Явление полного внутреннего отражения света и его применение
При некотором угле падения света $<\alpha >_
В случае полного отражения уравнение:
не имеет решения в области действительных значений угла преломления ($<\alpha >_
где угол падения обозначен $\alpha $ (для краткости написания), $n$ — показатель преломления среды, где свет распространяется.
Из формул Френеля видно, что модули $\left|E_
Надо отметить, что неоднородная волна во второй среде не исчезает. Так, если $\alpha =<\alpha >_0=
Готовые работы на аналогичную тему
Проникновение волны во вторую среду можно наблюдать в эксперименте. Интенсивность световой волны во второй среде заметна только на расстояниях меньших длины волны. Около поверхности раздела, на которую падает волна света, которая испытывает полное отражение, на стороне второй среды можно видеть свечение тонкого слоя, если во второй среде есть флуоресцирующее вещество.
Полное отражение вызывает возникновение миражей, когда поверхность земли имеет высокую температуру. Так, полное отражение света, которое идет от облаков приводит к появлению впечатления, что на поверхности нагретого асфальта находятся лужи.
При обычном отражении отношения $\frac
где $<\delta >_<\bot >$ — искомый скачок фазы. Приравняем вещественные и мнимые части, имеем:
Из выражений (5) получаем:
Соответственно, для волны, которая поляризована в плоскости падения можно получить:
Скачки фаз $<\delta >_/>$ и $<\delta >_<\bot >$ не одинаковы. Отраженная волна будет поляризована эллиптически.
Применение полного отражения
Допустим, что две одинаковые среды разделены тонким воздушным промежутком. На него падает световая волна под углом, который больше, чем предельный. Может сложиться так, что она проникнет в воздушный промежуток как неоднородная волна. Если толщина зазора мала, то данная волна достигнет второй границы вещества и при этом будет не очень ослабленной. Перейдя из воздушного промежутка в вещество, волна превратится снова в однородную. Такой опыт был проведен еще Ньютоном. Ученый прижимал к гипотенузной грани прямоугольной призмы другую призму, которая со шлифована сферически. При этом свет проходил во вторую призму не только там, где они соприкасаются, но и в небольшом кольце вокруг контакта, в месте, где толщина зазора сравнима с длинной волны. Если наблюдения проводились в белом свете, то край кольца имел красноватую окраску. Так и должно быть, так как глубина проникновения пропорциональна длине волны (для красных лучей она больше, чем для синих). Изменяя толщину промежутка, можно изменять интенсивность проходящего света. Это явление легло в основу светового телефона, который был запатентован фирмой Цейсс. В этом устройстве в качестве одной из сред выступает прозрачная мембрана, которая совершает колебания под действием звука, падающего на нее. Свет, который проходит сквозь воздушный промежуток, изменяет интенсивность в такт с изменениями силы звука. Попадая на фотоэлемент, он порождает переменный ток, который меняется в соответствии с изменениями силы звука. Полученный ток усиливается и используется далее.
Явления проникновения волн сквозь тонкие промежутки не специфичны для оптики. Это возможно для волны любой природы, если фазовая скорость в промежутке выше, чем фазовая скорость в окружающей среде. Важное значение данное явление имеет в ядерной и атомной физике.
Явление полного внутреннего отражения используют для изменения направления распространения света. С этой целью используют призмы.
Задание: Приведите пример явления полного отражения, которое часто встречается.
Решение:
Можно привести такой пример. Если шоссейная дорога сильно нагрета, то температура воздуха максимальна около поверхности асфальта и убывает при увеличении расстояния от дороги. Значит, показатель преломления воздуха минимален у поверхности и растет при увеличении расстояния. Как результат этого, лучи, имеющие небольшой угол относительно поверхности шоссе терпят полное отражение. Если сконцентрировать свое внимание, при движении в автомобиле, на подходящем участке поверхности шоссе, то можно увидеть довольно далеко едущую впереди машину в перевернутом виде.
Задание: Каков угол Брюстера для пучка света, который падает на поверхность кристалла, если предельный угол полного отражения для данного пучка на границе раздела воздух — кристалл равен 400?
Решение:
В качестве основы для решения задачи используем закон преломления в виде:
где $\alpha $ — угол падения пучка света, по условию задачи он равен предельному углу:
$\alpha =<\alpha >_
Из выражения (2.1) имеем:
Подставим правую часть выражения (2.3) в формулу (2.2), выразим искомый угол:
Полное внутреннее отражение
Вну́треннее отраже́ние — явление отражения электромагнитных волн от границы раздела двух прозрачных сред при условии, что волна падает из среды с бо́льшим показателем преломления.
Неполное внутреннее отражение — внутреннее отражение, при условии, что угол падения меньше критического угла. В этом случае луч раздваивается на преломлённый и отражённый.
Полное внутреннее отражение — внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. К тому же, коэффициент отражения при полном внутреннем отражении не зависит от длины волны.
Этот оптический феномен наблюдается для широкого спектра электромагнитного излучения включая и рентгеновский диапазон.
В рамках геометрической оптики объяснение явления тривиально: опираясь на закон Снелла и учитывая, что угол преломления не может превышать 90°, получаем, что при угле падения, синус которого больше отношения меньшего коэффициента преломления к большему коэффициенту, электромагнитная волна должна полностью отражаться в первую среду.
Содержание
Пример
Рассмотрим внутреннее отражение на примере двух монохроматических лучей, падающих на границу раздела двух сред. Лучи падают из зоны более плотной среды (обозначена более тёмным голубым цветом) с коэффициентом преломления на границу с менее плотной средой (обозначена светло-голубым цветом) с коэффициентом преломления
.
Красный луч падает под углом , то есть на границе сред он раздваивается — частично преломляется и частично отражается. Часть луча преломляется под углом
.
Зелёный луч падает и полностью отражается .
Полное внутреннее отражение в природе и технике
Фата-моргана, эффекты миража, например иллюзия мокрой дороги при летней жаре. Здесь отражения возникают из-за полного отражения между слоями воздуха с разной температурой.
Яркий блеск многих природных кристаллов, а в особенности — огранённых драгоценных и полудрагоценных камней объясняется полным внутренним отражением, в результате которого каждый вошедший в кристалл луч образует большое количество достаточно ярких вышедших лучей, окрашенных в результате дисперсии.
Блеск алмазов, выделяющий их из прочих драгоценных камней, также определяется этим феноменом. Из-за высокого коэффициента преломления (n ≈ 2) алмаза оказывается большим и число внутренних отражений, которые претерпевает луч света с меньшими потерями энергии, по сравнению со стеклом и другими материалами с меньшим показателем преломления.
Полное внутреннее отражение звуковых волн в толще океана, связанное с изменениями свойств воды с глубиной, приводит к распространению некоторых, особенно сверхнизкочастотных звуков на тысячи километров.
Полное внутреннее отражение можно наблюдать, если смотреть из-под воды на поверхность: при определенных углах на границе раздела наблюдаеться не внешняя часть (то, что в воздухе), а видно зеркальное отражение объектов, которые находятся в воде.
Светоделительная призма
Непосредственно за первой граничной поверхностью, то есть на расстоянии максимум, равной длине волны света, вторая граничная поверхность имеет тот же коэффициент преломления n1. Электромагнитная волна света проникает через полосу с коэффициентом преломления n2 и попадает во вторую граничную поверхность с коэффициентом преломления n1, но с меньшим значением энергии. Наблюдается раздвоение луча света, часть которого проникла в зону с коэффициентом преломления n2. В конечном результате луч раздваивается : часть распространяется дальше в первоначальном направлении, в то время как другая часть отражается. Потеря интенсивности в среде n2 проходит экспоненциально по формуле:
вытекает, что вакуум — оптически более плотная среда, чем любое вещество. Значения коэффициента прохождении рентгеновских лучей лежат в области между < / 10 − 6 и < / 10 − 5 и зависят от квантовой энергии излучения, констант кристаллической решётки и плотности вещества.
При небольших углах падения, наблюдается эффект скольжения, преломления рентгеновских лучей с отражением под углом, равным углу падения (θ). Углы скольжения для «жёстких» рентгеновских лучей составляют доли градуса, для «мягких» — примерно 10-20 градусов. [1] [2]
Преломление рентгеновских лучей при скользящем падении было впервые сформулировано М. А. Кумаховым, разработавшим рентгеновское зеркало, и теоретически обосновано Артуром Комптоном в 1923 году.
Другие волновые явления
Демонстрация преломления, а значит и эффекта полного внутреннего отражения возможна, например, для звуковых волн на поверхности и в толще жидкости при переходе между зонами различной вязкости или плотности.
Явления, сходные с эффектом полного внутреннего отражения электромагнитного излучения, наблюдаются для пучков медленных нейтронов. [3]
Если на поверхность раздела падает вертикально поляризованная волна под углом Брюстера, то будет наблюдаться эффект полного преломления — отраженная волна будет отсутствовать.
Примечания
- ↑http://dssplab.karelia.ru/sources/BOOK/glava1/01.html
- ↑http://www.issep.rssi.ru/pdf/0110_095.pdf
- ↑Нейтронная оптика — статья из Большой советской энциклопедии
Wikimedia Foundation . 2010 .
Полезное
Смотреть что такое «Полное внутреннее отражение» в других словарях:
ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ — отражение эл. магн. излучения (в частности, света) при его падении на границу раздела двух прозрачных сред из среды с большим показателем преломления. П. в. о. осуществляется, когда угол падения i превосходит нек рый предельный (критический) угол … Физическая энциклопедия
Полное внутреннее отражение — Полное внутреннее отражение. При прохождении света из среды с n1 > n2 происходит полное внутреннее отражение, если угол падения a2 > aпр; при угле падения a1 Иллюстрированный энциклопедический словарь
Полное внутреннее отражение — отражение оптического излучения (См. Оптическое излучение) (света) или электромагнитного излучения другого диапазона (например, радиоволн) при его падении на границу раздела двух прозрачных сред из среды с большим преломления показателем… … Большая советская энциклопедия
ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ — электромагнитных волн, происходит при прохождении их из среды с большим показателем преломления n1 в среду с меньшим показателем преломления n2 под углом падения a, превышающим предельный угол aпр, определяемый соотношением sinaпр=n2/n1. Полным… … Современная энциклопедия
ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ — ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ, ОТРАЖЕНИЕ без ПРЕЛОМЛЕНИЯ света на границе. При прохождении света из более плотной среды (например, стекло) в менее плотную (вода или воздух) существует зона углов преломления, в которой свет не проходит через границу … Научно-технический энциклопедический словарь
полное внутреннее отражение — Отражение света от среды оптически менее плотной с полным возвращением в среду, из которой он падает. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики… … Справочник технического переводчика
ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ — электромагнитных волн происходит при их наклонном падении на границу раздела 2 сред, когда излучение проходит из среды с большим показателем преломления n1 в среду с меньшим показателем преломления n2, а угол падения i превышает предельный угол… … Большой Энциклопедический словарь
полное внутреннее отражение — электромагнитных волн, происходит при наклонном падении на границу раздела 2 сред, когда излучение проходит из среды с большим показателем преломления n1 в среду с меньшим показателем преломления n2, а угол падения i превышает предельный угол iпр … Энциклопедический словарь
ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ — эл магн. волн, происходит при наклонном падении на границу раздела 2 сред, когда излучение проходит из среды с большим показателем преломления n1 в среду с меньшим показателем преломления n2, а угол падения i превышает предельный угол iпр.… … Естествознание. Энциклопедический словарь
полное внутреннее отражение — visiškasis vidaus atspindys statusas T sritis fizika atitikmenys: angl. total internal reflection vok. innere Totalreflexion, f rus. полное внутреннее отражение, n pranc. réflexion intégrée interne, f; réflexion totale interne, f … Fizikos terminų žodynas
Что называют явлением полного внутреннего отражения? Где оно встречается и где его используют.
Отсутствие (при падении излучения на границу раздела сред) преломлённой волны, направление распространения которой определяется известным законом преломления. Наблюдается только в случае превышения значения показателя преломления первой среды над показателем преломления второй, при достаточно больших углах падения (см. соотв. формулу) .
Наиболее частое использование — отражательные призмы (применяются, скажем, в биноклях) и волоконная оптика (разнообразные световоды) .
Строго говоря, утверждать, что излучение не выходит за пределы первой среды — неверно, что подтверждено в своё время рядом опытов. Оно таки выходит, но очень недалеко (ориентировочно — в слой порядка длины волны толщиной) — распространяясь вдоль поверхности раздела и быстро затухая при удалении от неё. То есть ничего общего с законом преломления это уже не имеет.
Где используется явление полного внутреннего отражения
Применение полного отражения
На явлении полного внутреннего отражения основано появление раздела волоконной оптики, в котором изучается формирование изображений при распространении света по световодам.
Световоды это пучки прозрачных гибких волокон толщиной до 0,05 мм. Высоко прозрачные световоды изготовляют из весьма чистых материалов. Основной метод этого производства — вытягивание световода из расплава кварцевого стекла; наружная оболочка из того же кварца легируется примесями, снижающими показатель преломления (бор, германий, фосфор).
За счёт многократного полного отражения свет может быть направлен по любому пути, прямому и изогнутому.
Волокна собираются в жгуты. При этом по каждому из волокон передаётся какой-нибудь элемент изображения.
Жгуты из волокон используются в медицине для исследования внутренних органов. Два световода можно закинуть в любое малодоступое место организма. С помощью одного световода освещают нужный объект, посредством другого передают его изображение в фотокамеру или глаз. Например, опуская световоды в желудок, медикам удаётся получить прекрасное изображение интересующей их области, несмотря на то, что световоды приходится перекручивать и изгибать самым причудливым образом.
Волоконная оптика применяется в для передачи большого объема информации в компьютерных сетях, для освещения недоступных мест, в рекламе, бытовой осветительной технике.
В военном деле, на подводных лодках широко используются перископы. Периско́п (от греч. peri — «вокруг» и scopo — «смотрю») — прибор для наблюдения из укрытия. Простейшая форма перископа — труба, на обоих концах которой закреплены зеркала, наклоненные относительно оси трубы на 45° для изменения хода световых лучей. В более сложных вариантах для отклонения лучей вместо зеркал используются призмы, а получаемое наблюдателем изображение увеличивается с помощью системы линз. Луч света полностью отражается и попадает в глаз наблюдателя.
Цифровой перископ
Перед вами техническая новинка.
Традиционный оптический канал существующих перископов заменён видеокамерами высокого разрешения и оптоволоконной связью. Информация с камер наружного наблюдения передается в режиме реального времени на широкоформатный дисплей в центральном посту.
Испытания проходят на борту подводной лодки SSN 767 Hampton типа Los-Angeles. Новая модель полностью меняет складывавшуюся десятилетиями практику работы с перископом. Теперь вахтенный офицер работает с установленными на штанге камерами, регулируя отображение на дисплее с помощью джойстика и клавиатуры.
Помимо дисплея в центральном посту изображение с перископа может выводиться на сколь угодно большое число дисплеев в любых помещениях лодки. Камеры дают возможность наблюдать одновременно за разными секторами горизонта, что значительно повышает скорость реакции вахты на изменения тактической обстановки на поверхности.
Чем объяснить "игру камней"? В ювелирном деле огранка камней подбирается так, что на каждой грани наблюдается полное отражение света.
Полным внутренним явлением объясняется явление миража
Мираж — оптическое явление в атмосфере: отражение света границей между резко разными по теплоте слоями воздуха. Для наблюдателя такое отражение заключается в том, что вместе с отдалённым объектом (или участком неба) видно его мнимое изображение, смещенное относительно предмета.
Миражи различают на нижние, видимые под объектом, верхние, — над объектом, и боковые. Верхний мираж наблюдается над холодной земной поверхностью , нижний мираж — над перегретой ровной поверхностью, часто пустыней или асфальтированной дорогой. Мнимое изображение неба создаёт при этом иллюзию воды на поверхности. Так, уходящая вдаль дорога в жаркий летний день кажется мокрой. Боковой мираж иногда наблюдается у сильно нагретых стен или скал.