Биполярные транзисторы
Биполярный транзистор представляет собой полупроводниковый прибор, имеющий два р-n-перехода, образованных в одном монокристалле полупроводника. Эти переходы образуют в полупроводнике три области с различными типами электропроводности. Одна крайняя область называется эмиттером (Э), другая — коллектором (К), средняя — базой (Б). К каждой области припаивают металлические выводы для включения транзистора в электрическую цепь.
Электропроводность эмиттера и коллектора противоположна электропроводности базы.
В зависимости от порядка чередования р- и n-областей различают транзисторы со структурой р-n-р (рис. 1, а) и n-р-n (рис. 1, б) (иногда их еще называют прямой и обратный).
Условные графические обозначения транзисторов p-n-р и n-p-n отличаются лишь направлением стрелки у электрода, обозначающего эмиттер. Принцип работы транзисторов p-n-р и n-p-n одинаков.
Рис. 1 — Структуры и условные графические обозначения биполярных транзисторов типа р-n-р (а) и n-р-n (б)
Электронно-дырочный переход, образованный эмиттером и базой, называется эмиттерным, а коллектором и базой — коллекторным. Расстояние между переходами очень мало; у высокочастотных транзисторов оно менее 10 микрометров, а у низкочастотных не превышает 50 мкм (1 мкм=0,001 мм).
Основная функция транзистора — это усиление сигнала. Если на базу транзистора подать напряжение, то транзистор начнет открываться. В транзисторе переход коллектор-эмитер открывается плавно: от полностью закрытого состояния ( Uб = 0 В) до полностью открытого (этот момент называют напряжение насыщения).
Между коллектором и эмиттером течет сильный ток, он называется коллекторный ток ( Iк ), между базой и эмиттером — слабый управляющий ток базы ( Iб ). Величина коллекторного тока зависит от величины тока базы. Причем, коллекторый ток всегда больше тока базы в определенное количество раз. Эта величина называется коэффициент усиления по току, обозначается h21э . У различных типов транзисторов это значение колеблется от единиц до сотен раз.
Коэффициент усиления по току — это отношение коллекторного тока к току базы:
Для того, чтобы вычислить коллекторный ток, нужно умножить ток базы на коэффициент усиления:
Пример: Возмем источник питания, транзистор, резистор и лампочку. Если подключить всё это согласно схеме (рис. 2), то: через резистор, подключенный между источником питания и базой транзистора потечет ток базы Iб .
Рис. 2 — Принцип работы биполярных транзисторов
Транзистор откроется и лампочка загориться. Причем яркость свечения лампочки будет зависить от сопротивления резистора и коэффициента усиления транзистора.
Напряжение, прилагаемое к базе и необходимое для открытия транзистора, называют напряжением смещения. Если вместо постоянного резистора поставить переменный резистор, то получим возможность регулировать яркость свечения лампочки.
Таким же образом можно усиливать и сигналы: подавая на базу транзистора определенный сигнал (к примеру звук), в коллекторной цепи получим тот же сигнал, но уже усиленный в h21Э раз.
Если базовое смещение транзистора застабилизировать при помощи стабилитрона (рис. 3), то мы получим простейший стабилизатор напряжения, т.у. схему, которая будет поддерживать постоянное напряжение на выходе, даже если входное напряжение будет изменяться.
Рис. 3 — Пример простого стабилизатора напряжения
Для получения повышенной мощности используются схемы последовательного включения наскольких транзисторов, так называемые схемы Дарлингтона (или составные транзисторы)
Рис. 4 — Схема Дарлингтона
Система обозначений биполярных транзисторов
У транзисторов,разработанных до 1964 года условные обозначения типа состоят из двух или трех элементов. Первый элемент обозначения — буква П, означающая, что данная деталь и является, собственно, транзистором. Биполярные транзисторы в герметичном корпусе обозначались двумя буквами — МП, буква М означала модернизацию(корпус транзистора холодносварочной конструкции). Второй элемент обозначения — одно, двух или трехзначное число, которое определяет порядковый номер разработки и подкласс транзистора, по роду полупроводникового материала, значениям допустимой рассеиваемой мощности и граничной(или предельной) частоты.
От 1 до 99 — германиевые маломощные низкочастотные транзисторы (до 5 МГц, до 0,25 Вт).
От 101 до 199 — кремниевые маломощные низкочастотные транзисторы (до 5 МГц, до 0,25 Вт).
От 201 до 299 — германиевые мощные низкочастотные транзисторы (до 5 МГц, более 0,25 Вт).
От 301 до 399 — кремниевые мощные низкочастотные транзисторы (до 5 МГц, более 0,25 Вт).
От 401 до 499 — германиевые высокочастотные и СВЧ маломощные транзисторы (свыше 5 МГц, до 0,25 Вт).
От 501 до 599 — кремниевые высокочастотные и СВЧ маломощные транзисторы (свыше 5 МГц, до 0,25 Вт).
От 601 до 699 — германиевые высокочастотные и СВЧ мощные транзисторы (свыше 5 МГц, более 0,25 Вт).
От 701 до 799 — кремниевые высокочастотные и СВЧ мощные транзисторы (свыше 5 МГц, более 0,25 Вт).
Третьим элементом может быть буква, определяющая классификацию по параметрам транзисторам, изготовленной по одной технологии. Например:
П416Б — транзистор германиевый, высокочастотный, малой мощности, разновидности Б;
МП39Б — германиевый транзистор, имеющий холодносварочный корпус, низкочастотный, малой мощности, разновидности Б.
МП42 — транзистор германиевый, низкочастотный, маломощный, номер разработки — 42 .
П401 — транзистор германиевый, маломощный,высокочастотный, номер разработки — 1.
Начиная с 1964 года была введена другая система обозначений, действовшая до 1978 года. Ее появление было связано с появлением большого числа новых серий разнообразных полупроводниковых приборов, в частности — полевых транзисторов.
В новой системе обозначений используется шифр, который состоит из 5 элементов:
1-й элемент системы обозначает исходный материал, на основе которого изготовлен транзистор:
- Г или 1 — германий,
- К или 2 — кремний,
- А или 3 — арсенид галлия,
- И или 4 — индий.
2-й элемент — буква Т (биполярный транзистор) или П (полевой транзистор).
3-й элемент — цифра, указывающая на функциональные возможности транзистора по допустимой рассеиваемой мощности и граничной частоте.
Транзисторы малой мощности, Рmах < 0,3 Вт:
1 — маломощный низкочастотный, fгр < 3 МГц;
2 — маломощный среднечастотный, 3 < fгр < 30 МГц;
3 — маломощный высокочастотный, 30 < fгр < 300 МГц.
Транзисторы средней мощности, 0,3 < Рmах <1,5 Вт:
4 — средней мощности низкочастотный;
5 — средней мощности среднечастотный;
6 — средней мощности высокочастотный.
Транзисторы большой мощности, Рmах >1,5 Вт:
7 — большой мощности низкочастотный;
8 — большой мощности среднечастотный;
9 — большой мощности высокочастотный и сверхвысокочастотный (fгр>300 Гц).
4-й элемент — цифры от 01 до 99, указывающие порядковый номер разработки.
5-й элемент — буквы от А до Я, обозначающая деление технологического типа приборов на группы.
КТ540Б — кремниевый транзистор средней мощности среднечастотный, номер разработки 40, группа Б.
КТ315А — кремниевый биполярный транзистор, маломощный, высокочастотный,подкласс А.
С 1978 года были введены изменения, первые два символа обозначающие материал и подкласс транзистора остались прежними.
Изменения коснулись обозначения функциональных возможностей — третьего элемента.
Для биполярных транзисторов:
1 — транзистор с рассеиваемой мощностью до 1 Вт и граничной частотой до 30 МГц.
2- транзистор с рассеиваемой мощностью до 1 Вт и граничной частотой до 300 МГц.
4 — транзистор с рассеиваемой мощностью до 1 Вт и граничной частотой более 300 МГц.
7 — транзистор с рассеиваемой мощностью более 1 Вт и граничной частотой до 30 МГц.
8 — транзистор с рассеиваемой мощностью более 1 Вт и граничной частотой до 300 МГц.
9 — транзистор с рассеиваемой мощностью более 1 Вт и граничной частотой свыше 300 МГц.
Те же обозначения действительны и для полевых транзисторов. Для обозначения порядкового номера разработки используют трехзначные числа от 101 до 999(следующие три знака). Для дополнительной классификации используют буквы русского алфавита, от А до Я. Цифра, написанная через дефис после седьмого элемента — обозначения модификаций бескорпусных транзисторов:
1 — с гибкими выводами без кристаллодержателя.
2 -с гибкими выводами на кристаллодержателе.
3 — с жесткими выводами без кристаллодержателя.
4 — с жесткими выводами на кристаллодержателе.
5 — с контактными площадками без кристаллодержателя и без выводов.
6 — с контактными площадками на кристаллодержателе, но без выводов.
Пример:
КТ2115А-2 кремниевый биполярный транзистор для устройств широкого применения, маломощный, высокочастотный, бескорпусный с гибкими выводами на кристаллодержателе.
В импортной (японской )маркировке первые три символа обозначают структуру:
- 2SA или 2SB: 2-переходовый, P-N-P структура, A -высокочастотный, B- низкочастотный
- 2SC или 2SD: 2-переходовый, N-P-N структура, C- высокочастотный, D- низкочастотный
2SC1815 — N-P-N высокочастотный,
2SB698 — P-N-P низкочастотный.
Основные параметры биполярных транзисторов
- Статический коэффициент передачи токаh21Э (коэффициент усиления) – отношение постоянного тока коллектора к постоянному току базы в схеме с общим эмиттером.
- Максимально допустимая мощность рассеиваемая коллекторомPк max – превращаемая в тепло мощность, вызванная током коллектора. Превышение максимально допустимой мощности транзистора приводит к перегреву коллекторного перехода и выходу его из строя.
- Максимально допустимый ток коллектораIк max . Превышение предельного значения тока коллектора приводит к тепловому пробою коллекторного перехода и выходу транзистора из строя.
- Максимально допустимое напряжение между коллектором и базойUкб max . Это напряжение определяется величиной пробивного напряжения коллекторного перехода.
- Напряжение насыщения коллектор–эмиттерUкэ нас – напряжение между выводами коллектора и эмиттера в режиме полного открытия транзистора (насыщения).
- Максимальное напряжение между коллектором и эмиттеромUкэ max (при разомкнутой базе). У высоковольтных транзисторов, достигает десятков тысяч вольт
- Предельная частота, до которой коэффициент передачи тока выше 1. У низкочастотных транзисторов до 100 кГц, у высокочастотных — свыше100 кГц.
Режимы работы биполярного транзистора
В зависимости от способа подключения р-n-переходов транзистора к внешним источникам питания он может работать в режиме отсечки, насыщения или активном режиме.
Режим отсечки
Режим отсечки транзистора получается тогда, когда эмиттерный и коллекторный p-n-переходы подключены к внешним источникам в обратном направлении (рис. 5). В этом случае через оба p-n-перехода протекают очень малые обратные токи эмиттера ( Iэбо ) и коллектора ( Iкбо ). В этом случае говорят, что транзистор полностью закрыт или просто закрыт.
Рис. 5 — Транзистор в режиме отсечки
Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер — мкА (у кремниевых транзисторов) до единиц миллиампер — мА (у германиевых транзисторов).
Режим насыщения
Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения (рис. 6 ). Через эмиттер и коллектор транзистора потекут токи насыщения эмиттера ( Iэ.нас ) и коллектора ( Iк.нас ). Величина этих токов в много раз больше токов в режиме отсечки.
Рис. 6 — Транзистор в режиме насыщения
При этом ток коллектора перестаёт зависеть от тока базы. Он перестаёт увеличиваться, даже если продолжать увеличивать ток базы. В этом случае говорят, что транзистор полностью открыт или просто открыт. Чем глубже мы уходим в область насыщения — тем больше ломается зависимость Iк=βIб . Внешне это выглядит так, как будто коэффициент β уменьшается.
Есть такое понятие, как коэффициент насыщения. Он определяется как отношение реального тока базы (того, который у вас есть в данный момент) к току базы в пограничном состоянии между активным режимом и насыщением.
Режимы отсечки и насыщения используются при работе транзисторов в импульсных схемах и в режиме переключения.
Активный режим
При работе транзистора в активном режиме (нормальном активном режиме) эмиттерный переход включается в прямом, а коллекторный — в обратном направлениях (рис. 7).
В активном режиме ток базы в десятки и сотни раз меньше тока коллектора и тока эмиттера.
Для токов коллектора и эмиттера выполняется соотношение:
Рис. 7 — Транзистор в активном режиме
Величина h21Б называется статическим коэффициентом передачи тока эмиттера. Для современных транзисторов h21Б=0,90. 0,998. Активный режим используется при построении транзисторных усилителей.
Инверсный активный режим
Если на эмиттерном переходе обратное смещение, а на коллекторном — прямое, то транзистор попадает в инверсный активный режим. Этот режим является довольно экзотическим и используется редко. Несмотря на то, что на рисунках эмиттер не отличается от коллектора и по сути они должны быть равнозначны, на самом деле у них есть конструктивные отличия (например в размерах) и равнозначными они не являются. Именно из-за этой неравнозначности и существует разделение на «нормальный активный режим» и «инверсный активный режим».
Барьерный режим
Иногда ещё выделяют пятый, так называемый, «барьерный режим». В этом случае база транзистора закорочена с коллектором. По сути правильнее было бы говорить не о каком-то особом режиме, а об особом способе включения. Режим тут вполне обычный — близкий к пограничному состоянию между активным режимом и насыщением. Его можно получить и не только закорачивая базу с коллектором. В данном конкретном случае при таком способе включения, как бы мы не меняли напряжение питания или нагрузку — транзистор всё равно останется в этом самом пограничном режиме. То есть транзистор в этом случае будет эквивалентен диоду.
Управление биполярным транзистором
Биполярный транзистор управляется током: для того, чтобы между коллектором и эмиттером мог протекать ток (по другому говоря, чтобы транзистор открылся), должен протекать ток между эмиттером и базой (или между коллектором и базой — для инверсного режима).
Рис. 8 — Токи биполярного транзистора
Величина тока базы и максимально возможного тока через коллектор (при таком токе базы) связаны постоянным коэффициентом β (коэффициент передачи тока базы):
Кроме параметра β используется ещё один коэффициент: коэффициент передачи эмиттерного тока (α). Он равен отношению тока коллектора к току эмиттера:
Значение этого коэффициента обычно близко к единице (чем ближе к единице — тем лучше). Коэффициенты α и β связаны между собой следующим соотношением:
В отечественных справочниках часто вместо коэффициента β указывают коэффициент h21Э (коэффициент усиления по току в схеме с общим эмиттером), в зарубежной литературе иногда вместо β можно встретить hFE . Можно считать, что все эти коэффициенты равны, а называют их часто просто «коэффициент усиления транзистора».
Рис. 9 — Схемы управления биполярным транзистором
На рисунке 9 изображены простейшие схемы. Они эквивалентны, но построены с участием транзисторов разных проводимостей.
Рассмотрим левую схему (на правой схеме всё то же самое, только с транзистором другой проводимости). Представим себе, что ползунок переменного резистора в верхнем положении. При этом на базе транзистора напряжение равно напряжению на эмиттере, ток базы равен нулю, следовательно ток коллектора тоже равен нулю ( IК=βIБ ) — транзистор закрыт, лампа не светится. Начинаем опускать ползунок вниз — напряжение на нём начинает опускаться ниже, чем на эмиттере — появляется ток из эмиттера в базу (ток базы) и одновременно с этим — ток из эмиттера в коллектор (транзистор начнёт открываться). Лампа начинает светиться, но не в полный накал. Чем ниже мы будем перемещать ползунок переменного резистора — тем ярче будет гореть лампа.
Если мы начнём перемещать ползунок переменного резистора вверх — то транзистор начнёт закрываться, а токи из эмиттера в базу и из эмиттера в коллектор — начнут уменьшаться.
Рассмотренный режим работы транзистора как раз является активным. Коэффициент β может измеряться десятками и даже сотнями. То есть для того, чтобы сильно менять ток, протекающий из эмиттера в коллектор, достаточно лишь немного изменять ток, протекающий из эмиттера в базу.
Статические характеристики биполярного транзистора
Эти характеристики показывают графическую зависимость между токами и напряжениями транзистора и могут применяться для определения некоторых его параметров, необходимых для расчета транзисторных схем. Наибольшее применение получили статические входные и выходные характеристики.
Рис. 10 — Входные характеристики германиевого транзистора типа р-n-р в схемах с ОБ (а) и ОЭ (б)
Входные статические характеристики представляют собой вольтамперные характеристики эмиттерного электронно-дырочного перехода (ЭДП). Если транзистор включен по схеме с общей базой, то это будет зависимость тока эмиттера Iэ от напряжения на эмиттерном переходе Uэб (рис. 10, а). При отсутствии коллекторного напряжения ( Uкб = 0) входная характеристика представляет собой прямую ветвь вольтамперной характеристики эмиттерного ЭДП, подобную ВАХ диода. Если на коллектор подать некоторое напряжение, смещающее его в обратном направлении, то коллекторный ЭДП расширится и толщина базы вследствие этого уменьшится. В результате уменьшится и сопротивление базы эмиттерному току, что приведет к увеличению эмиттерного тока, то есть характеристика пройдет выше.
При включении транзистора по схеме с общим эмиттером входной характеристикой будет графическая зависимость тока базы IБ от напряжения на эмиттерном переходе UБЭ . Так как эмиттерный переход и при таком включении остается смещенным в прямом направлении, то входная характеристика будет также подобна прямой ветви вольтамперной характеристики эмиттерного ЭДП (рис. 10, б).
Выходные статические характеристики биполярного транзистора — это вольтамперные характеристики коллекторного электронно-дырочного перехода, смещенного в обратном направлении. Их вид также зависит от способа включения транзистора и очень сильно от состояния, а точнее — режима работы, в котором находится эмиттерный ЭДП.
Если транзистор включен по схеме с общей базой (ОБ) и Iэ =0, то есть цепь эмиттера оборвана, то эмиттерный ЭДП не оказывает влияния на коллекторный переход. Так как на коллекторный ЭДП подано обратное напряжение, то выходная характеристика, представляющая собой зависимость тока коллектора Iк от напряжения между коллектором и базой Uкб , будет подобна обратной ветви ВАХ диода (нижняя кривая на рис. 11, а). Если же на эмиттерный ЭДП подать прямое напряжение, то появится ток эмиттера Iэ , который создаст почти такой же коллекторный ток Iк . Чем больше прямое напряжение на эмиттерном ЭДП, тем больше значения эмиттерного и коллекторного токов и тем выше располагается выходная характеристика.
Рис. 11 — Выходные характеристики германиевого транзистора типа р-п-р в схемах с ОБ (а) и ОЭ (б)
Сказанное справедливо и при включении биполярного транзистора по схеме с общим эмиттером (ОЭ). Разница состоит лишь в том, что в этом случае выходные характеристики снимают не при постоянных значениях тока эмиттера, а при постоянных значениях тока базы Iб (рис. 11, б), и идут они более круто, чем выходные характеристики в схеме с ОБ.
При чрезмерном увеличении коллекторного напряжения происходит пробой коллекторного ЭДП, сопровождающийся резким увеличением коллекторного тока, разогревом транзистора и выходом его из строя. Для большинства транзисторов напряжение пробоя коллекторного перехода лежит в пределах от 20 до 30 В. Это важно знать при выборе транзистора для заданного напряжения источника питания или при определении необходимого напряжения источника питания для имеющихся транзисторов.
Увеличение температуры вызывает возрастание токов транзистора и смещение его характеристик. Особенно сильно влияет температура на выходные характеристики в схеме ОЭ (рис. 12).
Рис. 12 — Зависимость выходных статических характеристик транзистора от температуры:
а — в схеме с ОБ, б — в схеме с ОЭ.
h -параметры биполярного транзистора
Все описанное выше касалось работы транзистора при постоянных напряжениях и токах его электродов. При работе транзисторов в усилительных схемах важную роль играют переменные сигналы с малыми амплитудами. Свойства транзистора в этом случае определяются так называемыми малосигнальными параметрами.
На практике наибольшее применение получили малосигнальные h-параметры (читается: аш-параметры). Их называют также гибридными, или смешанными, из-за того, что одни из них имеют размерность проводимости, другие сопротивления, а третьи вообще безразмерные.
Всего h-параметров четыре: h11 (аш-один-один), h12 (аш-один-два), h21 (аш-два-один) и h22 (аш-два-два) и определяются они следующими выражениями:
при Uвых=const .
Запись const является сокращением слова constanta, то есть постоянная величина. В данном случае это означает, что при определении параметра h11 приращения входного напряжения ΔUвх и входного тока Iвх выбираются при неизменном (постоянном) значении выходного напряжения Uвых . Параметр h11 характеризует входное сопротивление биполярного транзистора и измеряется в омах. Более кратко выражение для определения параметра h11 записывают в виде:
— коэффициент обратной связи по напряжению, безразмерная величина;
— коэффициент прямой передачи по току, безразмерная величина;
— выходная проводимость, измеряется в сименсах (См ).
Рис. 13 — Токи и напряжения транзистора в схемах с ОЭ (а) и ОБ (б)
Рис. 14 — Определение статических h-параметров транзистора по его статическим характеристикам
Знак Δ означает небольшое изменение напряжения U или тока I относительно их значений в статическом режиме.
Все h-параметры можно определить по статическим характеристикам. При этом параметры h11 и h12 определяются по входным, а h21 и h22 — по выходным характеристикам. Необходимо только иметь в виду, что значения h-параметров зависят от схемы включения транзистора. Для указания схемы включения к цифровым индексам h-параметров добавляется буквенный индекс: б — если транзистор включен по схеме ОБ, или э — если транзистор включен по схеме ОЭ. Кроме того, приращения входных и выходных токов и напряжений нужно заменить приращениями напряжений и токов соответствующих электродов транзистора с учетом конкретной схемы включения (рис. 14).
Значения h-параметров зависят от режима работы транзистора, т. е. от напряжений и токов его электродов. Режим работы транзистора определяется на характеристиках положением рабочей точки, которую будем обозначать в дальнейшем буквой А. Если указано положение рабочей точки А на семействе статических входных характеристик транзистора, включенного по схеме ОЭ (рис. 14, а), параметры h11э и h12э определяются следующим образом:
Параметры h21э и h22э определяются в рабочей точке А по выходным характеристикам (рис. 14, б) в соответствии с формулами:
Аналогично рассчитываются h-параметры для схемы ОБ.
При расчете параметров h12 и h21 надо токи и напряжения подставлять в формулы в основных единицах измерения.
Параметр h21б называют коэффициентом передачи тока в схеме ОБ, а h21э — коэффициентом передачи тока в схеме ОЭ. В отличие от статических коэффициентов передачи h21Б и h21Э — рассчитываемых как отношение выходного тока к входному в схемах ОБ и ОЭ, параметры h21б и h21э определяются как отношения изменений выходных токов к вызвавшим их изменениям входных токов. Иными словами, параметры h21б и h21э характеризуют усилительные свойства транзистора по току для переменных сигналов.
Частотные свойства биполярного транзистора
Параметры транзистора зависят от режима работы и частоты усиливаемых сигналов. Так, с увеличением частоты уменьшается абсолютное значение, или модуль, коэффициента передачи тока базы h21э . Модуль коэффициента обозначают | h21э |. Частота, на которой | h21э | уменьшается в раз по сравнению с его значением на низкой частоте, называется предельной частотой передачи тока базы fh21э . Частота, на которой | h21э | уменьшается до 1, называется граничной fгр (или fг ).
При работе транзистора на частотах, превышающих fh21э его усилительные свойства уменьшаются вплоть fгр. На частотах, превышающих fгр, транзистор вообще не усиливает. Поэтому величины fh21э или fгр позволяют судить о возможности работы транзистора в заданном диапазоне частот. По значению граничной частоты все транзисторы подразделяются на низкочастотные ( fгр <3 МГц), средней частоты (3 МГц< fгр < 30 МГц) и высокочастотные ( fгр >30 МГц). Транзисторы, у которых fгр > 300 МГц, называют сверхвысокочастотными.
В справочниках по полупроводниковым приборам для транзисторов обычно указываются модуль коэффициента передачи тока базы | h21э | и частота f , на которой определено его значение. По этим данным легко установить граничную частоту:
Например, для транзистора типа ГТ320Б значение | h21э |=6 на частоте f =20 МГц. Следовательно, граничная частота этого транзистора fгр = 20 · 6 = 120 МГц.
Стационарные режимы работы транзистора
Различают три режима работы биполярного транзистора. В координатах выходных характеристик (рисунок 7.29, рисунок 7.35) можно выделить три области. Область I – активный или усилительный режим работы транзистора; область II – режим насыщения; область III – режим отсечки тока коллектора.
Усилительный режим характеризуется прямым смещением эмиттера и обратным смещением коллектора: .
Ток коллектора определяется входным током:
Заряд неосновных носителей в базе определяется величиной входного тока (рисунок 7.37, а).
Предельное напряжение в активном режиме ограничивается напряжением и тепловой гиперболой, .
Режим насыщения характеризует работу транзистора в ключевых схемах, и в частности, импульсного ключа в открытом состоянии. Этот режим соответствует прямому смещению эмиттерного и коллекторного переходов:
Ток коллектора и эмиттера определяются суперпозицией токов инжекции и коллектирования:
Режим насыщения характеризуется избыточным неравновесным зарядом носителей в базе и коллекторе (рисунок 7.37, б):
где зависит от толщин базы и коллектора и времени жизни носителей в этих областях.
Режим отсечки характеризует закрытый (непроводящий) транзисторный ключ. Этот режим соответствует обратному или нулевому смещению эмиттерного и коллекторного переходов:
Ток утечки закрытого транзистора определяется тепловой генерацией в коллекторном переходе:
Так как в режиме отсечки оба перехода экстрагируют неосновные носители, то результирующий заряд меньше равновесного (рисунок 7.37, в). Предельное напряжение в режиме отсечки ограничивается лавинным пробоем:
В некоторых случаях (супербета транзистор, СВЧ-транзистор) максимальное напряжение коллектора ограничено токовым (инжекционным) пробоем или напряжением смыкания. Условием этого вида пробоя является (5.125):
Для уменьшения тока утечки при повышенных температурах и расширения рабочего напряжения ключа в схеме с ОЭ вплоть до , эмиттерный переход шунтируют небольшим (по сравнению с входным импедансом) сопротивлением . В мощных транзисторах по схеме Дарлингтона и тиристорах это сопротивление встраивают в виде шунтов по всей площади эмиттера и катода. Встроенный шунт позволяет подавить коэффициент передачи тока на малых уровнях инжекции (рисунок 7.38) и тем самым снизить ток утечки до уровня .
Одновременно наблюдается увеличение рабочего напряжения в режиме отсечки до напряжения лавинного пробоя .
Рисунок 7.37 — Распределение заряда неосновных носителей в транзисторной
структуре: а – активный режим; б – режим насыщения; в – режим отсечки
Рисунок 7.38 — Схема транзисторного ключа (а); изменение выходной ВАХ транзистора
при шунтировке эмиттера (б)
Эквивалентная электрическая схема транзистора в режиме насыщения.
Одно из основных применений транзистора – электронный ключ, который используется для построения цифровых логических схем и преобразователей энергии в источниках питания и других электронных устройствах. Схема простейшего транзисторного ключа приведена на рисунке 7.38, а.Свойства ключа в проводящем состоянии (транзистор открыт) определяются режимом насыщения. Чем меньше падение напряжения на открытом транзисторе, тем меньше потери мощности и выше КПД устройства. При увеличении тока базы ток коллектора возрастает линейно в усилительном режиме (рисунок 7.39, а).
Рисунок 7.39 — Насыщение тока коллектора (а), и выходные характеристики транзистора (б)
При этом рабочая точка на выходных характеристиках транзистора переходит по траектории А → В → C → D (рисунок 7.39, б). При достижении тока (точка С) ток коллектора насыщается. Величина этого тока ограничена нагрузкой :
Индекс sat обозначает режим насыщения (saturation). Ток базы насыщения, соответствующий границе режима насыщения
определяется свойствами транзистора (В) и параметрами схемы ( ). Если ток базы превышает ток базы насыщения , ток коллектирования коллектора становится большим, чем допустимый ток схемы . В результате накапливается избыточный заряд дырок в p-коллекторе и лишних электронов ( ) в базе, которые смещают в прямом направлении коллекторный переход, что, в свою очередь, вызывает инжекцию электронов в коллектор, а дырок – в базу для нейтрализации заряда и установления стационарного состояния (рисунок 7.40). В режиме насыщения внешние токи эмиттера и коллектора являются суперпозицией токов инжекции и коллектирования,
Рисунок 7.40 — Энергетическая диаграмма транзистора в режиме насыщения
Напряжение на открытом транзисторе становится меньше, чем падение напряжения на одном прямосмещенном p-n переходе, что особенно важно для сильноточных ключей. В модели Эберса-Молла (рисунок 7.41)
где – коэффициент передачи тока транзистора ОБ в инверсном включении;
– сопротивления тела эмиттера и коллектора.
В инверсном включении роль эмиттера играет коллектор (прямосмещенный), а роль коллектора – эмиттер (обратно смещенный), ; . Индекс N означает нормальное включение. Эквивалентная электрическая схема транзистора в режиме насыщения приведена на рисунке 7.41.
Рисунок 7.41 — Эквивалентная схема Рисунок 7.42 — Режим насыщения, как суперпозиция
транзистора в режиме насыщения нормального и инверсного активных режимов
Режим работы транзистора в насыщении моделируется суперпозицией двух активных режимов в нормальном и инверсном включениях (рисунок 7.42).
Выразим токи эмиттера, коллектора и базы в режиме насыщения через токи коллектирования.
Ток базы идет на поддержание инжекции из эмиттера и коллектора. Токи коллектирования связаны с напряжением соответствующего перехода.
Выразив из (7.59) и подставив в (7.60), получим:
При малых токах коллектора,
Отношение поэтому остаточное напряжение составляет десятки милливольт. В инверсном включении
При , остаточное напряжение составляет доли милливольта. Эта особенность инверсного включения используется в модуляторных ключах. Так как и зависят экстремально от токов коллектирования, а, следовательно, от тока базы, то и зависимость имеет экстремальный характер (рисунок 7.43).
Рисунок 7.43 — Зависимость Рисунок 7.44 — Распределение плотности тока
от тока базы инжекции коллектора в инверсном включении
Как следует из (7.61) для уменьшения необходимо увеличить инверсный коэффициент передачи тока базы или . Как и для нормального включения,
Так как площадь коллектора больше площади эмиттера , то при пролете базы теряется больше носителей. Кроме тока коллектирования эмиттера протекают токи рекомбинации в пассивном объеме и на поверхности квазинейтральной базы и ток рекомбинации на площади контактов базовой металлизации (рисунок 7.44)
С целью увеличения коэффициента необходимо подлегировать область базовых контактов основной примесью для создания тормозящего поля за счет градиента примесей (ДНЗ), , и уменьшения рекомбинационных потерь на базовых контактах и поверхности квазинейтральной базы.
Эффективность коллектора у транзисторов со структурой или аналогична эффективности эмиттера. У транзисторов со структурой уровень легирования базы выше, чем у коллектора, и эффективность коллектора значительно ниже единицы. Поэтому величина коэффициента передачи тока базы у таких транзисторов может быть ниже единицы, . В некоторых применениях, например, модуляторных ключах, инжекционная интегральная логика и других инверсное включение является рабочим режимом и необходимо оптимизировать структуру транзистора для обеспечения на уровне 10 и более.
Рассмотрим эффективность коллектора транзистора со структурой , концентрационный профиль которого приведен на рисунке 7.45.
Рисунок 7.45 — Концентрационный профиль эпитаксиально-планарного транзистора
При прямом смещении коллектора и обратном эмиттера выражение для имеет вид:
где – ток прямой инжекции (полезный);
– ток обратной инжекции.
В двухслойном коллекторе существует встроенное тормозящее поле, которое отражает поток дырок, т.е. контакт эквивалентен контакту с нулевой скоростью рекомбинации (
th ). Природа тормозящего поля связана с градиентом концентрации примесей на границе . Электроны «скатываются» по градиенту ; а ионы доноров неподвижны. Возникает двойной заряженный слой с полярностью тормозящего поля для дырок. Продолжив оценку эффективности, получаем:
В (7.63) значения гиперболических функций заменены аргументами ( ). Таким образом, даже для условий можно получить приемлемую эффективность коллектора, обеспечив необходимое время жизни дырок в коллекторе . Для повышения коэффициента переноса (7.62) при полосковой топологии эмиттера целесообразно уменьшать расстояние между полосками эмиттера (гребенка) и ширину полоски базового контакта и формировать базу методом диффузии примесей с максимально допустимой поверхностной концентрацией (рисунок 7.45), что обеспечит увеличение тормозящего поля в пассивной базе.
Биполярный транзистор.
Биполярный транзистор — электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления, генерирования и преобразования электрических сигналов. Транзистор называется биполярный, поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки. Этим он отличается от униполярного (полевого) транзистора, в работе которого участвует только один тип носителей заряда.
Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток, только через транзистор проходит поток электронов. У биполярных транзисторов через прибор проходят два тока — основной «большой» ток, и управляющий «маленький» ток. Мощность основного тока зависит от мощности управляющего. У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля. В данной статье рассмотрим подробнее работу биполярного транзистора.
Устройство биполярного транзистора.
Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов. Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей. Это похоже на два диода, соединенных лицом к лицу или наоборот.
У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base). Крайние электроды носят названия коллектор и эмиттер (collector и emitter). Прослойка базы очень тонкая относительно коллектора и эмиттера. В дополнение к этому, области полупроводников по краям транзистора несимметричны. Слой полупроводника со стороны коллектора немного толще, чем со стороны эмиттера. Это необходимо для правильной работы транзистора.
Работа биполярного транзистора.
Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.
Как уже говорилось в статье о типах проводимости в полупроводниках, в веществе P-типа находятся положительно заряженные ионы — дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.
Подключим источник напряжения между коллектором и эмиттером VКЭ (VCE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.
Теперь подключим напряжение между базой и эмиттером VBE, но значительно ниже чем VCE (для кремниевых транзисторов минимальное необходимое VBE — 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет «дотянуться» своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.
В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.
В итоге мы получаем два тока: маленький — от базы к эмиттеру IBE, и большой — от коллектора к эмиттеру ICE.
Если увеличить напряжение на базе, то в прослойке P соберется еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом, при небольшом изменении тока базы I B , сильно меняется ток коллектора I С. Так и происходит усиление сигнала в биполярном транзисторе. Cоотношение тока коллектора IС к току базы IB называется коэффициентом усиления по току. Обозначается β, hfe или h21e, в зависимости от специфики расчетов, проводимых с транзистором.
Простейший усилитель на биполярном транзисторе
Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы. Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов в приведенном ниже примере носит несколько упрощенный характер.
1.Описание основных элементов цепи
Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.
2. Расчет входного тока базы Ib
Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin). Назовем эти значения тока соответственно — Ibmax и Ibmin.
Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером VBE = 0.6V. А поскольку эмиттер подключен к земле (VE = 0), то напряжение от базы до земли тоже 0.6V (VB = 0.6V).
Посчитаем Ibmax и Ibmin с помощью закона Ома:
2. Расчет выходного тока коллектора IС
Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора ( Icmax и Icmin).
3. Расчет выходного напряжения Vout
Осталось посчитать напряжение на выходе нашего усилителя Vout. В данной цепи — это напряжение на коллекторе VC.
Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:
4. Анализ результатов
Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того, что напряжение на резисторе VRc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение Vout/Vin в десять раз — далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.
Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.
Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.
Режимы работы биполярного транзистора
В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:
- Режим отсечки (cut off mode).
- Активный режим (active mode).
- Режим насыщения (saturation mode).
- Инверсный ражим (reverse mode ).
Режим отсечки
Когда напряжение база-эмиттер ниже, чем 0.6V — 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки.
Активный режим
В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.
Режим насыщения
Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.
В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».
Инверсный режим
В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.
Основные параметры биполярного транзистора.
Коэффициент усиления по току – соотношение тока коллектора IС к току базы IB. Обозначается β, hfe или h21e, в зависимости от специфики расчетов, проводимых с транзисторов.
β — величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий — в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.
Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается Rin (Rвх). Чем оно больше — тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.
Rвх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).
Выходная проводимость — проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.
Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление Rout = 0 (Rвых = 0)).
Частотная характеристика – зависимость коэффициента усиления транзистора от частоты входящего сигнала. С повышением частоты, способность транзистора усиливать сигнал постепенно падает. Причиной тому являются паразитные емкости, образовавшиеся в PN-переходах. На изменения входного сигнала в базе транзистор реагирует не мгновенно, а с определенным замедлением, обусловленным затратой времени на наполнение зарядом этих емкостей. Поэтому, при очень высоких частотах, транзистор просто не успевает среагировать и полностью усилить сигнал.
Биполярный транзистор
Биполярным транзистором называется трехэлектродный усилительный полупроводниковый прибор, имеющий трехслойную p-n-p, либо n-p-n структуру с двумя взаимодействующими (ключевое слово) p-n переходами.
Свое имя «TRANSferresISTOR» (дословно – «переходное сопротивление») этот полупроводниковый прибор получил в 1948 году от Уильяма Шокли. Термин «биполярный» подчеркивает тот факт, что принцип действия транзистора основан на взаимодействии с электрическим полем частиц обоих знаков — как дырок, так и электронов.
Рис. 1. Упрощенный вид внутреннего устройства биполярного транзистора p-n-p структуры.
На рис. 1 показан упрощенный вид внутренней структуры объемного маломощного биполярного p-n-p транзистора. Крайнюю слева р + область называют эмиттером. Промежуточная n область называется базой. Крайняя p область справа – коллектор. Электронно-дырочный переход между эмиттером и базой называют эмиттерным, а между базой и коллектором – коллекторным.
Расстояние между металлургическими границами переходов называется физической толщиной базы «L» .
Расстояние между обедненными зонами называется эффективной толщиной базы «W».
Для того, чтобы уменьшить интенсивность процессов рекомбинации дырок в базе, необходимо выполнить условие , то есть физическая толщина базы должна быть меньше диффузионной длины. Это означает автоматическое выполнение условия , что обуславливает взаимодействие переходов.
Эмиттер предназначен для инжекции дырок в базу. Область эмиттера имеет небольшие размеры, но большую степень легирования – концентрация акцепторной примеси NA в эмиттере кремниевого транзистора достигает
10 17 – 10 18 ат/см 3 (этот факт обозначен символом р + ). Область базы легирована нормально – концентрация донорной примеси ND в ней составляет
10 13 – 10 14 ат/cм 3 . В этом случае эмиттерный переход получается резко несимметричным, поскольку обедненная зона располагается, в основном, в базе. Диффузия носителей становится односторонней, так как резко уменьшается встречный поток электронов из базы в эмиттер, что также уменьшает интенсивность процессов рекомбинации дырок в базе.
Теперь выделим еще раз особенности структуры, которые обеспечивают хорошие усилительные свойства транзистора, уменьшая интенсивность процессов рекомбинации:
односторонняя диффузия (несимметичный эмиттерный переход)
Область коллектора имеет наибольшие размеры, поскольку в его функцию входит экстракция носителей, диффундировавших через базу. Кроме того, на коллекторе рассеивается большая мощность, что требует эффективного отвода тепла.
Биполярные транзисторы, как правило, изготавливаются из кремния, германия или арсенида галлия. По технологии изготовления биполярные транзисторы делятся на сплавные, диффузионные и эпитаксиальные.
Биполярные транзисторы являются усилительными приборами и, поэтому, применяются для построения схем усилителей, генераторов и преобразователей электрических сигналов в широком диапазоне частот (от постоянного тока до десятков гигагерц) и мощности (от десятков милливатт до сотен ватт). В соответствии с этим биполярные транзисторы делятся на группы по частоте:
низкочастотные не более 3 МГц;
средней частоты — от 3 МГц до 30МГц;
высокочастотные- от 30 МГц до 300 МГц;
сверхвысокочастотные — более 300 МГц
По мощности выделяют следующем образом:
маломощные — не более 0,3 Вт;
средней мощности — от 0,3 Вт до1,5 Вт;
большой мощности — более 1,5 Вт.
В настоящее время парк биполярных транзисторов очень разнообразен. Сюда входят как обычные транзисторы, которые работают в самых различных аналоговых, импульсных и цифровых устройствах, так и специальные, например, лавинные транзисторы, предназначенные для формирования мощных импульсов наносекундного диапазона. Следует упомянуть многоэмиттерные, а также составные биполярные транзисторы (транзисторы Дарлингтона), обладающие очень высоким коэффициентом передачи тока.
2. Принцип действия
Рассмотрим активный режим работы транзистора, когда эмиттерный переход открыт прямым смещением Uэб, а коллекторный закрыт обратным смещением Uкб. Для этого воспользуемся одномерной моделью транзистора, которая показана на рис. 2. Модель характерна тем, что все физические величины зависят только от продольной координаты, поперечные же размеры бесконечны. Стрелками на рисунке обозначены положительные направления токов (от «+» к «–»), дырки обозначены открытыми, а электроны – закрытыми кружками. Сокращения: ЭП – эмиттерный переход, КП – коллекторный переход.
Рис. 2. Иллюстрация принципа действия биполярного транзистора p-n-p структуры.
Предположим, что в начальный момент времени ключ «К» разомкнут. Эмиттерный переход закрыт, поскольку потенциальный барьер в обедненной области перехода запрещает диффузию носителей, несмотря на огромный градиент концентраций на переходе – дырок слева 10 17 см -3 , а справа 10 6 см -3 . Это режим отсечки. Транзистор закрыт, существует только небольшой обратный тепловой ток обратно смещенного коллекторного перехода.
Теперь замкнем ключ «К». Потенциальный барьер понижается вследствие частичной компенсации внутреннего электрического поля встречно направленным внешним электрическим полем источника Uэб. Начинается процесс диффузии, вследствие огромного градиента концентраций дырок между эмиттером и базой. Дырки диффундируют или инжектируются из эмиттера в базу, где меняют статус – становятся неосновными. Для неосновных носителей нет потенциального барьера, другими словами, диффундируя через базу в направлении коллекторного перехода, они попадают во втягивающее поле коллекторного перехода и экстрагируются в область коллектора. В цепи коллектора эти дырки создают дрейфовый ток, пропорциональный току эмиттера:
где α – доля дырок, достигших коллектора, или коэффициент передачи тока эмиттера. Поскольку небольшая часть дырок, инжектированных из эмиттера в базу, все же успевает рекомбинировать, то всегда α <1. При достаточно тонкой базе α может доходить до 0,99 и более. Уменьшение концентрации электронов в базе в результате рекомбинации восполняется потоком электронов от внешнего источника Uэб через внешний вывод базы. Таким образом внутренний ток рекомбинации, являющийся дырочным, полностью компенсируется электронным током через электрод базы:
В цепи коллектора кроме управляемого тока протекает неуправляемый дрейфовый обратный ток Iкб0, обусловленный, в основном, тепловой генерацией электронно-дырочных пар в объеме перехода. Этот ток очень мал, он не зависит от напряжения Uкб, а зависит только от температуры. Обратный ток коллектора Iкб0 измеряется при разомкнутой цепи эмиттера, о чем говорит индекс «0» (ноль).
Полный ток, протекающий во внешней цепи коллектора, имеет дырочный характер и равен
В нормальных условиях работы поэтому с хорошей точностью полагают, что ток во внешней цепи коллектора равен
а ток во внешней цепи базы имеет электронный характер и равен
Согласно первому закону Кирхгофа,
Для удобства, формально, вводят коэффициент передачи тока базы
Коэффициент связан с коэффициентом соотношением
3. Режимы работы и способы включения
Рис. 3.1. Условное обозначение на схеме биполярного транзистора p-n-p структуры и n-p-n структуры .
Условные обозначения биполярного транзистора на схеме, показаны на рис. 3.1, а показано условное графическое обозначение биполярного транзистора по ГОСТ для формата листа А4. Стрелка на выводе эмиттера всегда направлена от «p» к «n», то есть указывает направление прямого тока открытого перехода. Кружок обозначает корпус дискретного транзистора. Для транзисторов в составе интегральных схем он не изображается. На рис. 3.1, б и в показаны структуры p-n-p и n-p-n соответственно. Принцип действия транзисторов обеих структур одинаков, а полярности напряжений между их электродами разные. Поскольку в транзисторе два перехода (эмиттерный и коллекторный) и каждый из них может находиться в двух состояниях (открытом и закрытом), различают четыре режима работы транзистора.
Активный режим, когда эмиттерный переход открыт, а коллекторный закрыт. Активный режим работы является основным и используется в усилительных схемах.
Режим насыщения— оба перехода открыты.
Режим отсечки— оба перехода закрыты.
Инверсный режим— эмиттерный переход закрыт, коллекторный — открыт.
В большинстве транзисторных схем транзистор рассматривается как четырехполюсник. Поэтому для такого включения один из выводов транзистора должен быть общим для входной и выходной цепей. Соответственно различают три схемы включения транзистора, которые показаны на рис. 3.2: а) с общей базой (ОБ), б) общим эмиттером (ОЭ) и в) общим коллектором (ОК). На рисунке указаны положительные направления токов, а полярности напряжений соответствуют активному режиму работы.
Рис. 3.2. Схемы включения транзистора слева направо: схема с ОБ, ОЭ и ОК.
В схеме ОБ входную цепь является цепь эмиттера, а выходной – цепь коллектора. Эта схема наиболее проста для анализа, поскольку напряжение Uэб прикладывается к эмиттерному переходу, а напряжение Uкб – к коллекторному, причем источники имеют разные знаки.
В схеме ОЭ входной цепью является цепь базы, а выходной – цепь коллектора. Напряжение Uбэ> 0 прикладывается непосредственно к эмиттерному переходу и открывает его. Напряжение Uкэ той же полярности распределяется между обоими переходами: Uкэ = Uкб + Uбэ. Для того чтобы коллекторный переход был закрыт, необходимо выполнить условие Uкб = Uкэ — Uбэ> 0, что обеспечивается неравенством Uкэ> Uбэ> 0.
В схеме ОК входной цепью является цепь базы, а выходной – цепь эмиттера.
4. Статические вольт-амперные характеристики
Транзистор, как любой четырехполюсник, можно охарактеризовать четырьмя величинами — входными и выходными напряжениями и токами: Uвх = U1, Uвых = U2, Iвх = I1, Iвых = I2. Функциональные зависимости между этими постоянными величинами называются статическими характеристиками транзистора. Чтобы установить функциональные связи между указанными величинами, необходимо две из них взять в качестве независимых аргументов, а две оставшиеся выразить в виде функций этих независимых аргументов. Как правило, применительно к биполярному транзистору в качестве независимых аргументов выбирают входной ток и выходное напряжение. В этом случае
Обычно соотношения (4.1) представляют в виде функций одного аргумента. Для этого второй аргумент, называемый параметром характеристики, фиксируют. В основном, используют два типа характеристик транзистора:
Следует отметить, что общепринято представление вольт-амперной характеристики как функции тока от напряжения, поэтому входная характеристика используется в виде обратной функции
Статические характеристики транзистора могут задаваться аналитическими выражениями, но в большинстве случаев их представляют графически в виде семейства характеристик, которые и приводятся в справочниках.
4.1. Статические характеристики в схеме с ОБ
В схеме с ОБ (рис. 3.2.а) входным током является ток эмиттера Iэ, а выходным – ток коллектора Iк, соответственно, входным напряжением является напряжение Uэб, а выходным – напряжение Uкб.
Входная характеристика в схеме ОБ представлена зависимостью
которая, в свою очередь, является прямой ветвью вольт-амперной характеристики эмиттерного перехода. Семейство входных характеристик кремниевого n-p-n транзистора показано на рис. 4.1, а. Зависимость Iэ от Uкб как от параметра связана с эффектом Эрли: увеличение обратного смещения коллекторного перехода Uкбуменьшает эффективную толщину базы W, что приводит к некоторому росту Iэ. Это проявляется в смещении входной характеристики в сторону меньших значений . Режиму отсечки формально соответствует обратное напряжение Uэб> 0, хотя реально эмиттерный переход остается закрытым () и при прямых напряжениях .
Выходная характеристика транзистора в схеме ОБ представляет собой зависимость
Семейство выходных характеристик n-p-n транзистора показано на рис. 4.1, б. Форма кривых в активной области соответствует форме обратной ветви вольт-амперной характеристики коллекторного перехода.
Рис. 4.1. Семейства входных (а) и выходных (б) характеристик биполярного транзистора в схеме с ОБ.
Выражение для идеализированной выходной характеристики в активном режиме имеет вид
Отсюда следует, что ток коллектора определяется только током эмиттера и не зависит от напряжения Uкб, т.е. характеристики в активном режиме расположены параллельно оси абсцисс. На практике же при увеличении Uкб имеет место небольшой рост Iк, связанный с эффектом Эрли, характеристики приобретают очень незначительный наклон. Кроме того, в активном режиме характеристики практически эквидистантны (расположены на одинаковом расстоянии друг от друга), и лишь при очень больших токах эмиттера из-за уменьшения α кривые несколько приближаются друг к другу.
При Iэ = 0 транзистор находится в режиме отсечки и в цепи коллектора протекает только неуправляемый тепловой ток (Iк = Iкб0).
В режиме насыщения на коллекторном переходе появляется открывающее его прямое напряжение Uкб, большее порогового значения Uкб пор, и возникает прямой диффузионный ток навстречу нормальному управляемому току Iк. Этот ток называют инверсным. Инверсный ток резко увеличивается с ростом , в результате чего Iк очень быстро уменьшается и, затем, меняет знак.
4.2. Статические характеристики в схеме с ОЭ
В схеме с ОЭ (рис. 3.2, б) входным током является ток базы Iб, а выходным – ток коллектора Iк. Соответственно, входным напряжением является напряжение Uбэ, а выходным – Uкэ.
Рис. 4.2. Семейства входных (а) и выходных характеристик (б) биполярного транзистора в схеме с ОЭ.
Входная характеристика в схеме с ОЭ представляет собой зависимость
что, как и в схеме с ОБ, соответствует прямой ветви вольт-амперной характеристики эмиттерного перехода.
Семейство входных характеристик кремниевого n-p-n транзистора показано на рис. 4.2, а. Зависимость тока базы Iб от напряжения на коллекторе Uкэ, как и в предыдущем случае, обусловлена эффектом Эрли. Уменьшение эффективной ширины базы W с ростом Uкэ приводит к уменьшению тока рекомбинации, а, следовательно, тока базы в целом. В результате, характеристики смещаются в сторону больших значений Uбэ. Следует отметить, что Iб = 0 при некотором значении Uпор> 0, когда рекомбинационный ток (1-α)Iэ становится равным тепловому току Iкэ0. При Uбэ <Uпор, Iб = — Iкэ0, что соответствует режиму отсечки.
При Uкэ <Uбэ открывается коллекторный переход, и транзистор переходит в режим насыщения. В этом режиме вследствие двойной инжекции в базе накапливается очень большой избыточный заряд электронов, интенсивность рекомбинации которых с дырками резко возрастает, и ток базы стремительно растет.
Выходная характеристика в схеме с ОЭ представляет собой зависимость
Семейство выходных характеристик показано на рис. 7.6б. Для получения идеализированной выходной характеристики в активном режиме из соотношения (2.2), учитывая (2.6), исключим ток эмиттера. Тогда
Ток Iкэ0 называют сквозным тепловым током транзистора, причем, как видно из (4.11),
Семейство выходных характеристик целиком расположено в первом квадранте. Данный факт обусловлен тем, что в схеме с ОЭ напряжение Uкэ распределено между обоими переходами. При Uкэ <Uбэ напряжение на коллекторном переходе меняет знак и становится прямым. В результате транзистор переходит в режим насыщения при Uкэ> 0. В режиме насыщения характеристики сливаются в одну линию, т.е. Iк становится неуправляемым и не зависит от тока базы.
Как видно из рис. 4.2 .б, в активном режиме кривые проходят под углом к оси абсцисс, причем этот угол увеличивается с ростом тока базы. Такое поведение кривых обусловлено эффектом Эрли. Однако рост Iк при увеличении Uкэ выражен значительно ярче, чем в схеме с ОБ, поскольку в активном режиме эмиттерный переход приоткрыт падением напряжения на материале базы в результате протекания коллекторного тока. Это приводит к дополнительному увеличению коллекторного тока Iк с ростом напряжения Uкэ. Этим же объясняется отсутствие эквидистантности и наличие в β раз большего, чем Iкб0, сквозного теплового тока Iкэ0 (4.11).