов R1 и R2. Коэффициент передачи такого повторителя определяется выражением:
На основании выражения (3.18) построен график на рис.3.7, при следующих значениях параметров элементов: R1 =R2 =1 кОм, I1 =Iy1 /2, β>>1, Is4/Is3 =0,92. График показывает изменение коэффициента Кан в зависимости от относительного уровня втекающего тока d=I1 /I1(Кан=1), где I1(К=1) — величина тока, при которой коэффициент равен единице. Анализируя соотношение (3.18)
и график (рис.3.7) можно сделать вывод, что коэффициент Кан_ при уменьшении тока Iy1 увеличивается и в пределе достигает значения Кан =Is3/Is4 при Iy1≈0.
Таким образом, работая при низких значениях тока Iy1 активная нагрузка вызывает появление дополнительного напряжения смещения. Для минимизации которого требуется выполнение условия:
Для компенсации составляющей Uсм1 величины резисторов R1 и R2 выбираются неравными (положим R1 =1,1, R2, I3=0). Рассмотрим влияние уменьшения тока Iу1 на эффективность работы компенсационной регулировки. На основании соотношения (3.15) с учетом выражений (3.10), (3.17) и (3.18) построен график на рис.3.8. Он отражает зависимость коэффициента Ксм от относительного уровня тока g=Iy1/Iy1 (Uсм=0), где Iу1(Uсм=0) — величина тока Iу1 при котором Uсм =0. Очевидно, что эффективность компенсации при уменьшении тока Iу1 значительно снижается. При Iу1≈0 коэффициент Ксм =1+ Uсм2 / Uсм1 . Из анализа следует, что наибольшее влияние на величину напряжения Uсм оказывает значение соотношения токов Iy1/Iy2. При малых абсолютных значениях тока Iy1 снижается эффективность компенсации за счет изменения коэффициента Кан И в этом случае минимальное значение тока Iy1 не должно опускаться ниже величины, при которой коэффициент Кан изменяется на 5%. Минимально допустимую величину тока Iy1 можно уменьшить путем увеличения абсолютных значений сопротивлений резисторов R1 и R2.
Рассмотрим влияние изменения задающих токов Iy1 и Iy2 на коэффициент усиления входного каскада Ку и входное сопротивление Rвх типовой схемы (рис.3.5,а). Для случая, когда и коэффициент Кy и входное сопротивление определяются выражениями:
где Rвых.ан, Rвых.дк — выходные сопротивления многополюсников 3 и 2 соответственно; h21.э — коэффициент передачи тока многополюсниками 1 и 2; гэ =2jт/ Iy1. Из выражений (3.20) видно, что с ростом величины тока Iy1 входное сопротивление Rвх падает, а коэффициент Ку возрастает. Это повышает общий коэффициент усиления ОУ, что улучшает точностные характеристики устройств, но может привести к снижению запаса устойчивости. Ослабить влияние переключения тока можно путем введения резисторов Rэ1, Rэ2 (на рис.3.5,а показаны пунктиром). В этом случае:
При выполнении условия 2rэ<<(Rэ1+Rэ2) коэффициент Ку и сопротивление Rвх не будет зависеть от переключения тока Iy1, при этом также увеличится диапазон дифференциального входного напряжения. Но в этом случае коэффициент усиления будет ниже, чем в случае отсутствия резисторов и напряжение смещения может возрасти из-за технологического разброса относительных величин сопротивлений.
Входной ток Iвх типовой схемы (рис.3.5,а) определяется следующим выражением:
Его величина прямопропорциональна величине тока Iу1. Для исключения влияния задающего тока предлагается использовать способ компенсации входного тока. Один из вариантов схемотехнической реализации этого способа представлен на рис.3.9. Данная схема имеет низкий входной ток в широком диапазоне изменения статического режима благодаря компенсации входных токов дифференциального каскада. Если Iвх1 = Iвх.2 = Iвх и Iк1 = Iк2 =Iк то указанная компенсация выполняется при Iк = Iб. При этом необходимо, чтобы I2 = I1 /2, тогда:
Повторитель тока на транзисторах VT8-VT10, отражает указанный ток и возвращает его на входы дифференциального каскада, обеспечивая минимальный входной ток. Ошибку из-за ненулевых базовых токов транзисторов VT8-VT10 компенсирует устройство на транзисторах VT12, VT14-VT16. При этом если 1б8=1б9=1б10 =1б12=1б0, то I6ll=Iк0+4I0 и 1б16=1б0. Выбрав коэффициент передачи повторителя тока VT14, VT15 равным 4 получаем полную компенсацию базовых токов. При разбросе параметра h21э полная компенсация достигается путем подстройки резисторов R1, R2.
Рассмотрим рабочий диапазон синфазного входного напряжения. Для схемы (рис. 3.5, а) он ограничен максимальным (Uсф.макс) и минимальным (Uсф.мин) синфазными входными напряжениями , определяемыми из выражений:
где U1 – минимальное рабочее напряжение источника тока Iy1. Тогда:
Очевидно, что диапазон синфазного входных напряжений типового каскада низок и уменьшается с ростом тока Iу1 . Для его увеличения используется схемотехнический способ, который иллюстрируется схемой (рис.3.10). Данный способ позволяет функционировать ОУ при уровнях синфазного напряжения близких к напряжению питания и общей шине, за счет использования переключаемых дифференциальных усилителей. Максимальное и минимальное синфазное напряжения данной схемы определяются из выражений:
Из анализа выражений (3.25), (3.26) следует, что в случае, если падение напряжения на резисторах R1-R4 меньше, чем Uбэ , то рабочий диапазон синфазного входного напряжения превышает величину напряжения питания.
Таким образом, рекомендуется организация режима переключения токов I у1 и I у2 следующими способами:
Операционные усилители
Операционный усилитель — это электронный усилитель напряжения с высоким коэффициентом усиления, имеющий дифференциальный вход и обычно один выход. Напряжение на выходе может превышать разность напряжений на входах в сотни или даже тысячи раз.
Своё начало операционные усилители ведут от аналоговых компьютеров, где они применялись во многих линейных, нелинейных и частото-зависимых схемах. Параметры схем с операционными усилителями определяются только внешними компонентами, а так же небольшой температурной зависимостью или разбросом параметров при их производстве, что делает операционные усилители очень популярными элементами при конструировании электронных схем.
Операционные усилители являются наиболее востребованными приборами среди современных электронных компонент, они находят своё применение в потребительской электронике, применяются индустрии и в научных приборах. Многие стандартные микросхемы операционных усилителей стоят всего несколько центов. Но некоторые модели гибридных или интегрированных операционных усилителей со специальными характеристиками, выпускаемые мелкими партиями, могут стоить более сотни долларов. Операционные усилители обычно выпускаются как отдельные компоненты, а так же они могут являться элементами более сложных электронных схем.
Операционный усилитель является разновидностью дифференциального усилителя. Другими разновидностями дифференциального усилителя являются:
- Полностью дифференциальный усилитель (это устройство похоже по принципу действия на операционный усилитель, но имеет два выхода);
- Инструментальный усилитель (он обычно состоит из трёх операционных усилителей);
- Изолированный усилитель (это усилитель похож на инструментальный, но он выдерживает такие высокие напряжения, которые могут вывести из строя обычный операционный усилитель);
- Усилитель с отрицательной обратной связью (обычно содержит один или два операционных усилителя и резистивную цепь обратной связи).
Выводы для подачи напряжения питания (VS+ и VS-) могут обозначаться по-разному. Невзирая на различное обозначение, их функция остаётся одной и той же — обеспечение дополнительной энергии для усиления сигнала. Часто на схемах эти выводы не изображают, чтобы не загромождать чертёж, и их наличие либо указывается отдельно, либо должно быть ясно из схемы.
Обозначения на схеме
Условные обозначения на схеме для операционного усилителя, изображённого на рисунке справа, следующие:
- V+ — неинвертирующий вход
- V— — инвертирующий вход
- Vout — выход
- VS+ — плюс напряжения питания
- VS- — минус напряжения питания
Условное графическое обозначение
операционного усилителя
Принцип действия
Дифференциальные входы усилителя состоят из двух выводов — V+ и V—, идеальный операционный усилитель усиливает только разницу напряжений между двумя этими входами, эта разница называется дифференциальным напряжением на входе. Напряжение на выходе операционного усилителя определяется формулой
где V+ — напряжение на неинвертирующем (прямом) входе, V— — напряжение на инвертирующем (инверсном) входе, и AOL — коэффициент усиления усилителя с разомкнутой петлёй обратной связи (то есть обратная связь от выхода ко входу отсутствует).
Операционный усилитель без отрицательной обратной связи (компаратор)
Значение коэффициента усиления у микросхем операционных усилителей обычно большое — 100000 и более, следовательно довольно небольшая разница напряжений между входами V+ и V— приведёт к появлению на выходе усилителя напряжения почти равному напряжению питания. Это называется насыщение усилителя. Величина коэффициента усиления AOL имеет технологический разброс, поэтому не стоит использовать один операционный усилитель в качестве дифференциального усилителя, рекомендуется применять схему из трёх усилителей. Без отрицательной обратной связи, и возможно при наличии положительной обратной связи, операционный усилитель будет работать как компаратор. Если инвертирующий вход соединить с общим проводом (нулевым потенциалом) напрямую или через резистор, а напряжение Vin, поданное на неинвертирующий вход будет положительным, то выходное напряжение будет максимально положительным. Если подать на вход отрицательное напряжение Vin, то на выходе напряжение будет максимально отрицательным. Поскольку с выхода на входы обратная связь отсутствует, то такая схема с разомкнутой цепью обратной связи будет работать как компаратор, коэффициент усиления схемы будет равен коэффициенту усиления операционного усилителя AOL.
Операционный усилитель с отрицательной обратной связью (неинвертирующий усилитель)
Для того, что бы работа операционного усилителя была предсказуемой, применяется отрицательная обратная связь, которая устанавливается путём подачи части напряжения с выхода усилителя на его инвертирующий вход. Эта замкнутая цепь обратной связи существенно снижает усиление усилителя. При использовании отрицательной обратной связи общее усиление схемы значительно больше зависит от параметров цепи обратной связи, чем от параметров операционного усилителя. Если цепь обратной связи содержит компоненты с относительно стабильными параметрами, то изменения параметров операционного усилителя существенно не влияют на характеристики схемы. Передаточная характеристика схемы с операционным усилителем определяется математически передаточной функцией. Проектирование схем с заданной передаточной функцией с операционными усилителями относится к области радиоэлектроники. Передаточная функция является важным фактором в большинстве схем, использующих операционные усилители, например, в аналоговых компьютерах. Высокое входное сопротивление входов и низкое выходное сопротивление выхода является так же полезной особенностью операционных усилителей.
Например, если к неинвертирующему усилителю добавить отрицательную обратную связь (см. рисунок справа) с помощью делителя напряжения Rf, Rg, то это приведёт к снижению усиления схемы. Равновесие восстановится тогда, когда напряжение на выходе Vout станет достаточным для того, что бы изменить напряжение на инвертирующем входе до напряжения Vin. Коэффициент усиления всей схемы определяется по формуле 1 + Rf/Rg. Например, если напряжение Vin = 1 вольт, а сопротивления Rf и Rg одинаковые (Rf = Rg), то на выходе Vout будет присутствовать напряжение 2 вольта, величина этого напряжения как раз достаточная для того, что бы на инвертирующий вход V— поступало напряжение 1 вольт. Так как резисторы Rf и Rg образуют цепь обратной связи, подключённой от выхода ко входу, то получается схема с замкнутой петлёй обратной связи. Общий коэффициент усиления схемы Vout / Vin называется коэффициентом усиления с замкнутой петлёй обратной связи ACL. Так как обратная связь отрицательная, то в этом случае ACL < AOL.
Можно рассмотреть это с другой стороны, сделав два предположения:
Во-первых, когда операционный усилитель работает в линейном режиме, то разница напряжений между его неинвертирующим (+) и инвертирующим (-) выводами настолько мала, что ею можно пренебречь.
Во-вторых, будем считать входные сопротивления обоих входов (+) и (-) очень высокими (несколько мегаом у современных операционных усилителей).
Таким образом, когда схема, изображённая на рисунке справа, работает как неинвертирующий линейный усилитель, то напряжение Vin, появившееся на входах (+) и (-), приведёт к появлению тока i, протекающего через резистор Rg, величиной Vin/Rg. Согласно закону Кирхгофа, утверждающего, что сумма токов, втекающих в узел, равна сумме токов, вытекающих из этого узла, и поскольку сопротивление входа (-) почти бесконечно, можно предположить, что почти весь ток i, протекающий через резистор Rf, создаёт напряжение на выходе, равное Vin + i * Rf. Подставляя слагаемые в формулу, можно легко определить усиление схемы этого типа.
Характеристики операционных усилителей
Идеальный операционный усилитель
Эквивалентная схема операционного усилителя в которой смоделированы некоторые неидеальные резистивные параметры
Идеальный операционный усилитель может работать при любых входных напряжениях и имеет следующие свойства:
- Коэффициент усиления с разомкнутой петлёй обратной связи равен бесконечности (при теоретическом анализе полагают коэффициент усиления при разомкнутой петле обратной связи AOL стремящимся к бесконечности).
- Диапазон выходных напряжений Vout равен бесконечности (на практике диапазон выходных напряжений ограничивают величиной напряжения питания Vs+ и Vs-).
- Бесконечно широкая полоса пропускания (т.е. амплитудно-частотная характеристика является идеально плоской с нулевым фазовым сдвигом).
- Бесконечно большое входное сопротивление (Rin = ∞, ток из V+ в V— не течёт).
- Нулевой входной ток (т.е. предполагается отсутствие токов утечки и токов смещения).
- Нулевое напряжение смещения, т.е. когда входы соединены между собой V+ = V—, то на выходе присутствует виртуальный ноль (Vout = 0).
- Бесконечно большая скорость нарастания напряжения на выходе (т.е. скорость изменения выходного напряжения не ограничена) и бесконечно большая пропускная мощность (напряжение и ток не ограничены на всех частотах).
- Нулевое выходное сопротивление (Rout = 0, так что выходное напряжение не меняется при изменении выходного тока).
- Отсутствие собственных шумов.
- Бесконечно большая степень подавления синфазных сигналов.
- Бесконечно большая степень подавления пульсаций питающих напряжений.
Эти свойства сводятся к двум «золотым правилам»:
- Выход операционного усилителя стремится к тому, что бы разница между входными напряжениями стала равной нулю.
- Оба входа операционного усилителя не потребляют ток.
Первое правило применимо к операционному усилителю, включённому в схему с замкнутой петлёй отрицательной обратной связи. Эти правила обычно применяются для анализа и проектирования схем с операционными усилителями в первом приближении.
На практике ни одно из идеальных свойств не может быть полностью достигнуто, поэтому приходится идти на различные компромиссы. В зависимости от желаемых параметров, при моделировании реального операционного усилителя учитывают некоторые неидеальности, используя эквивалентные цепи из резисторов и конденсаторов в его модели. Разработчик может заложить эти нежелательные, но реальные эффекты в общую характеристику проектируемой схемы. Влияние одних параметров может быть пренебрежительно мало, а другие параметры могут налагать ограничение на общие характеристики схемы.
Реальный операционный усилитель
В отличии от идеального, реальный операционный усилитель имеет неидеальность различных параметров.
Неидеальность параметров по постоянному току
Неидеальность параметров по переменному току
Усиление операционного усилителя, рассчитанное по постоянному току, неприменимо для высоких частот. При проектировании схем с операционными усилителями, рассчитанными на работу с высокой частотой, следует руководствоваться более сложными соображениями.
Конечная полоса пропускания Все усилители имеют конечный частотный диапазон. В первом приближении операционный усилитель имеет амплитудно-частотную характеристику интегратора с усилением. То есть усиление типичного операционного усилителя обратно пропорционально частоте, оно характеризуется произведением коэффициента усиления на ширину полосы пропускания fТ. Например, операционный усилитель с fТ = 1 мГц может иметь усиление пять раз на частоте 200 кГц, и усиление, равное единице на частоте 1 мГц. АЧХ операционного усилителя совместно с очень высоким коэффициентом усиления по постоянному току дают амплитудно-частотную характеристику как у низкочастотного фильтра первого порядка с высоким коэффициентом усиления по постоянному току и низкой частотой среза (fТ делённое на коэффициент усиления). Конечная ширина полосы пропускания операционного усилителя может быть источником нескольких проблем, включая:
- Стабильность. Разность фаз между входным и выходным сигналом имеет связь с ограничением полосы пропускания, так что в некоторых схемах обратной связи это может привести к возникновению самовозбуждения. Например, если синусоидальный сигнал на выходе, который должен противофазно складываться с входным сигналом, будет задержан на 180° то он будет складываться синфазно с входным сигналом, т.е. образуется положительная обратная связь. В этих случаях цепь обратной связи может быть стабилизирована путём применения схемы частотной компенсации, которая увеличивает усиление или сдвиг фазы при разомкнутой петле обратной связи. Эта компенсация может быть реализована с помощью внешних компонент. Так же эта компенсация может быть реализована внутри операционного усилителя, путём добавления доминирующего полюса, который достаточно ослабляет усиление на высоких частотах. Расположение этого полюса может быть установлено внутри производителем микросхем, или же настраиваться, используя специфические для каждого операционного усилителя методы. Обычно доминирующий полюс ещё больше снижает полосу пропускания операционного усилителя. Когда требуется высокий коэффициент усиления при замкнутой петле обратной связи, то часто частотная компенсация бывает не нужна, так как необходимое усиление с разомкнутой петлёй обратной связи достаточно мало. Следовательно, в схемах с высоким коэффициентом усиления при замкнутой петле обратной связи можно использовать операционные усилители с более широкой полосой пропускания.
- Шумы, искажения, и и другие эффекты. Снижение полосы пропускания так же приводит к снижению коэффициента передачи цепи обратной связи на высоких частотах, что ведёт к увеличению искажений, шумов, выходного сопротивления, а так же снижает линейность фазы выходного сигнала с повышением частоты.
Нелинейные параметры
Насыщение Размах выходного напряжения операционного усилителя ограничивается значениями, близкими к значениям питающих напряжений. Когда выходное напряжение достигает этих значений, то усилитель насыщается, это происходит из-за следующих причин:
- Если используется двухполярное питание, то при большом коэффициенте усиления по напряжению сигнал должен быть усилен настолько, что его амплитуда должна была бы превысить положительное питающее напряжение или быть меньше отрицательного питающего напряжения, что невыполнимо, поскольку выходное напряжение не может выйти за эти пределы.
- При использовании однополярного питания может либо иметь место то же самое, что и при использовании двуполярного питания, либо входной сигнал может иметь настолько низкое напряжение относительно земли, что коэффициента усиления усилителя будет недостаточным, что бы поднять его выше нижнего порога.
Ограничения тока и напряжения
Современные операционные усилители с полевыми и МОП — транзисторами по своим характеристикам приближаются гораздо ближе к идеальным операционным усилителям, чем модели с биполярными транзисторами, когда важно входное сопротивление и входные токи смещения. Операционные усилители с биполярными транзисторами лучше использовать тогда, когда требуется меньшее входное напряжение смещения и часто меньшие собственные шумы. Операционные усилители с полевыми и МОП — транзисторами, в схемах с ограниченной полосой пропускания, работающие при комнатной температуре, обычно имеют лучшие характеристики.
Внутренняя схема операционного усилителя 741 серии
Хотя дизайн разных моделей микросхем от разных производителей может варьироваться, все операционные усилители имеют в основном схожую внутреннюю структуру, которая состоит из трёх каскадов:
- Дифференциальный усилитель — предназначен для усиления сигнала, имеет низкий уровень собственных шумов, высокое входное сопротивление и обычно дифференциальный выход.
- Усилитель напряжения — обеспечивает высокое усиление сигнала по напряжению, имеет спадающую амплитудно-частотную характеристику с одним полюсом, и обычно имеет один выход.
- Выходной усилитель — обеспечивает высокую нагрузочную способность, низкое выходное сопротивление, ограничение тока и защиту при коротком замыкании.
Микросхемы операционных усилителей обычно имеют умеренную сложность. Типичным примером является широко распространённая микросхема операционного усилителя 741 (советский аналог — К140УД7), разработанная компанией «Fairchild Semiconductor» после предыдущей модели — LM301. Базовая архитектура усилителя 741 такая же, как и у 301 модели.
Входной каскад
В качестве входного каскада используется дифференциальный усилитель со сложной схемой смещения, активной нагрузкой которого является токовое зеркало.
Дифференциальный усилитель
Дифференциальный усилитель реализован на двухступенчатом каскаде, удовлетворяющем противоречивые требования. Первая ступень состоит из n-p-n эмиттерных повторителей на транзисторах Q1 и Q2, что позволяет получить высокое входное сопротивление. Вторая ступень основана на p-n-p транзисторах Q3 и Q4, включённых по схеме с общей базой, что позволяет избавиться от вредного действия эффекта Миллера, сдвинуть уровень напряжения вниз и обеспечить достаточное усиление по напряжению для работы следующего каскада — усилителя класса «А». Применение p-n-p транзисторов так же помогает увеличить напряжение пробоя Vбэ (переходы база-эмиттер n-p-n транзисторов Q1 и Q2 имеют напряжение пробоя около 7 вольт, а напряжение пробоя p-n-p транзисторов Q3 и Q4 составляет около 50 вольт).
Цепи смещения
На эмиттеры классического дифференциального каскада с эмиттерными связями подаётся напряжение смещения от источника стабильного тока. Цепь отрицательной обратной связи вынуждает транзисторы работать как стабилизаторы напряжения, заставляя их изменять напряжение Vбе таким образом, что бы ток мог протекать через переход коллектор-эмиттер. В результате ток покоя становится независимым от коэффициента передачи постоянного тока (β) транзисторов.
Сигналы с эмиттеров транзисторов Q1, Q2 поступают на эмиттеры транзисторов Q3, Q4. Их коллекторы разделены и они не могут использоваться для подачи тока покоя от источника стабильного тока, так как они сами функционируют, как источники тока. Следовательно, ток покоя можно подать только на базы, соединив их с источником тока. Что бы избежать зависимости от коэффициента передачи постоянного тока транзисторов, применяется отрицательная обратная связь. Для этого весь ток покоя отражается токовым зеркалом, выполненным на транзисторах Q8, Q9, а сигнал отрицательной обратной связи снимается с коллектора транзистора Q9. Это вынуждает транзисторы Q1-Q4 изменить их напряжения база-эмиттер Vбе так, что бы через них протекал требуемый ток покоя. В результате получается тот же самый эффект, как у классической пары транзисторов с эмиттерной связью — величина тока покоя становится независимой от коэффициента передачи постоянного тока (β) транзисторов. Эта схема генерирует базовый ток необходимой величины, зависящий от β для того, что бы можно было получить β — независимый ток коллектора. Для получения токов смещения баз обычно используется источник питания отрицательного напряжения. Эти токи идут из общего провода в базы транзисторов.Но для получения максимально большого входного импеданса петли базового смещения не замкнуты внутри между базой и общим проводом, так как предполагается, что эти цепи будут замкнуты через выходное сопротивление источника сигнала на землю. Так что источник сигнала должен быть гальванически соединён с общим проводом, что бы через него могли протекать токи смещения, а так же он должен иметь достаточно низкое сопротивление (десятки или сотни килоом), что бы на нём не было бы существенного падения напряжения. В противном же случае можно подключить резисторы между базами транзисторов Q1, Q2 и общим проводом.
Величина тока покоя установлена резистором сопротивлением 39 кОм, который является общим для обоих токовых зеркал Q12-Q13 и Q10-Q11. Этот ток используется как образцовый для других токов смещения схемы. Транзисторы Q10, Q11 образуют источник тока Видлара, в котором через резистор сопротивлением 5 кОм протекает небольшая часть тока коллектора Iref транзистора Q10. Этот небольшой коллекторный ток, текущий через коллектор транзистора Q10 является опорным током баз для транзисторов Q3 и Q4, а так же для коллектора транзистора Q9. С помощью отрицательной обратной связи токовое зеркало на транзисторах Q8 и Q9 пытается сделать ток на коллекторе транзистора Q9 равный току коллекторов транзисторов Q3 и Q4. Напряжение на коллекторе транзистора Q9 будет изменяться до тех пор, пока отношение токов баз транзисторов Q3 и Q4 к токам их коллекторам не станет равным β. Следовательно общий базовый ток транзисторов Q3 и Q4 (это ток такого же порядка как и токи входов микросхемы) является небольшой частью слабого тока транзистора Q10.
Таким образом ток покоя устанавливается токовым зеркалом на транзисторах Q10, Q11 без использования токовой отрицательной обратной связи. Эта токовая обратная связь только стабилизирует напряжение коллектора транзистора Q9 (и базы транзисторов Q3, Q4). Кроме того, цепь обратной связи так же изолирует остальную часть схемы от синфазных сигналов путём установления напряжения базы транзисторов Q3, Q4 строго на уровне на 2VBE ниже, чем наибольшее из обоих входных напряжений.
Активная нагрузка «токовое зеркало»
Дифференциальный усилитель, образованный транзисторами Q1–Q4, соединён с активной нагрузкой на основе улучшенного токового зеркала на транзисторах Q5. Q7, которое преобразует токи входного дифференциального сигнала в напряжение, причём здесь для формирования этого напряжения используются оба входных сигнала, что даёт существенный прирост в усилении. Это достигается путём сложения входных сигналов с помощью токовых зеркал, в данном случае коллектор транзистора Q5 соединён с коллектором транзистора Q3 (левый выход дифференциального усилителя), а выход токового зеркала — коллектор транзистора Q6 соединён к правому выходу дифференциального усилителя — коллектору транзистора Q4. Транзистор Q7 увеличивает точность работы токового зеркала путём уменьшения отбираемого тока от транзистора Q3 для управления базами транзисторов Q5 и Q6.
Работа операционного усилителя
Дифференциальный режим
Напряжения источников сигналов, подаваемых на входы, проходят через две «диодных» цепочки, образованных переходами база-эмиттер транзисторов Q1, Q3 и Q2, Q4, к месту соединения баз транзисторов Q3, Q4. Если входные напряжения немного изменятся (напряжение на одном входе увеличится, а на другом уменьшится), то напряжение на базах транзисторов Q3, Q4 почти не изменится, так же общий ток баз останется без изменений. Произойдёт только перераспределение токов между базами транзисторов Q3, Q4, общий ток покоя останется тем же самым, токи коллекторов перераспределятся в тех же пропорциях, что и базовые токи.
Токовое зеркало произведёт инвертирование коллекторного тока, сигнал вернётся обратно на базу транзистора Q4. В точке соединения транзисторов Q4 и Q6 токи транзисторов Q3 и Q4 вычитаются. Эти токи противофазны в данном случае (в случае дифференциального сигнала). Следовательно, в результате вычитания токов токи сложатся (ΔI — (-ΔI) = 2ΔI), и преобразование из двухфазного сигнала в однофазный произойдёт без потерь. В схеме с разомкнутой петлёй обратной связи напряжение, полученное в точке соединения транзисторов Q4 и Q6 определяется результатом вычитания токов и общим сопротивлением схемы (параллельно включённые сопротивления коллекторов транзисторов Q4 и Q6). Так как для сигнальных токов эти сопротивления являются высокими (транзисторы Q4 и Q6 ведут себя как генераторы токов), то при разомкнутой петле обратной связи коэффициент усиления этого каскада будет очень высоким.
Иначе говоря, можно представить транзистор Q6 как копию транзистора Q3, а комбинацию транзисторов Q4 и Q6 можно представить как регулируемый делитель напряжения, состоящий из двух резисторов, управляемых напряжением. Для дифференциальных входных сигналов сопротивления этих резисторов будут сильно изменяться в противоположных направлениях, но общее сопротивление делителя напряжения останется неизменным (как у потенциометра с подвижным контактом). В результате ток не изменяется, но происходит сильное изменение напряжения в средней точке. Так как сопротивления изменяются в равной степени, но в противоположных направлениях, то результирующее изменение напряжения будет в два раза больше одиночных изменений напряжений.
Базовые токи на входах не нулевые, и поэтому эффективное входное сопротивление 741 операционного усилителя равно примерно 2 мОм. Выводы «установка нуля» могут быть использованы для подключения внешних резисторов параллельно внутренним резисторам сопротивлением 1 кОм (здесь обычно подключают потенциометр) для балансировки токов транзисторов Q5, Q6, таким образом косвенно регулируют сигнал на выходе при подаче на входы нулевых сигналов.
Режим подавления синфазного сигнала
Если входные напряжения изменяются синхронно, то отрицательная обратная связь вынуждает напряжение на базах транзисторов Q3, Q4 повторять (со смещением, равным удвоенному падению напряжения на переходах база-эмиттер транзисторов) вариации входных напряжений. Выходной транзистор Q10 токового зеркала Q10, Q11 поддерживает общий ток, протекающий через транзисторы Q8, Q9, постоянным и независимым от изменений напряжения. Токи коллекторов транзисторов Q3, Q4 и соответственно выходное напряжение в средней точке между транзисторами Q4 и Q6 остаются неизменными.
Последующая цепь отрицательной обратной связи эффективно увеличивает входное сопротивление операционного усилителя в режиме подавления синфазного сигнала.
Каскад усилителя, работающего в классе «А»
Каскад, выполненный на транзисторах Q15, Q19 Q22 работает в классе «А». Токовое зеркало, выполненное на транзисторах Q12, Q13 питает этот каскад стабильным током, независимым в широком диапазоне от вариаций выходного напряжения. Каскад основан на двух n-p-n транзисторах, Q15 и Q19, образующих так называемый составной транзистор дарлингтона, в коллекторе которого для получения большого усиления используется динамическая нагрузка в виде источника тока. Транзистор Q22 защищает усилительный каскад от насыщения путём шунтирования базы транзистора Q15, то есть действует как схема Бейкера.
Конденсатор ёмкостью 30 пФ в усилительном каскаде является цепью селективной обратной связи для частотной коррекции, которая позволяет стабилизировать операционный усилитель при работе в схемах с замкнутой цепью обратной связи. Это схемотехническое решение называется «компенсацией Миллера», принцип работы которого напоминает работу интегратора на операционном усилителе. Так же это схемотехническое решение известно под названием «коррекция доминирующего полюса», так как в частотную характеристику вводится доминирующий полюс, который подавляет другие полюса на амплитудно-частотной характеристике при разомкнутой петле обратной связи. Частота этого полюса может быть меньше 10 Гц в 741 усилителе, и на этой частоте полюс вносит затухание равное -3 дБ на амплитудно-частотной характеристике при разомкнутой петле обратной связи. Применение этой внутренней компенсации необходимо для получения абсолютной стабильности усилителя при работе с не реактивной отрицательной обратной связью в случае, когда коэффициент усиления операционного усилителя больше или равен единице. Таким образом не нужно использовать внешнюю коррекцию для обеспечения одинаковой стабильности при разных режимах работы, что существенно упрощает применение операционного усилителя. Те операционные усилители, в которых внутренняя коррекция отсутствует, например, К140УД1А, могут потребовать применения внешней коррекции или коэффициента усиления больше единицы при замкнутой петле обратной связи.
Схема смещения выходного каскада
Транзистор Q16 совместно с двумя резисторами образуют схему смещения уровня, известную так же под названиями «резиновый диод», «транзисторный стабилитрон» или умножитель напряжения перехода база-эмиттер (VBE). В данной схеме транзистор Q16 работает как стабилизатор напряжения, так как он обеспечивает постоянное падение напряжение на своём переходе коллектор-эмиттер при любых токах, протекающих через этот каскад. Это достигается введением отрицательной обратной связи между коллектором и базой в виде двухрезисторного делителя напряжения с коэффициентом деления β = 7,5 кОм / (4,5 кОм + 7,5 кОм) = 0,625. Предположим, ток базы транзистора равен нулю, следовательно отрицательная обратная связь вынуждает транзистор увеличить своё напряжение коллектор-эмиттер до примерно одного вольта до тех пор, пока напряжение база-эмиттер не достигнет типичной для биполярных транзисторов величины 0,6 вольт. Эта схема используется для смещения выходных транзисторов, при этом уменьшаются нелинейные искажения. В схемах некоторых усилителей низкой частоты для этого используют пару последовательно соединённых диодов.
Эту схему смещения можно представить как усилитель, охваченный отрицательной обратной связью с постоянным напряжением на входе, равным 0,625 вольт и коэффициентом обратной связи β = 0,625 (соответственно коэффициент усиления будет равен 1/β = 1,6). Такая же схема, но с β = 1 используется для установки рабочего тока в классической схеме токового зеркала на биполярных транзисторах.
Выходной каскад
Выходной каскад (транзисторы Q14, Q17, Q20) является двухтактным эмиттерным повторителем, работающим в классе «AB», смещение этого каскада устанавливается схемой смещения уровня, выполненной на транзисторе Q16 и двух резисторах, подключённых к базе этого транзистора. Сигнал на выходные транзисторы Q14, Q20 подаётся с коллекторов транзисторов Q13 и Q19. Вариации напряжения смещения, возникающие из-за изменений температуры, или из-за разброса параметров транзисторов, могут приводить к возникновению нелинейных искажений и к изменению тока покоя операционного усилителя. Выходное напряжение усилителя лежит в диапазоне на примерно один вольт меньше, чем питающие напряжения (т.е. от V— +1 до V+ -1), оно частично определяется напряжением база-эмиттер выходных транзисторов Q14 и Q20.
Резистор сопротивлением 25 Ом в выходном каскаде работает как датчик тока для обеспечения ограничения максимально допустимого тока этого каскада, в операционном усилителе 741 этот резистор ограничивает выходной ток эмиттерного повторителя Q14 величиной 25 мА. Ограничение тока для нижнего по схеме эмиттерного повторителя реализовано с помощью резистора сопротивлением 50 Ом, установленного в цепи эмиттера транзистора Q19, с помощью транзистора Q22 напряжение на базе транзистора Q15 снижается при увеличении падения напряжения на резисторе выше критического. В более поздних моделях 741 операционного усилителя может использоваться немного другой метод ограничения выходного тока.
В отличии от идеального операционного усилителя, выходное сопротивление усилителя модели 741 не нулевое, но с применением отрицательной обратной связи на низких частотах оно становится почти нулевым.
Некоторые соображения по поводу 741 операционного усилителя
Примечание: исторически сложилось так, что операционный усилитель модели 741 используются в аудио и других высокочувствительных схемах, но сейчас этот усилитель применяется редко из-за более низкого уровня шума современных моделей операционных усилителей. Кроме сильного шума, 741 и другие старые модели могут плохо подавлять синфазный сигнал и часто принимать наводки от питающей сети и другие помехи.
Операционный усилитель модели 741 часто означает некий обобщённый операционный усилитель (например, μA741, LM301, 558, LM324, TBA221, или более современные модели, типа TL071). Описание выходного каскада усилителя 741 практически одинаково для многих других моделей (которые могут иметь абсолютно разные входные каскады), за исключением:
- Некоторые модели операционных усилителей, такие как μA748, LM301, LM308 не имеют внутренней коррекции и требуют установки внешнего корректирующего конденсатора при работе в схемах с замкнутой петлёй обратной связи и с низким усилением.
- У некоторых современных моделей операционных усилителей выходное напряжение может изменяться в диапазоне практически от отрицательного до положительного напряжения питания.
Классификация операционных усилителей
Операционные усилители могут быть классифицированы по типу их конструкций:
- Дискретные — созданные из отдельных транзисторов или электронных ламп;
- Микросхемные — интегральные операционные усилители наиболее распространены;
- Гибридные — созданные на основе гибридных микросхем малой степени интеграции;
Интегральные операционные усилители могут быть классифицированы по разным параметрам, включая:
- Подразделение на микросхемы военного, индустриального или коммерческого исполнения, отличающиеся надёжностью работы и стойкостью к внешним факторам (температуре, давлению, радиации), и следовательно, ценой. Пример: операционный усилитель общего исполнения LM301 является коммерческой версией модели LM101, а модель LM201 является индустриальной версией.
- Классификация по типу корпуса — модели операционных усилителей в разных типах корпусов (пластик, металл, керамика) имеют так же различную стойкость к внешним факторам. Кроме того, корпуса бывают типа DIP и предназначенные для поверхностного монтажа (SMD).
- Классификация по наличию или отсутствию цепей внутренней коррекции. Операционные усилители могут работать нестабильно в некоторых схемах с отрицательной обратной связью, что бы этого избежать используют конденсатор небольшой ёмкости для коррекции амплитудно-частотной характеристики. Операционный усилитель с таким встроенным конденсатором называют операционным усилителем с внутренней коррекцией.
- В одном корпусе микросхемы может находиться один, два или четыре операционных усилителя.
- Диапазон входных (и/или выходных) напряжений от отрицательного до положительного напряжения питания — операционный усилитель может работать с сигналами, величины которых лежат вблизи значений питающих напряжений.
- Операционные усилители с КМОП — полевыми транзисторами на входах (например, модель AD8603) обеспечивают очень высокое входное сопротивление, выше чем у обычных операционных усилителей с полевыми транзисторами, у которых в свою очередь входное сопротивление больше, чем у операционных усилителей с биполярными транзисторами на входах.
- Существуют так называемые «программируемые» операционные усилители, в которых с помощью внешнего резистора можно задавать ряд параметров, таких как ток покоя, усиление, полосу пропускания.
- Производители часто разделяют операционные усилители по типу применения, например, малошумящие, предусилители, широкодиапазонные и т.д.
Применение операционных усилителей
Использование в конструкциях электронных систем
Назначение выводов операционного усилителя модели 741
Применение операционных усилителей в качестве блоков позволяет упростить создание схем и делает их чтение более лёгким, чем при использовании дискретных компонентов (транзисторов, резисторов, конденсаторов). При проектировании схем в первом приближении операционные усилители рассматривают как идеальные дифференциальные компоненты, и только при последующих шагах учитывают все неидеальности и ограничения этих устройств.
Для всех схем схемотехника остаётся той же самой. В спецификации указываются назначение схемы и требования к ней с соответствующими допусками. Например, требуется усиление 1000 раз с допуском 10% и дрейфом 2% в заданном диапазоне температур, входное сопротивление не менее 2 мОм и т.д.
При проектировании часто используют моделирование схем на компьютере, например, в программе схемотехнического моделирования LTSpice, в которй имеются некоторые модели коммерческих операционных усилителей и других компонентов. Если в результате моделирования выясняется, что некоторые параметры проектируемой схемы не удаётся реализовать, то в этом случае приходится корректировать спецификацию.
После компьютерного моделирования собирают опытный образец схемы и проводят его испытание, внося если надо изменения в схему для её улучшения или для того, что бы схема соответствовала спецификации. Так же проводят оптимизацию схемы для снижения её стоимости и улучшения функциональности.
Применение операционных усилителей в схемах без использования обратной связи
Компаратор напряжений на операционном усилителе 741 в схеме с однополярным питанием. Vref = 6,6 В, амплитуда входного сигнала Vin = 8 В. Конденсатор С1 служит для подавления помех, поступающих по цепи питания.
В этом случае операционный усилитель используется как компаратор напряжения. Схема, предназначенная в первую очередь для работы в качестве компаратора применяется тогда, когда необходимо высокое быстродействие или широкий диапазон входных напряжений, так как усилитель может быстро восстанавливаться из режима насыщения.
Если на один из входов операционного усилителя подать образцовое напряжение Vref, то получится схема детектора уровня сигнала, то есть операционный усилитель будет детектировать положительный уровень сигнала. Если детектируемый сигнал подать на прямой вход, то получится схема неинвертирующего детектора уровня — когда входное напряжение будет выше опорного, то на выходе установится максимальное положительное напряжение. Если детектируемый сигнал и опорное напряжение поменять местами, то в этом случае на выходе операционного усилителя установится напряжение, близкое к отрицательному напряжению питания — получится схема инвертирующего детектора уровня.
Если образцовое непряжение на входе усилителя Vref = 0 В, то получится детектор нуля, который может преобразовывать, например, синусоидальный сигнал в прямоугольный.
Применение операционных усилителей в схемах с использования положительной обратной связи
Генератор прямоугольного сигнала на основе операционного усилителя с положительной (R1, R3) и отрицательной (R2, C1) цепями обратных связей. Цепь положительной обратной связи, охватывающая усилитель, превращает его в триггер Шмитта. Рабочая частота — примерно 150 Гц.
Операционные усилители применяют так же в схемах с положительной обратной связью, когда часть выходного сигнала подаётся на неинвертирующий вход. Одной из типичных схем, где используется такая конфигурация является схема компаратора с гистерезисом, это так называемый триггер Шмитта. В некоторых схемах могут одновременно использоваться два вида обратных связей — и положительная, и отрицательная, охватывающие один и тот же усилитель, такая конфигурация часто применяется в схемах генераторов пилообразного напряжения и в схемах активных фильтров.
Из-за низкой скорости нарастания сигнала и отсутствия положительной обратной связи, амплитудно-частотная характеристика описанных выше детектора нуля и детектора уровня сигнала, построенных по схеме с разомкнутой петлёй обратной связи, будет относительно низкочастотной, то есть схемы будут относительно низкочастотными. Можно попытаться охватить схему положительной обратной связью, но это существенно повлияет на точность работы при детектировании момента перехода входного сигнала через ноль. Если использовать обычный операционный усилитель типа 741, то преобразователь синусоидального напряжения в меандр скорее всего будет иметь рабочую частоту, не превышающую 100 Гц.
Для увеличения скорости нарастания сигнала в специализированных схемах компараторов в выходные каскады вводят положительную обратную связь, поэтому схемы детекторов уровня рекомендуется выполнять не на операционных усилителях, а на микросхемах — компараторах.
Применение операционного усилителя в схеме с отрицательной обратной связью
Неинвертирующий усилитель
В схеме неинвертирующего усилителя выходное напряжение изменяется в том же направлении (уменьшается или увеличивается), что и входное.
Уравнение, определяющее усиление операционного усилителя записывается как
В этой схеме параметр V— является функцией от Vout, так как резисторы R1 и R2 образуют цепь отрицательной обратной связи. Кроме того, эти резисторы являются делителем напряжения, а поскольку он соединён со входом V—, который является высокоомным, то делитель напряжения практически не нагружен. Следовательно:
где β = R1 / (R1 + R2)
Подставив это выражение в уравнение усиления операционного усилителя, получим:
Преобразовывая полученное выражение относительно Vout, получаем:
Если AOL очень большое, то уравнение упрощается:
Обратите внимание, что сигнал на прямой вход операционного усилителя подаётся относительно общего провода. Если источник сигнала нельзя по какой-то причине подключать к общему проводу или же его следует подключать к нагрузке с определённым сопротивлением, то между прямым входом операционного усилителя и общим проводом потребуется установить дополнительный резистор. В любом случае, значение сопротивлений резисторов обратной связи R1 и R2, должно быть примерно равно входному сопротивлению с учётом нагрузочного резистора на прямом входе операционного усилителя, при этом сопротивления R1 и R2 следует рассматривать как включённые параллельно. То есть если R1 = R2 = 10 кОм, источник сигнала имеет высокое сопротивление, то дополнительный резистор между прямым входом и общим проводом должен иметь величину 5 кОм, в этом случае напряжение смещения на входах будет минимальным.
Инвертирующий усилитель
При включении операционного усилителя по инвертирующей схеме, напряжение на его выходе будет меняться в противофазе со входным напряжением.
Найдём уравнение, описывающее усиление при инверсном включении операционного усилителя:
Это уравнение точно такое же, как и уравнение для неинвертирующего усилителя. Но в данном случае параметр V— будет зависеть одновременно от выходного напряжения Vout и входного Vin, это вызвано тем, что делитель напряжения, образованный последовательно соединёнными резисторами Rf и Rin подключён между входным сигналом и выходом усилителя. Инвертирующий вход имеет высокое сопротивление и не нагружает делитель, следовательно:
Подставляя полученное равенство в уравнение усиления, находим Vout:
Если величина AOL очень большая, то выражение упрощается:
Часто между неинвертирующим входом и общим проводом ставят резистор такой величины, что бы оба входа снимали напряжение с одинаковых сопротивлений. Применение этого резистора снижает напряжение смещения, и в некоторых моделях операционных усилителей снижает величину нелинейных искажений.
В случае, если нет нужды усиливать постоянное напряжение, то последовательно со входным резистором Rin может быть установлен разделяющий конденсатор, блокирующий прохождение постоянного напряжения от источника сигнала на вход операционного усилителя.
Усилитель звуковой частоты на операционном усилителе
В заключение рассмотрим практическую схему усилителя звуковой частоты, выполненную по неинвертирующей схеме с однополярным питанием. Использование неинвертирующей схемы обеспечивает высокое входное сопротивление усилителя, которое определяется величинами сопротивлений R2 и R3, а так же входным сопротивлением прямого входа операционного усилителя (оно очень высокое и им можно пренебречь), при расчётах резисторы R2, R3 рассматривают как включённые параллельно, следовательно входное сопротивление усилителя будет равно 100 кОм.
Коэффициент усиления усилителя по напряжению определяется по формуле R4/R1 + 1, в данном случае 49/1+1 = 50 раз. Ёмкость конденсатора С1 должна быть такой, что бы его реактивное сопротивление на самых низших рабочих частотах по крайней мере было бы раз в десять меньше, чем общее сопротивление последовательно включённых резисторов R1, R4. Конденсаторы С2, С3 являются разделительными по постоянному току, их параметры зависят от сопротивлений источника сигнала и нагрузки. Конденсатор С4 блокирует пульсации по цепи питания.
Нагрузкой усилителя могут служить высокоомные головные телефоны типа ТОН-2, соротивлением не менее 1,5 кОм. Для подключения низкоомных головных телефонов или динамической головки в схему потребуется добавить каскад эмиттерных повторителей на транзисторах КТ502 и КТ503.
Для уменьшения нелинейных искажений в схему добавлены резисторы R6, R7 задающие ток покоя транзисторов VT1, VT2. Можно использовать другую схему включения транзисторов, например, описанную здесь, имеющую меньший уровень нелинейных искажений.