Фоторезистор и его применение
Многие современные системы редко обходятся без таких радиодеталей, как фотоэлементы. Различные датчики и измерители освещенности содержат в себе фоторезисторы. Они хорошо подходят для измерения световых величин. Из чего они состоят, как устроены и что такое фоторезистор — об этом в нашем обзоре.
Термин
Фоторезистор по своей сути это полупроводниковый приборчик, который под воздействием света способен изменять свою проводимость или сопротивление.
Их отличает отсутствие p-n перехода, который свободно употребляется в солнечных фотопластинках.
А раз нет p-n перехода, то такой элемент обладает свойством пропускать ток несмотря от его направленности. Эта отличительная черта дает возможность использовать их в электрических цепях переменного или постоянного тока.
Устройство
От модели к модели меняется форма корпуса или активный слой, но одно остается неизменно.
Это основа — подложка из керамического материала.
На подложке змейкой наносят методом напыления тончайший слой проводника из золота или платины.
Также в качестве полупроводников могут быть использованы различные типы фоторезистивных материалов.
Если необходимо зафиксировать видимый свет с длинной волны:
То чаще всего применяется селенид кадмия и сульфид кадмия.
Для фиксации инфракрасного излучения пластины могут быть сделаны из:
- германия в чистом виде либо с добавлением небольших примесей;
- кремниевыми;
- сульфида свинца и прочих химических сочетаний на его основе.
В чистом виде германий или кремний встречается в деталях, обладающих внутренним фотоэффектом.
Остальные примеси могут, применены в устройствах с внешним фотоэффектом.
Производство первых серийных сернисто-висмутовых фоторезисторов в нашей стране было налажено в 1948 г.
Позднее их заменили на сернисто-кадмиевые и селенисто-кадмиевыми модели, у которых проявились гораздо лучшие параметры.
В любом случае свойства остаются прежними.
Напыленные, таким образом, слои, имеют вывода на электроды, по которым попадает электрический ток.
Сверху всю конструкцию вмещают в корпус, защищенный тонким слоем прозрачного пластика, через который попадают световые потоки.
Форма размеры и материал защитного корпуса могут быть различными. Эти параметры определяются производителем, исходя из предназначения фоторезистора и выглядят по-разному.
Устройство обычного фоторезистора может быть разного исполнения:
- в металлическом корпусе;
- в пластиковом корпусе;
- открытого типа.
Не всегда применяется и напыление металлов. Токопроводящий слой может быть вырезан из тонкого слоя полупроводника.
Встречаются варианты и пленочных фотодатчиков.
Обозначение на схемах
Фоторезистор на принципиальной схеме обозначается почти также как и стандартный резистор. Но есть небольшое отличие. Это всё тот же прямоугольник, но в круге, снаружи которого есть изображение двух стрелок под углом в 45°. Эти стрелки — символически показывают падающий на элемент поток излучения.
Такое обозначение принято международной электротехнической комиссией IEC (International Electrotechnical Commission).
В иностранных источниках можно увидеть и другое условное обозначение. Фотоэлемент условно показан в виде ломаной линии. Это устаревшее условное обозначение, но и его можно встретить на схемах довольно часто.
Принцип работы
Разберем, как работает фоторезистор?
Когда он неактивен это, по сути, диэлектрик. Чтобы устройство начало проводить ток на него должно быть оказано внешнее воздействие. Тепловое или, как в нашем случае, световое.
Фотоны света, попадая на активный слой, насыщают его электронами, и теперь появляется способность пропускать электрический ток. Возникает прямая зависимость, которую можно отобразить на графике.
Из графика хорошо видно, что чем больше образуется электронов, тем меньшее электрическое сопротивление у полупроводника. На этом свойстве фоторезистора и основан принцип его работы.
Причем эффект образования электронов способен вызвать как видимый спектр излучения так и инфракрасный. В последнем варианте они способны создавать значительно большую энергию.
Восприимчивость фоторезистивного слоя можно поднять за счет легирования его различными добавками. После такой обработки уменьшаются фотосопротивления, но повышается фоточувствительность в видимых спектрах света.
Этим элементам характерен процесс старения. Он выражается:
- в снижении омического сопротивления;
- изменяется фототок;
- растет чувствительность.
Этот процесс непродолжительный по времени — до нескольких сотен часов и потом параметры становятся стабильны.
Вообще все фотодатчики разделены на две основные группы:
- Детали, обладающие внутренним фотоэффектом.
- Детали с внешним фотоэффектом.
Их отличает друг от друга технология производства, а если быть точнее — сам состав фоторезистивного слоя.
Если в первых при изготовлении применены чистейшие химические составляющие, без посторонних примесей. Таким образом, у датчика меняются характеристики, фоторезистор практически не реагирует на видимый свет, но хорошо работает в инфракрасном диапазоне.
То вторые, наоборот, содержат примеси в полупроводниковом веществе. За счет этого расширяется спектр чувствительности в зоне видимого света и даже захватывает инфракрасный диапазон (тепловые лучи).
Хотя по принципу срабатывания и как подключить эти два вида не отличаются — внутреннее сопротивление уменьшается с увеличением интенсивности падающего на них светового потока.
Собственно это свойство помогает при монтаже плат с фотодатчиками. Вопрос как проверить фоторезистор решается проверкой его сопротивления мультиметром. В рабочем элементе должно быть большее сопротивление при отсутствии освещения. Если на его чувствительный элемент подать свет, то сопротивление моментально снизится до нескольких кОм.
Область применения
В современном мире область применения этих радиодеталей значительно расширена.
Применение разнообразных фоторезисторов, работающих в видимом спектре довольно обширно. Это могут быть:
- Системы автоматических выключателей света.
- Счетные устройства.
- Датчики обрыва полотна или бумаги.
- Датчики проникновения.
- В приборах оснащенных экспонометрами. Например, такие элементы могли использоваться в типовых фотоаппаратах-мыльницах.
Сами по себе они только элемент сложных фотоприёмных устройств, в которых помимо фотодетектора может быть входить:
- интегральный усилитель;
- микросхема, отвечающая за автоматическую регулировку освещения;
- схемы цепей питания, дополненные системой охлаждения на элементах Пельтье.
Всё это многообразие элементов для фотодекторов, заключается в небольшой герметичный корпус.
Если эти приборы работают в ИК-диапазоне, их область применения немного другая. Они используются как часть сложных устройств, таких как:
- датчики обнаружения пламени;
- системы бесконтактного измерения температуры;
- системы отслеживания уровня влажности;
- применяются для обнаружения углекислых газов;
- в приборах инфракрасных анализаторах газов;
- используется в датчиках обрыва бумажной ленты в типографии или в бумажной промышленности;
- в промышленной электронике подключение фоторезистора может применяться для автоматического подсчета изделий, которые двигаются по транспортерной ленте.
Соответственно, исходя из того что будет управляться таким резистором, рассчитываются и его параметры.
Для примера, как на практике используется этот элемент, посмотрим на схему фотореле, управляющую уличным освещением.
Автоматика уличного освещения
Автоматы, включающие уличное освещение, способны обнаружить наличие/отсутствие солнечного света.
Вот типичная схема реализации подключения фоторезистора для автоматической активации ночного осветительного прибора.
В общих чертах принцип действия схемы.
С наступлением сумерек и в ночное время сопротивление LDR повышается, что вызывает понижение напряжения на переменном резисторе R2. Транзистор VT1 закрыт, а VT2 открывается и таким образом подается напряжение на реле включающее лампу.
Это вполне рабочая схема фотореле, но ее основной недостаток — отсутствие гистерезиса. Это вызывает кратковременное дребезжание реле в сумеречное время, когда присутствует незначительные изменения в освещенности.
Эта электронная деталь помогает отследить степень освещенности окружающей среды.
Датчики наличия других условий
В полиграфической промышленности конструкции на специальном фоторезисторе отслеживают обрыв бумажного рулона. Так же с их помощью можно вести подсчет бумажных листов на конвейере.
Подключение фоторезистора к ардуино
Датчики освещенности, которые могут использовать фоторезисторы могут быть реализованы своими руками на базе плат ардуино.
Такие схемы довольно просты, не возникает вопроса «где взять», так как они доступны в интернет-магазинах, а их цена не отпугивает клиентов.
Самодельный модуль дает возможность держать под контролем уровень освещенности и прореагировать на его изменение.
Имея на руках такую плату Arduino, легко реализовать такие проекты как:
- датчик освещения;
- для включения/выключения реле;
- запускает двигатели и так далее.
Перед вами типичный пример применения детектора освещенности на базе платы Arduino.
Преимущества и недостатки
У этих элементов есть существенный недостаток — граничная частота. Она задает максимальную частоту синусоидального сигнала, которым регулируется световой поток.
В результате существенным образом снижается чувствительность прибора. Соответственно снижается и быстродействие приборов, где требуется на реагирование порядка десятка микросекунд — 10^(−5) с.
Также проявляется некоторая инерционность датчиков на базе фоторезисторов. Происходит запаздывание сигнала, а это негативным образом влияет на быстродействие устройств.
Но есть и положительные стороны.
При низком пороге чувствительности фоторезистор недорогой и его подключение оправдано высокой надежностью. Зачастую, даже полезно, что срабатывание фотоэлемента происходит не мгновенно, а по нарастающей, постепенно. Эта особенность дает возможность применения этих деталей в приборах аналогово типа — разнообразные датчики и измерители освещенности.
Заключение
Построить прибор с датчиком освещенности в комплексе с фоторезистором достаточно просто. Если есть желание вы сами можете повторить аналогичную схему своими руками на базе плат ардуино. При этом стоимость конечного изделия будет весьма невысокой.
Как проверить фоторезистор мультиметром
В различных электронных устройствах, устройствах домашней и промышленной автоматики, различных радиолюбительских конструкциях фотодатчики используются очень широко. Кто хоть раз разбирал старую компьютерную мышь, как ее называли «комовскую», еще с шариком внутри, наверняка видел колесики с прорезями, крутящиеся в щели фотодатчиков.
Подобные фотодатчики называются фотопрерывателями – прерывают поток света. С одной стороны такого датчика находится источник – светодиод, как правило, инфракрасный (ИК), с другой фототранзистор (если быть точнее, то два фототранзистора, в некоторых моделях фотодиода, чтобы определить еще и направление вращения). При вращении колесика с прорезями на выходе фотодатчика получаются электрические импульсы, что является информацией об угловом положении этого самого колесика. Такие устройства называются энкодерами. Причем энкодер может быть просто контактным, вспомните колесико у современной мышки!
Фотопрерыватели используются не только в «мышках» а и в других устройствах, например, датчиках частоты вращения какого-либо механизма. В этом случае применяется одинарный фотодатчик, ведь направление вращения определять не требуется.
Если из каких-то соображений, чаще всего для ремонта, залезть в другие устройства электронной техники, то фотодатчики можно обнаружить в принтерах, сканерах и копирах, в приводах CD дисководов, в DVD плеерах, кассетных видеомагнитофонах, видеокамерах и в другой аппаратуре.
Так какие же бывают фотодатчики, и что они из себя представляют? Просто посмотрим, не вникая в физику полупроводников, не разбираясь в формулах и не произнося непонятных слов (рекомбинация, рассасывание неосновных носителей), что называется «на пальцах», как эти фотодатчики работают.
Рисунок 1. Фотопрерыватель
Фоторезистор
С ним все понятно. Как обычный постоянный резистор имеет омическое сопротивление, направление подключения в схеме роли не играет. Только в отличие от постоянного резистора меняет сопротивление под воздействием света: при освещенности оно уменьшается в несколько раз. Количество этих «раз» зависит от модели фоторезистора, в первую очередь от его темнового сопротивления.
Конструктивно фоторезисторы представляют собой металлический корпус со стеклянным окошком, сквозь которое видна сероватого цвета пластинка с зигзагообразной дорожкой. Более поздние модели выполнялись в пластмассовом корпусе с прозрачным верхом.
Быстродействие фоторезисторов невелико, поэтому работать они могут лишь на очень низких частотах. Поэтому в новых разработках они почти не применяются. Но случается, что в процессе ремонта старой техники с ними встретиться придется.
Чтобы проверить исправность фоторезистора достаточно проверить его сопротивление с помощью мультиметра. При отсутствии освещения сопротивление должно быть большим, к примеру, у фоторезистора СФ3-1 темновое сопротивление по справочным данным 30МОм. Если его осветить, то сопротивление упадет до нескольких КОм. Внешний вид фоторезистора показан на рисунке 2.
Рисунок 2. Фоторезистор СФ3-1
Фотодиоды
Очень похожи на обычный выпрямительный диод, если бы не свойство реагировать на свет. Если его «прозванивать» тестером, лучше несовременным стрелочным, то при отсутствии освещения результаты будут те же, как в случае измерения обычного диода: в прямом направлении прибор покажет маленькое сопротивление, а в обратном стрелка прибора почти не сдвинется с места.
Говорят, что диод включен в обратном направлении (этот момент следует запомнить), поэтому ток через него не идет. Но, если в таком включении фотодиод засветить лампочкой, то стрелка резко устремится к нулевой отметке. Такой режим работы фотодиода называется фотодиодным.
Еще у фотодиода есть фотогальванический режим работы: при попадании на него света он, как солнечная батарея, вырабатывает слабенькое напряжение, которое, если усилить, можно использовать в качестве полезного сигнала. Но, чаще фотодиод используется в фотодиодном режиме.
Фотодиоды старой конструкции по внешнему виду представляют металлический цилиндрик с двумя выводами. С другой стороны находится стеклянная линза. Современные фотодиоды имеют корпус просто из прозрачной пластмассы, в точности такой же как и светодиоды.
Рис. 2. Фотодиоды
Фототранзисторы
По внешнему виду бывают просто неотличимы от светодиодов, тот же корпус из прозрачной пластмассы или цилиндрик со стекляшкой в торце, а из него два вывода — коллектор и эмиттер. Базовый вывод фототранзистору вроде как не нужен, ведь входным сигналом для него является световой поток.
Хотя, некоторые фототранзисторы вывод базы все же имеют, что позволяет кроме света управлять транзистором еще и электрическим способом. Такое можно встретить у некоторых транзисторных оптронов, например АОТ128 и импортных 4N35, — по сути функциональных аналогов. Между базой и эмиттером фототранзистора включают резистор, чтоб несколько прикрыть фототранзистор, как показано на рисунке 4.
Рисунок 3. Фототранзистор
У нашего оптрона обычно «вешают» 10 — 100КОм, а вот у импортного «аналога» около 1МОм. Если поставить даже 100КОм, то он работать не будет, транзистор просто наглухо закрыт.
Как проверить фототранзистор
Фототранзистор достаточно просто проверить тестером, даже если у него нет вывода базы. При подключении омметра в любой полярности сопротивление участка коллектор – эмиттер достаточно большое, поскольку транзистор закрыт. Когда на линзу попадет свет достаточной интенсивности и спектра, то омметр покажет маленькое сопротивление – транзистор открылся, если, конечно, удалось угадать полярность подключения тестера. По сути дела такое поведение напоминает обычный транзистор, только тот открывается электрическим сигналом, а этот световым потоком. Кроме интенсивности светового потока немалую роль играет его спектральный состав. Про особенности проверки транзисторов смотрите здесь.
Спектр света
Обычно фотодатчики настроены на определенную длину волны светового излучения. Если это излучение инфракрасного диапазона, то такой датчик плохо реагирует на синий и зеленый светодиоды, достаточно хорошо на красный, лампу накаливания и само собой на инфракрасный. Также нехорошо воспринимает свет от люминесцентных ламп. Поэтому причиной плохой работы фотодатчика может быть просто неподходящий спектр источника света.
Выше было написано, как прозвонить фотодиод и фототранзистор. Тут следует обратить внимание на такую вроде бы мелочь, как тип измерительного прибора. У современного цифрового мультиметра в режиме прозвонки полупроводников плюс находится там же, где и при измерении постоянного напряжения, т.е. на красном проводе.
Результатом измерения будет падение напряжения в милливольтах на p-n переходе в прямом направлении. Как правило, это цифры в пределах 500 — 600, что зависит не только от типа полупроводникового прибора, но еще и от температуры. При увеличении температуры эта цифра уменьшается на 2 на каждый градус Цельсия, что обусловлено температурным коэффициентом сопротивления ТКС.
При пользовании стрелочным тестером надо помнить, что в режиме измерения сопротивлений плюсовой вывод находится на «минусе» в режиме измерения напряжений. При таких проверках освещать фотодатчики лучше лампой накаливания с близкого расстояния.
Сопряжение фотодатчика с микроконтроллером
В последнее время многие радиолюбители увлеклись конструированием роботов. Чаще всего это что-то такое на вид примитивное, вроде коробки с батарейками на колесиках, но жутко умное: все слышит, видит, препятствия объезжает. Вот видит он все как раз за счет фототранзистров или фотодиодов, а может даже и фоторезисторов.
Тут все происходит очень просто. Если это фоторезистор, достаточно подключить его, как указано на схеме, а в случае с фототранзистором или фотодиодом, чтобы не перепутать полярность предварительно «прозвонить» их, как было рассказано выше. Особенно полезно эту операцию проделать, если детали не новые, убедиться в их пригодности. Подключение разных фотодатчиков к микроконтроллеру показано на рисунке 4.
Рисунок 4. Схемы подключения фотодатчиков к микроконтроллеру
Измерение освещенности
Фотодиоды и фототранзисторы имеют малую чувствительность, высокую нелинейность и весьма узкий спектр. Основное применение этих фотоприборов – работа в ключевом режиме: включено – выключено. Поэтому создание измерителей освещенности на них достаточно проблематично, хотя раньше во всех аналоговых измерителях освещенности применялись именно эти фотодатчики.
Но к счастью нанотехнология на месте не стоит, а идет вперед семимильными шагами. Для измерения освещенности «там у них» создали специализированную микросхему TSL230R, представляющую собой программируемый преобразователь освещенность – частота.
Внешне устройство представляет собой микросхему в корпусе DIP8 из прозрачной пластмассы. Все сигналы входные и выходные по уровню совместимы с TTL — CMOS логикой, что позволяет легко сопрягать преобразователь с любым микроконтроллером.
С помощью внешних сигналов можно изменять чувствительность фотодиода и шкалу выходного сигнала соответственно 1, 10, 100 и 2, 10, и 100 раз. Зависимость частоты выходного сигнала от освещенности линейная, в пределах от долей герца до 1МГц. Настройки шкалы и чувствительности выполняются подачей логических уровней всего на 4 входа.
Микросхема может вводиться в режим микро потребления (5мкА) для чего есть отдельный вывод, хотя и в рабочем режиме не особенно прожорлива. При напряжении питания 2,7…5,5В потребляемый ток не более 2мА. Для работы микросхемы не требуется никакой внешней обвязки, разве что блокировочный конденсатор по питанию.
По сути, достаточно подключить к микросхеме частотомер и получать показания освещенности, ну, видимо, в каких-то УЕ. В случае же применения микроконтроллера ориентируясь на частоту выходного сигнала можно управлять освещенностью в помещении, или просто по принципу «включить – выключить».
TSL230R не единственный измеритель освещенности. Еще более совершенными являются датчики фирмы Maxim MAX44007-MAX44009. Габариты их меньше, чем у TSL230R, энергопотребление таково, как у других датчиков в спящем режиме. Основное назначение таких датчиков освещенности – применение в приборах с батарейным питанием.
Фотодатчики управляют освещением
Одной из задач, выполняемых при помощи фотодатчиков, является управление освещением. Такие схемы называются фотореле, чаще всего это простое включение освещения в темное время суток. С этой целью радиолюбителями было разработано немало схем, некоторые из которых мы рассмотрим в следующей статье.
Резистор ® — пассивный элемент электрических схем, ограничивающий напряжение или ток на определённом участке цепи за счёт своего сопротивления. Резисторы являются самыми распространёнными деталями в электрике и электронике. Многие начинающие радиолюбители задаются вопросом о том, как проверить резистор мультиметром. Для определения величины сопротивления используются цифровые и стрелочные мультиметры, или тестеры.
Определение при помощи мультиметра
Перед измерением резистора необходимо визуально определить его целостность: осмотреть его на предмет обгоревшего внешнего покрытия — краски или лака, а также проверить надписи на корпусе, если они просматриваются. Определить номинал можно по таблицам рядов или цветовых кодов, после чего при помощи мультиметра можно замерить сопротивление.
Для прозвонки можно использовать простой измерительный прибор, например, DT-830B. В первую очередь необходимо установить переключатель измерений в режим проверки минимального сопротивления — 200 Ом, после чего соединить щупы между собой. Индикатор прибора при соединённых щупах должен показывать минимальное значение R, которое стремится к нулю, например, 0,03 Ома. После так называемой калибровки можно приступить к измерениям.
Проверка сопротивления на плате
Элементы, имеющие омическое сопротивление до 200 Ом, должны прозваниваться в этом диапазоне измерений. Если же показания прибора указывают бесконечность, необходимо увеличить переключателем измеряемый диапазон с 200 Ом до 2000 Ом (2кОм) и выше в зависимости от испытываемого номинала. Перед тем как проверить мультиметром резистор не выпаивая его, нужно:
- отключить источник питания;
- отпаять один вывод R, так как из-за смешанного соединения элементов в схеме могут иметься различия между номиналом элемента и показаниями его фактической величины в общей схеме при измерении;
- произвести замер.
Прозвонить на плате можно только низкоомные сопротивления, составляющие номинал от одного ома до десятков омов. Начиная от 100 Ом и выше возникает сложность их измерения, так как в схеме могут применяться радиоэлементы, имеющие более низкое сопротивление, чем сам резистор.
Кроме постоянных резисторов, существуют следующие виды элементов:
переменный (реостат);
- подстроечный;
- термистор или терморезистор с отрицательным температурным коэффициентом;
- позистор с положительным температурным коэффициентом;
- варистор изменяет свои значения от приложенного к нему напряжения;
- фоторезистор меняет свои значения от направленного на него светового потока.
Проверка резистора мультиметром для измерения работоспособности переменных и подстроечных элементов осуществляется путём присоединения к среднему выводу одного из щупов, к любому из крайних выводов второго щупа. Необходимо произвести регулировку движка измеряемого элемента в одну сторону до упора и обратно, при этом показание прибора должно измениться от минимума до паспортного или фактического сопротивления резистора. Аналогично нужно провести измерение со вторым крайним выводом потенциометра.
Чтобы проверить позистор мультиметром, необходимо подключить измерительный прибор к выводам и приблизить его к источнику тепла. Сопротивление должно увеличиваться в зависимости от приложенной к нему температуры. Тех, кто работает с электроникой, знают, как проверить мультиметром термистор. Перед этим нужно учесть, что при воздействии на него температуры нагретого паяльника его термосопротивление должно уменьшаться. Перед тем как проверить термистор и позистор на плате, необходимо выпаять один из выводов и после этого провести измерение.
Терморезисторы могут работать как при высоких температурах, так и при низких. Позисторы и термисторы применяются там, где необходимо контролировать температуру, например в электронных термометрах, температурных датчиках и других устройствах.
Терморезисторы в схеме используются как температурные стабилизаторы каскадов в усилителях мощности или блоках питания, для защиты от перегрева. Терморезистор может выглядеть как бусина с двумя проводами, а также иметь форму пластины с двумя выводами.
Как определить исправность СМД-резисторов
SMD-резисторы являются компонентами поверхностного монтажа, основным отличием которых, является отсутствие отверстий в плате. Компоненты устанавливаются на токоведущие контакты печатной платы. Преимуществом СМД-компонентов являются их малые габариты, что даёт возможность уменьшить вес и размеры печатных плат.
Проверка SMD-резисторов мультиметром усложняется из-за мелкого размера компонентов и их надписей. Величина сопротивления на СМД-компонентах указывается в виде кода в специальных таблицах, например обозначение 100 или 10R0 соответствует 10 Ом, 102 указывает 1 кОм. Могут встречаться четырёхзначные обозначения, например 7920, где 792 является значением, а 0 — это множитель, что соответствует 792 Ом.
Резистор поверхностного монтажа можно проверить мультиметром, путём его полного выпаивания из схемы, при этом оставив припаянным один из концов на плате и приподняв другой при помощи пинцета. После этого проводится измерение.
Что такое фоторезистор
Фоторезистор представляет из себя полупроводниковый радиоэлемент, который меняет свое сопротивление в зависимости от освещения. Для видимого света (солнечный свет или свет от осветительных ламп) используют сульфид или селенид кадмия. Есть также фоторезисторы, которые регистрируют инфракрасное излучение. Их делают из германия с некоторыми примесями других веществ. Свойство менять свое сопротивление под воздействием света очень широко используется в электронике.
Внешний вид и обозначение на схеме
В основном фоторезисторы выглядят вот так
На схемах могут обозначаться так
Как работает фоторезистор
Давайте рассмотрим одного из представителя семейства фоторезисторов
На нем, как и во всех фотоэлементах, есть окошко, с помощью которого он “ловит” свет.
Сбоку можно прочитать его маркировку
Главным параметром фоторезистора является его темновое сопротивление. Темновое сопротивление фоторезистора — это его сопротивление при полном отсутствии падения света на него. Судя по справочнику, темновое сопротивление нашего подопечного 15х10 8 Ом или словами — 1,5 ГОм. Можно даже сказать — полнейший обрыв. Так ли это? Давайте глянем. Для этого я использую свою записную книжку и прячу там фоторезистор:
Даже в диапазоне 200 МОм мультиметр показал единичку. Это означает, что сопротивление фоторезистора далеко за 200 МОм.
Убираем нашего подопытного из книжки и включаем в комнате свет. Результат сразу же на лицо:
Теперь включаю свою настольную лампу. В комнате стало еще светлее. Смотрим на показания мультиметра:
Подношу фоторезистор вплотную к настольной лампе:
Делаем вывод: чем больше поток света попадает на фоторезистор, тем меньше его сопротивление.
Заключение
Широко используются фоторезисторы в полиграфии для обнаружения обрывов бумажной ленты, подаваемых в печатную машину. Они также осуществляют контроль уровня жидкости и сыпучих тел, защищают персонал от входа в опасные зоны. Автоматические выключатели уличного освещения и турникеты в метрополитене — вот далеко не полный перечень областей применения фоторезисторов. Фоторезисторы нашли применение в медицине, сельском хозяйстве и других областях. В настоящее время они вытесняются другими фото-радиоэлементами. Это могут быть фототранзисторы, фотодиоды, а также бесконтактные датчики.
Как проверить фоторезистор мультиметром
Фоторезистор по своей сути это полупроводниковый приборчик, который под воздействием света способен изменять свою проводимость или сопротивление.
Их отличает отсутствие p-n перехода, который свободно употребляется в солнечных фотопластинках.
А раз нет p-n перехода, то такой элемент обладает свойством пропускать ток несмотря от его направленности. Эта отличительная черта дает возможность использовать их в электрических цепях переменного или постоянного тока.
Что такое фоторезистор, принцип работы и область применения
В электротехнике используется огромное количество различных элементов, и далеко не последнее место среди них занимает сопротивление особого рода – фоторезистор. В этой статье я расскажу, что это такое, а также где до сих пор активно используются эти элементы. Итак, начнем.
Что такое фоторезистор, принцип работы и область применения
Содержание
- Определение, исполнение и изображение на схемах
- Принцип действия
- Как проверить исправность элемента
- Главные характеристики фоторезисторов
- Где применяются такие элементы
- Заключение
Определение, исполнение и изображение на схемах
Итак, для начала давайте дадим определение. Фоторезистор — это полупроводниковый прибор, сопротивление (проводимость) которого изменяется в зависимости от уровня освещенности чувствительной части изделия.
Что такое фоторезистор, принцип работы и область применения
На выше представленной фотографии показан наиболее распространенный вариант исполнения, но встречаются модели в специальных защитных кожухах с прозрачной верхней частью.
А вот таким образом такой элемент обозначается на схемах:
Принцип действия
Теперь давайте узнаем каков принцип действия у данного радиоэлемента.
Между двумя токопроводящими электродами размещается полупроводник. В том случае если свет не попадает на полупроводник, то его оммическое сопротивление имеет высокое значение (до нескольких МОм). Как только на полупроводник попадает свет, его сопротивление начинает снижаться, то есть проводимость увеличивается.
Для производства полупроводящего слоя могут использоваться следующие материалы: сульфид Кадмия, сульфид Свинца, Селенит Кадмия и т.п. От того какой материал был применен для производства полупроводника будет зависеть его спектральная характеристика.
- Иначе говоря диапазон длин волн, при освещении которыми будет происходить корректное изменение сопротивления.
- Именно по этой причине при выборе резистора важно понимать, для работы в каком спектре он предназначен.
- Спектральные характеристики материалов таковы:
Очень часто возникает вопрос: какова полярность фоторезистора? Так вот у данного элемента нет P-N перехода, а это значит что определенного направления протекания тока тоже нет. То есть абсолютно без разницы, каким образом подключать фоторезистор, так как он неполярный элемент.
Как проверить исправность элемента
Проверка фоторезистора на самом деле предельно проста. Для этого нам потребуется мультиметр и, например, папка для бумаг.
Что такое фоторезистор, принцип работы и область применения
Проверка выполняется следующим образом: переведите рукоять мультиметра в положение измерения сопротивления, крокодилами подсоедините щупы (полярность не имеет значения) и поместите элемент в папку, чтобы исключить воздействие света на элемент.
Что такое фоторезистор, принцип работы и область применения
Таким образом вы получите сопротивление элемента в затемненном состоянии. Вытащив фоторезистор из папки, вы увидите, что сопротивление элемента изменилось. Причем чем интенсивнее будет световой поток, тем меньшим сопротивлением будет обладать элемент.
Что такое фоторезистор, принцип работы и область применения
Причем зависимость сопротивления от освещенности будет иметь следующий вид:
Главные характеристики фоторезисторов
У данных элементов есть несколько основных характеристик, на которые следует обращать внимание при выборе изделия:
1. Темновое сопротивление. Это сопротивление элемента, когда на него не оказывает воздействие световой поток.
2. Интегральная фоточувствительность. Данный параметр описывает реакцию элемента, изменение проходящего тока на изменение светового потока. Этот параметр измеряется при постоянном напряжении. Обозначается как S. (А/лм).
Важно также знать, что все фоторезисторы обладают инерционностью в той или иной степени. Сопротивление изменяется не мгновенно, а в течении определенного отрезка времени (десятки микросекунд). Этот фактор ограничивает применение фоторезисторов в быстродействующих схемах.
Где применяются такие элементы
Итак, несмотря на некоторые ограничения, эти элементы активно используются в следующих устройствах:
1. Фотореле. Устройства, которые предназначены для автоматического включения отключения систем освещения без активного вмешательства человека.
2. Датчики освещенности. В таких устройствах фоторезисторы выполняют функцию регистратора светового потока.
Что такое фоторезистор, принцип работы и область применения
3. Сигнализация. В сигнализационных системах применяются фоторезисторы чувствительные ультрафиолетовым волнам. Принцип таков фоторезистор постоянно освещается источником ультрафиолетового излучения и как только между источником и приемником возникает препятствие — срабатывает сигнализация.
4. Датчики, регистрирующие наличие чего-либо.
Устройство
От модели к модели меняется форма корпуса или активный слой, но одно остается неизменно.
Это основа — подложка из керамического материала.
На подложке змейкой наносят методом напыления тончайший слой проводника из золота или платины.
Также в качестве полупроводников могут быть использованы различные типы фоторезистивных материалов.
Если необходимо зафиксировать видимый свет с длинной волны:
То чаще всего применяется селенид кадмия и сульфид кадмия.
Для фиксации инфракрасного излучения пластины могут быть сделаны из:
- германия в чистом виде либо с добавлением небольших примесей;
- кремниевыми;
- сульфида свинца и прочих химических сочетаний на его основе.
В чистом виде германий или кремний встречается в деталях, обладающих внутренним фотоэффектом.
Остальные примеси могут, применены в устройствах с внешним фотоэффектом.
Производство первых серийных сернисто-висмутовых фоторезисторов в нашей стране было налажено в 1948 г.
Позднее их заменили на сернисто-кадмиевые и селенисто-кадмиевыми модели, у которых проявились гораздо лучшие параметры.
В любом случае свойства остаются прежними.
Напыленные, таким образом, слои, имеют вывода на электроды, по которым попадает электрический ток.
Сверху всю конструкцию вмещают в корпус, защищенный тонким слоем прозрачного пластика, через который попадают световые потоки.
Форма размеры и материал защитного корпуса могут быть различными. Эти параметры определяются производителем, исходя из предназначения фоторезистора и выглядят по-разному.
Устройство обычного фоторезистора может быть разного исполнения:
- в металлическом корпусе;
- в пластиковом корпусе;
- открытого типа.
Не всегда применяется и напыление металлов. Токопроводящий слой может быть вырезан из тонкого слоя полупроводника.
Встречаются варианты и пленочных фотодатчиков.
Обозначение на схемах
Фоторезистор на принципиальной схеме обозначается почти также как и стандартный резистор. Но есть небольшое отличие. Это всё тот же прямоугольник, но в круге, снаружи которого есть изображение двух стрелок под углом в 45°. Эти стрелки — символически показывают падающий на элемент поток излучения.
Такое обозначение принято международной электротехнической комиссией IEC (International Electrotechnical Commission).
В иностранных источниках можно увидеть и другое условное обозначение. Фотоэлемент условно показан в виде ломаной линии. Это устаревшее условное обозначение, но и его можно встретить на схемах довольно часто.
Принцип работы
Разберем, как работает фоторезистор?
Когда он неактивен это, по сути, диэлектрик. Чтобы устройство начало проводить ток на него должно быть оказано внешнее воздействие. Тепловое или, как в нашем случае, световое.
Фотоны света, попадая на активный слой, насыщают его электронами, и теперь появляется способность пропускать электрический ток. Возникает прямая зависимость, которую можно отобразить на графике.
Из графика хорошо видно, что чем больше образуется электронов, тем меньшее электрическое сопротивление у полупроводника. На этом свойстве фоторезистора и основан принцип его работы.
Причем эффект образования электронов способен вызвать как видимый спектр излучения так и инфракрасный. В последнем варианте они способны создавать значительно большую энергию.
Восприимчивость фоторезистивного слоя можно поднять за счет легирования его различными добавками. После такой обработки уменьшаются фотосопротивления, но повышается фоточувствительность в видимых спектрах света.
Этим элементам характерен процесс старения. Он выражается:
- в снижении омического сопротивления;
- изменяется фототок;
- растет чувствительность.
Этот процесс непродолжительный по времени — до нескольких сотен часов и потом параметры становятся стабильны.
Как проверить переменный резистор и потенциометр
Чтобы понять, в чем заключается проверка потенциометра, давайте рассмотрим его структуру. Переменный резистор от потенциометра отличается тем, что первый регулируется отверткой, а второй рукояткой.
Потенциометр – это деталь с тремя ножками. Он состоит из ползунка и резистивного слоя. Ползунок скользит по резистивному слою. Крайние ножки – это концы резистивного слоя, а средняя соединена с ползунком.
Чтобы узнать полное сопротивление потенциометра, нужно замерить сопротивление между крайними ножками. А если проверить сопротивление между одной из крайних ножек и центральной – вы узнаете текущее сопротивление на движке относительно одного из краёв.
Но самая частая неисправность такого резистора — это не отгорание концов, а износ резистивного слоя. Из-за этого сопротивление изменяется неправильно, возможна потеря контакта в определенных участках, тогда сопротивление подскакивает до бесконечности (разрыв цепи). Когда движок занимает то положение, в котором контакт ползунка с покрытием вновь появляется – сопротивление вновь становится «правильным». Эту проблему вы могли замечать, когда регулировали громкость на старых колонках или усилителе. Проявляется проблема в том, что при вращении ручки периодически в колонках раздаются щелчки или громкие стуки.
Вообще проверку плавности хода потенциометра нагляднее проводить аналоговым мультиметром со стрелкой, т.к. на цифровом экране вы просто можете не заметить дефекта.
Потенциометры могут быть сдвоенными, иногда их называют «стерео потенциометры», тогда у них 6 выводов, логика проверки такая же.
На видео ниже наглядно показывается, как проверить потенциометр мультиметром:
Методы проверки резисторов просты, но для получения нормального результата проверки нужен мультиметр или омметр с несколькими пределами измерений. С его помощью вы сможете померить еще и напряжение, ток, емкость, частоту и другие величины в зависимости от модели вашего прибора. Это основной инструмент мастера по ремонту электроники. Сопротивления иногда выходят из строя при внешней целостности, иногда уходят от номинального значения сопротивления. Проверка нужна для определения соответствия деталей номиналам, а также чтобы убедится рабочий или нет элемент. На практике способы проверки могут отличаться от описанных, хотя принцип тот же, всё зависит от ситуации.
Полезное по теме:
Вообще все фотодатчики разделены на две основные группы:
- Детали, обладающие внутренним фотоэффектом.
- Детали с внешним фотоэффектом.
Их отличает друг от друга технология производства, а если быть точнее — сам состав фоторезистивного слоя.
Если в первых при изготовлении применены чистейшие химические составляющие, без посторонних примесей. Таким образом, у датчика меняются характеристики, фоторезистор практически не реагирует на видимый свет, но хорошо работает в инфракрасном диапазоне.
То вторые, наоборот, содержат примеси в полупроводниковом веществе. За счет этого расширяется спектр чувствительности в зоне видимого света и даже захватывает инфракрасный диапазон (тепловые лучи).
Хотя по принципу срабатывания и как подключить эти два вида не отличаются — внутреннее сопротивление уменьшается с увеличением интенсивности падающего на них светового потока.
Собственно это свойство помогает при монтаже плат с фотодатчиками. Вопрос как проверить фоторезистор решается проверкой его сопротивления мультиметром. В рабочем элементе должно быть большее сопротивление при отсутствии освещения. Если на его чувствительный элемент подать свет, то сопротивление моментально снизится до нескольких кОм.
Алгоритм поиска неисправности
Визуальный осмотр
Любой ремонт начинается с внешнего осмотра платы. Нужно без приборов просмотреть все узлы и особое внимание обратить на пожелтевшие, почерневшие части и узлы со следами сажи или нагара. При внешнем осмотре вам может помочь увеличительное стекло или микроскоп, если вы работаете с плотным монтажом SMD компонентов. Разорванные детали могут указывать не только на локальную проблему, но и проблему в элементах обвязки этой детали. Например, взорвавшийся транзистор мог за собой утянуть и пару элементов в обвязке.
Не всегда пожелтевшая от температуры область на плате указывает на последствия выгорания детали. Иногда так получается в результате долгой работы прибора, при проверке все детали могут оказаться целыми.
Кроме осмотра внешних дефектов и следов гари стоит и принюхаться, чтобы проверить, нет ли неприятного запаха как от горелой резины. Если вы нашли почерневший элемент – нужно его проверить. У него может быть одна из трёх неисправностей:
Иногда поломка бывает столь очевидной, что её можно определить и без мультиметра, как в примере на фото:
Проверка резистора на обрыв
Проверить исправность можно обычной прозвонкой или тестером в режиме проверки диодов со звуковой индикацией (см. фото ниже). Стоит отметить, что прозвонкой можно проверить лишь резисторы сопротивлением в единицы Ом — десятки кОм. А 100 кОм уже не каждая прозвонка осилит.
Для проверки нужно просто подключить оба щупа к выводам резистора, неважно это СМД компонент или выводной. Быструю проверку можно провести без выпаивания, после чего всё же выпаять подозрительные элементы и проверить повторно на обрыв.
Внимание! При проверке детали не выпаивая с печатной платы, будьте внимательны – вас могут ввести в заблуждение параллельно стоящие элементы. Это актуально как при проверке без приборов, так и при проверке мультиметром. Не ленитесь и лучше выпаяйте подозрительную деталь. Так можно проверить только те резисторы, где вы уверены, что параллельно им в цепи ничего не установлено.
Проверка короткого замыкания
Кроме обрыва, резистор могло пробить накоротко. Если вы используете прозвонку – она должна быть низкоомной, например на лампе накаливания. Т.к. высокоомные светодиодные прозвонки «звонят» цепи сопротивлением и в десятки кОм без существенных изменений яркости свечения. Звуковые индикаторы с этой проверкой справляются лучше чем светодиоды. По частоте пищания можно судить о целостности цепи, на первом месте по достоверности находятся сложные измерительные приборы, такие как мультиметр и омметр.
Проверка на КЗ проводится одним способом, рассмотрим инструкцию пошагово:
- Измерить омметром, прозвонкой или другим прибором участок цепи.
- Если его сопротивление стремится к нулю и прозвонка указывает на замыкание, выпаивают подозрительный элемент.
- Проверить участок цепи уже без элемента, если КЗ ушло – вы нашли неисправности, если нет – выпаивают соседние, пока оно не уйдет.
- Остальные элементы монтируют обратно, тот после которого КЗ ушло заменяют.
- Проверить результаты работы на наличие КЗ.
Читать также: Роторный компрессор принцип работы
Вот наглядный пример того, что сгоревший резистор оставил следы на соседних резисторах, есть вероятность, что и они повреждены:
Резистор почернел от высокой температуры, на соседних элементах видны не только следы гари, но и следы перегретой краски, её цвет изменился, часть токопроводящего резистивного слоя могла повредиться.
На видео ниже наглядно показывается, как проверить резистор мультиметром:
Область применения
В современном мире область применения этих радиодеталей значительно расширена.
Применение разнообразных фоторезисторов, работающих в видимом спектре довольно обширно. Это могут быть:
- Системы автоматических выключателей света.
- Счетные устройства.
- Датчики обрыва полотна или бумаги.
- Датчики проникновения.
- В приборах оснащенных экспонометрами. Например, такие элементы могли использоваться в типовых фотоаппаратах-мыльницах.
Сами по себе они только элемент сложных фотоприёмных устройств, в которых помимо фотодетектора может быть входить:
- интегральный усилитель;
- микросхема, отвечающая за автоматическую регулировку освещения;
- схемы цепей питания, дополненные системой охлаждения на элементах Пельтье.
Всё это многообразие элементов для фотодекторов, заключается в небольшой герметичный корпус.
Если эти приборы работают в ИК-диапазоне, их область применения немного другая. Они используются как часть сложных устройств, таких как:
- датчики обнаружения пламени;
Соответственно, исходя из того что будет управляться таким резистором, рассчитываются и его параметры.
Для примера, как на практике используется этот элемент, посмотрим на схему фотореле, управляющую уличным освещением.
Автоматика уличного освещения
Автоматы, включающие уличное освещение, способны обнаружить наличие/отсутствие солнечного света.
Вот типичная схема реализации подключения фоторезистора для автоматической активации ночного осветительного прибора.
В общих чертах принцип действия схемы.
С наступлением сумерек и в ночное время сопротивление LDR повышается, что вызывает понижение напряжения на переменном резисторе R2. Транзистор VT1 закрыт, а VT2 открывается и таким образом подается напряжение на реле включающее лампу.
Это вполне рабочая схема фотореле, но ее основной недостаток — отсутствие гистерезиса. Это вызывает кратковременное дребезжание реле в сумеречное время, когда присутствует незначительные изменения в освещенности.
Эта электронная деталь помогает отследить степень освещенности окружающей среды.
Датчики наличия других условий
В полиграфической промышленности конструкции на специальном фоторезисторе отслеживают обрыв бумажного рулона. Так же с их помощью можно вести подсчет бумажных листов на конвейере.
Подключение фоторезистора к ардуино
Датчики освещенности, которые могут использовать фоторезисторы могут быть реализованы своими руками на базе плат ардуино.
Такие схемы довольно просты, не возникает вопроса «где взять», так как они доступны в интернет-магазинах, а их цена не отпугивает клиентов.
Самодельный модуль дает возможность держать под контролем уровень освещенности и прореагировать на его изменение.
Имея на руках такую плату Arduino, легко реализовать такие проекты как:
- датчик освещения;
- для включения/выключения реле;
- запускает двигатели и так далее.
Перед вами типичный пример применения детектора освещенности на базе платы Arduino.
Применение
Благодаря низкому порогу чувствительности фоторезисторы часто используются для регистрации слабых потоков световых волн.
Это качество используется:
- в сортировальных машинах;
- в полиграфической промышленности для регистрации факта обрыва бумажной ленты;
- в сельскохозяйственных машинах для контроля густоты высевания зерновых;
- в световых реле для включения/отключения освещения, в фотоэкспонометрах и т. п.
В промышленной электронике фоторезисторы применяются для учета изделий, движущихся на ленте транспортера или падающих в емкость для хранения.
Сам по себе датчик не может производить расчёты, но его сигналы используются и обрабатываются микроконтроллерами, с последующими вычислениями. Сигналы фоторезистора воспринимаются как аналоговыми, так и цифровыми логическими схемами. Задержка сигнала на доли секунды в большинстве случаев не является препятствием для использования фоторезисторов.
На базе фоторезисторов производятся оптроны – приборы с собственным источником света, которым можно управлять. Пример схемы такого устройства показан на рис. 9.
Рис. 9. Схема оптрона
Несмотря на некоторые недостатки приборов, эра фоторезисторов видимо еще не закончилась.
Преимущества и недостатки
У этих элементов есть существенный недостаток — граничная частота. Она задает максимальную частоту синусоидального сигнала, которым регулируется световой поток.
В результате существенным образом снижается чувствительность прибора. Соответственно снижается и быстродействие приборов, где требуется на реагирование порядка десятка микросекунд — 10^(−5) с.
Также проявляется некоторая инерционность датчиков на базе фоторезисторов. Происходит запаздывание сигнала, а это негативным образом влияет на быстродействие устройств.
Но есть и положительные стороны.
При низком пороге чувствительности фоторезистор недорогой и его подключение оправдано высокой надежностью. Зачастую, даже полезно, что срабатывание фотоэлемента происходит не мгновенно, а по нарастающей, постепенно. Эта особенность дает возможность применения этих деталей в приборах аналогово типа — разнообразные датчики и измерители освещенности.
Фоторезистор это: что такое, принцип работы, как выглядит, как проверить, как подключить
В различных электронных устройствах, устройствах домашней и промышленной автоматики, различных радиолюбительских конструкциях
фотодатчики используются очень широко. Кто хоть раз разбирал старую компьютерную мышь, как ее называли «комовскую», еще с шариком внутри, наверняка видел колесики с прорезями, крутящиеся в щели фотодатчиков.
Подобные фотодатчики называются фотопрерывателями – прерывают поток света. С одной стороны такого датчика находится источник – светодиод, как правило, инфракрасный (ИК), с другой фототранзистор (если быть точнее, то два фототранзистора, в некоторых моделях фотодиода, чтобы определить еще и направление вращения). При вращении колесика с прорезями на выходе фотодатчика получаются электрические импульсы, что является информацией об угловом положении этого самого колесика. Такие устройства называются энкодерами. Причем энкодер может быть просто контактным, вспомните колесико у современной мышки!
Фотопрерыватели используются не только в «мышках» а и в других устройствах, например, датчиках частоты вращения какого-либо механизма. В этом случае применяется одинарный фотодатчик, ведь направление вращения определять не требуется.
Если из каких-то соображений, чаще всего для ремонта, залезть в другие устройства электронной техники, то фотодатчики можно обнаружить в принтерах, сканерах и копирах, в приводах CD дисководов, в DVD плеерах, кассетных видеомагнитофонах, видеокамерах и в другой аппаратуре.
Так какие же бывают фотодатчики, и что они из себя представляют? Просто посмотрим, не вникая в физику полупроводников, не разбираясь в формулах и не произнося непонятных слов (рекомбинация, рассасывание неосновных носителей), что называется «на пальцах», как эти фотодатчики работают.
Рисунок 1. Фотопрерыватель
Фоторезистор
С ним все понятно. Как обычный постоянный резистор имеет омическое сопротивление, направление подключения в схеме роли не играет. Только в отличие от постоянного резистора меняет сопротивление под воздействием света: при освещенности оно уменьшается в несколько раз. Количество этих «раз» зависит от модели фоторезистора, в первую очередь от его темнового сопротивления.
Конструктивно фоторезисторы представляют собой металлический корпус со стеклянным окошком, сквозь которое видна сероватого цвета пластинка с зигзагообразной дорожкой. Более поздние модели выполнялись в пластмассовом корпусе с прозрачным верхом.
Быстродействие фоторезисторов невелико, поэтому работать они могут лишь на очень низких частотах. Поэтому в новых разработках они почти не применяются. Но случается, что в процессе ремонта старой техники с ними встретиться придется.
Чтобы проверить исправность фоторезистора достаточно проверить его сопротивление с помощью мультиметра. При отсутствии освещения сопротивление должно быть большим, к примеру, у фоторезистора СФ3-1 темновое сопротивление по справочным данным 30МОм. Если его осветить, то сопротивление упадет до нескольких КОм. Внешний вид фоторезистора показан на рисунке 2.
Рисунок 2. Фоторезистор СФ3-1
Фотодиоды
Очень похожи на обычный выпрямительный диод, если бы не свойство реагировать на свет. Если его «прозванивать» тестером, лучше несовременным стрелочным, то при отсутствии освещения результаты будут те же, как в случае измерения обычного диода: в прямом направлении прибор покажет маленькое сопротивление, а в обратном стрелка прибора почти не сдвинется с места.
Говорят, что диод включен в обратном направлении (этот момент следует запомнить), поэтому ток через него не идет. Но, если в таком включении фотодиод засветить лампочкой, то стрелка резко устремится к нулевой отметке. Такой режим работы фотодиода называется фотодиодным.
Еще у фотодиода есть фотогальванический режим работы: при попадании на него света он, как солнечная батарея, вырабатывает слабенькое напряжение, которое, если усилить, можно использовать в качестве полезного сигнала. Но, чаще фотодиод используется в фотодиодном режиме.
Фотодиоды старой конструкции по внешнему виду представляют металлический цилиндрик с двумя выводами. С другой стороны находится стеклянная линза. Современные фотодиоды имеют корпус просто из прозрачной пластмассы, в точности такой же как и светодиоды.
Рис. 2. Фотодиоды
Фототранзисторы
По внешнему виду бывают просто неотличимы от светодиодов, тот же корпус из прозрачной пластмассы или цилиндрик со стекляшкой в торце, а из него два вывода — коллектор и эмиттер. Базовый вывод фототранзистору вроде как не нужен, ведь входным сигналом для него является световой поток.
Хотя, некоторые фототранзисторы вывод базы все же имеют, что позволяет кроме света управлять транзистором еще и электрическим способом. Такое можно встретить у некоторых транзисторных оптронов, например АОТ128 и импортных 4N35, — по сути функциональных аналогов. Между базой и эмиттером фототранзистора включают резистор, чтоб несколько прикрыть фототранзистор, как показано на рисунке 4.
Рисунок 3. Фототранзистор
У нашего оптрона обычно «вешают» 10 — 100КОм, а вот у импортного «аналога» около 1МОм. Если поставить даже 100КОм, то он работать не будет, транзистор просто наглухо закрыт.
Как проверить фототранзистор
Фототранзистор достаточно просто проверить тестером, даже если у него нет вывода базы. При подключении омметра в любой полярности сопротивление участка коллектор – эмиттер достаточно большое, поскольку транзистор закрыт. Когда на линзу попадет свет достаточной интенсивности и спектра, то омметр покажет маленькое сопротивление – транзистор открылся, если, конечно, удалось угадать полярность подключения тестера. По сути дела такое поведение напоминает обычный транзистор, только тот открывается электрическим сигналом, а этот световым потоком. Кроме интенсивности светового потока немалую роль играет его спектральный состав. Про особенности проверки транзисторов смотрите здесь.
Спектр света
Обычно фотодатчики настроены на определенную длину волны светового излучения. Если это излучение инфракрасного диапазона, то такой датчик плохо реагирует на синий и зеленый светодиоды, достаточно хорошо на красный, лампу накаливания и само собой на инфракрасный. Также нехорошо воспринимает свет от люминесцентных ламп. Поэтому причиной плохой работы фотодатчика может быть просто неподходящий спектр источника света.
Выше было написано, как прозвонить фотодиод и фототранзистор. Тут следует обратить внимание на такую вроде бы мелочь, как тип измерительного прибора. У современного цифрового мультиметра в режиме прозвонки полупроводников плюс находится там же, где и при измерении постоянного напряжения, т.е. на красном проводе.
Результатом измерения будет падение напряжения в милливольтах на p-n переходе в прямом направлении. Как правило, это цифры в пределах 500 — 600, что зависит не только от типа полупроводникового прибора, но еще и от температуры. При увеличении температуры эта цифра уменьшается на 2 на каждый градус Цельсия, что обусловлено температурным коэффициентом сопротивления ТКС.
Определение при помощи мультиметра
Перед измерением резистора необходимо визуально определить его целостность: осмотреть его на предмет обгоревшего внешнего покрытия — краски или лака, а также проверить надписи на корпусе, если они просматриваются. Определить номинал можно по таблицам рядов или цветовых кодов, после чего при помощи мультиметра можно замерить сопротивление.
Для прозвонки можно использовать простой измерительный прибор, например, DT-830B. В первую очередь необходимо установить переключатель измерений в режим проверки минимального сопротивления — 200 Ом, после чего соединить щупы между собой. Индикатор прибора при соединённых щупах должен показывать минимальное значение R, которое стремится к нулю, например, 0,03 Ома. После так называемой калибровки можно приступить к измерениям.
Проверка сопротивления на плате
Элементы, имеющие омическое сопротивление до 200 Ом, должны прозваниваться в этом диапазоне измерений. Если же показания прибора указывают бесконечность, необходимо увеличить переключателем измеряемый диапазон с 200 Ом до 2000 Ом (2кОм) и выше в зависимости от испытываемого номинала. Перед тем как проверить мультиметром резистор не выпаивая его, нужно:
- отключить источник питания;
- отпаять один вывод R, так как из-за смешанного соединения элементов в схеме могут иметься различия между номиналом элемента и показаниями его фактической величины в общей схеме при измерении;
- произвести замер.
Прозвонить на плате можно только низкоомные сопротивления, составляющие номинал от одного ома до десятков омов. Начиная от 100 Ом и выше возникает сложность их измерения, так как в схеме могут применяться радиоэлементы, имеющие более низкое сопротивление, чем сам резистор.
Кроме постоянных резисторов, существуют следующие виды элементов:
- переменный (реостат);
- подстроечный;
- термистор или терморезистор с отрицательным температурным коэффициентом;
- позистор с положительным температурным коэффициентом;
- варистор изменяет свои значения от приложенного к нему напряжения;
- фоторезистор меняет свои значения от направленного на него светового потока.
Проверка резистора мультиметром для измерения работоспособности переменных и подстроечных элементов осуществляется путём присоединения к среднему выводу одного из щупов, к любому из крайних выводов второго щупа. Необходимо произвести регулировку движка измеряемого элемента в одну сторону до упора и обратно, при этом показание прибора должно измениться от минимума до паспортного или фактического сопротивления резистора. Аналогично нужно провести измерение со вторым крайним выводом потенциометра.
Чтобы проверить позистор мультиметром, необходимо подключить измерительный прибор к выводам и приблизить его к источнику тепла. Сопротивление должно увеличиваться в зависимости от приложенной к нему температуры. Тех, кто работает с электроникой, знают, как проверить мультиметром термистор. Перед этим нужно учесть, что при воздействии на него температуры нагретого паяльника его термосопротивление должно уменьшаться. Перед тем как проверить термистор и позистор на плате, необходимо выпаять один из выводов и после этого провести измерение.
Терморезисторы могут работать как при высоких температурах, так и при низких. Позисторы и термисторы применяются там, где необходимо контролировать температуру, например в электронных термометрах, температурных датчиках и других устройствах.
Терморезисторы в схеме используются как температурные стабилизаторы каскадов в усилителях мощности или блоках питания, для защиты от перегрева. Терморезистор может выглядеть как бусина с двумя проводами, а также иметь форму пластины с двумя выводами.
Что это такое и где применяется
Фототранзистор – это полупроводниковый прибор оптоволоконного типа, который используется для управления электрическим током при помощи определенного оптического излучения. Эти устройства разработаны на базе обычного транзистора. Их современными аналогами являются фотодиоды, но фототранзисторы лучше подходят для многих современных радио и электронных приборов. По принципу действия, они напоминают также фоторезисторы.
В отличие от фотодиодов, у этих полупроводников более высокая чувствительность.
Где используется фототранзистор:
- Охранные системы (в основном, используются ИК-фототранзисторы);
- Кодеры;
- Компьютерные логические системы управления;
- Фотореле;
- Автоматическое управление освещения (здесь также используется инфракрасный фото-полупроводник);
- Датчики уровня и системы подсчета данных.
Нужно отметить, что из-за диапазона Вольт гораздо чаще в подобных системах используются фотодиоды, но фототранзисторы имеют несколько существенных преимуществ:
- Могут производить больший ток, чем фотодиоды;
- Эти радиодетали сравнительно очень дешевые;
- Могут обеспечить мгновенный высокий ток на выходе;
- Главным достоинством приборов является то, что они могут обеспечить высокое напряжение, чего, к примеру, не сделают фоторезисторы.
При этом данный аналог светодиода имеет существенные недостатки, что делает фототранзистор довольно узкоспециализированной деталью:
- Многие полупроводниковые устройства выполнены из силикона, они не способны обрабатывать напряжение свыше 1000 вольт.
- Данные радиодетали очень чувствительны к перепадам напряжения в локальной электрической сети. Если диод не перегорит от скачка напряжения, то транзистор, скорее всего, не выдержит испытания;
- Фототранзистор не подходит для использования в лампах из-за того, что не позволяет быстро двигаться направленным заряженным частицам.
Как определить исправность СМД-резисторов
SMD-резисторы являются компонентами поверхностного монтажа, основным отличием которых, является отсутствие отверстий в плате. Компоненты устанавливаются на токоведущие контакты печатной платы. Преимуществом СМД-компонентов являются их малые габариты, что даёт возможность уменьшить вес и размеры печатных плат.
Проверка SMD-резисторов мультиметром усложняется из-за мелкого размера компонентов и их надписей. Величина сопротивления на СМД-компонентах указывается в виде кода в специальных таблицах, например обозначение 100 или 10R0 соответствует 10 Ом, 102 указывает 1 кОм. Могут встречаться четырёхзначные обозначения, например 7920, где 792 является значением, а 0 — это множитель, что соответствует 792 Ом.
Фоторезистор и Arduino
Фоторезисторы дают вам возможность определять интенсивность освещения.
Они маленькие, недорогие, требуют мало энергии, легки в использовании, практически не подвержены износу.
Именно из-за этого они часто используются в игрушках, гаджетах и приспособлениях. Конечно же, DIY-проекты на базе Arduino не могли обойти своим вниманием эти замечательные датчики.
Фоторезисторы по своей сути являются резисторами, которые изменяют свое сопротивление (измеряется в Ом) в зависимости от того, какое количество света попадает на их чувствительные элементы. Как уже говорилось выше, они очень дешевые, имеют различные размеры и технические характеристики, но в большинстве своем не очень точные. Каждый фоторезистор ведет себя несколько иначе по сравнению с другим, даже если они из одной партии от производителя. Различия в показаниях могут достигать 50% и даже больше! Так что рассчитывать на прецизионные измерения не стоит. В основном их используют для определения общего уровня освещенности в конкретных, «локальных», а не «абсолютных» условиях.
Фоторезисторы являются отличным выбором для решения задач вроде «вокруг темно или светло», «есть ли что-то перед датчиком (что ограничивает поступление света)», «какой из участков имеет максимальный уровень освещенности».
Как сделать и подключить фотореле самостоятельно
Ввиду простоты конструкции люди часто хотят сделать фотореле самостоятельно. Речь сейчас идёт о садоводах (для контроля освещения), автолюбителях и прочих лицах, которым не требуются проект и согласование. Принцип работы фотореле уже описали выше, просто посмотрите на схему. Там приведено реле на 220 В, несложно найти в микроволновой печи или мультиварке. Выбирайте любое, лишь бы напряжения +12 В хватило для срабатывания.
Транзисторы позаимствованы незамысловатые и включены по схеме с общим эмиттером. Это ключи, отпираемые положительным напряжением. Оно не способно поступить на первый каскад (находящийся слева), пока на фотодиод КДФ101А не упадёт достаточный поток фотонов света. Потом ключ просто передаёт потенциал на базу второго в каскаде ключа, подключающего схемную землю на реле. Таким образом, цепь замыкается. А на управляющий электрод силового реле начинает поступать в полной мере 12 В.
Диод, соединённый параллельно с реле, служит для обратного размыкания, когда транзисторы закроются. Особое внимание обратите на экспериментально подбираемый номинал резистора, определяющего режимы работы обоих транзисторов. Требуется просто по вольт-амперной характеристике выбрать правильную точку. Потом посчитать, как должно делиться напряжение. Обратите внимание, питание берётся прямо через реле. Если принципиальная схема не позволяет так сделать, придётся провести провод питания прямо на катод фотодиода, возможно применение другого реле. Иначе схема не заработает.
Среднестатистические технические характеристики фоторезисторов
Приведенные ниже технические характеристики относятся к фоторезисторам из магазина Adafruit. Эти фоторезисторы обладают характеристиками, схожими с PDV-P8001. Практически все фоторезисторы имеют различные технические характеристики, хотя работают они очень схоже. Если продавец дает вам ссылку на даташит вашего фоторезистора, ознакомьтесь именно с ними, а не с тем, что изложено ниже.
- Размер: круглый, 5 мм (0.2″) в диаметре (другие фоторезисторы могут достигать до 12 мм / 0.4″ в диаметре!).
- Цена: около $1.00 в магазине Adafruit.
- Диапазон сопротивления: от 200 кОм (темно) до 10 кОм (светло).
- Диапазон чувствительности: чувствительные элементы фиксируют длины волн в диапазоне от 400 нм (фиолетовый) до 600 нм (оранжевый).
- Питание: любой с напряжением до 100 В, используют силу тока в среднем около 1 мА (зависит от напряжения питания).
Проблемы при использовании нескольких сенсоров
Если при добавлении дополнительных сенсоров оказывается, что температура inconsistant, это значит, что сенсоры перекрывают друг друга при считывании информации с различных аналоговых пинов. Исправить это можно, добавив два считывания с задержками и отображением первого.
Измерение уровня освещенности
Как мы уже говорили, сопротивление фоторезистора изменяется в зависимости от уровня освещения. Когда темно, сопротивление резистора увеличивается до 10 МОм. С увеличением уровня освещенности сопротивление падает. Приведенный ниже график отображает приблизительное сопротивление сенсора при разных условиях освещения. Не забывайте, что характеристика каждого отдельного фоторезистора будет несколько отличаться, эти характеристики отображают только общую тенденцию.
Обратите внимание, что характеристика нелинейная, а имеет логарифмический характер.
Фоторезисторы не воспринимают весь диапазон световых волн. В большинстве исполнений они чувствительны к световым волнам в диапазоне между 700 нм (красный) и 500 нм (зеленый).
То есть индикация диапазона световых волн, который соответствует голубому, не будет таким же эффективным как индикация зеленого/желтого диапазона!
Что такое единица измерения «люкс»?
В большинстве даташитов используется люкс (лк) для обозначения сопротивления при определенном уровне освещенности. Но что это такое — лк? Это не метод, который мы используем для описания яркости, так что он привязан непосредственно к датчику. Ниже приведена таблица соответствий, которая была взята с Wikipedia.
Как выбрать фотореле
Обратите внимание, что у каждого приспособления выделяется область применимости. Для нашего случая это пропускная мощность. Фотореле не способно пропустить бесконечно большой ток, расплавится силовой элемент. Важно понять, что иногда исключительно ключом не обойдёшься. Оригинальный выход – замена разрядных и обычных ламп на светодиодные либо энергосберегающие. Подобные приборы потребляют энергии на порядок меньше, а значит, допустимо поставить количеством в 10 раз больше.
Срок службы светодиодных ламп может достигать 30000 часов. Магазин Чип&Дип даёт два года гарантии на продаваемый товар указанного толка. Нитевидные светодиоды сделаны для имитации обычных ламп накала, способны светить годами. При этом не боятся тряски, экономичны и сравнительно дешёвые. Соседи не поймут, что произошла замена.
Когда формируется схема подключения фотореле для уличного освещения, требуется продумать вопросы питания и мощности. Согласитесь, неудобно ставить ряд управляющих ключей. Они портят внешний вид экстерьера, не несут смысловой нагрузки, разве что выделить несколько контуров, предназначенных включаться и выключаться в разное время. Любой собственник частного домовладения знает факты:
- Дом в период разработки конструкции обзаводится электрическим проектом. Нельзя брать и что-то менять без сонма согласовательных работ. Следовательно, чем меньше стоит фотореле и влияет на схему, тем лучше. Тогда смена лампочек накала или разрядных на светодиодные или энергосберегающие смотрится уместно. Главное, что пропускаемый ток уменьшится, удастся сэкономить на реле, а также обойтись единственным на все поместье.
- Важной частью считается квота энергии. По законам РФ собственник имеет право на определённую долю энергии. Это называется квотой. Если свою долю не выбрать – что учитывается уже в проекте электрификации – потом за положенное придётся (!) платить. Собственную квоту лучше знать заранее. А превышать нельзя опасаясь прогрессирующего штрафа. Следовательно, выгодно забрать ровно столько, сколько даёт закон. Сбережение энергии за счёт внешнего освещения позволит чуть больше приборов разместить внутри здания.
Проверка фоторезистора
Самый простой метод проверки вашего фоторезистора — подключить мультиметр в режиме измерения сопротивления к двум контактам сенсора и отследить изменение сопротивления на выходе, когда вы накрываете сенсор своей ладонью, выключаете свет в помещении и т.п. Так как сопротивление изменяется в больших диапазонах, автоматический режим отрабатывает хорошо. Если у вас нет автоматического режима или он некорректно отрабатывает, попробуйте диапазон 1 МОм и 1 кОм.
Как проверить транзистор мультиметром: инструкции, видео
В мире электроники существует большое количество разных приспособлений и деталей. Их счёт идёт на миллионы и постоянно возрастает с изобретением всё новых приборов.
Несмотря на большое количество элементов электроники, каждый специалист данного направления знает о транзисторах. Это радиоэлектронный прибор, работающий на особых частотах, который имеет 3 вывода. Его работа заключается в уменьшении сопротивления силы тока.
ЧИТАТЬ ДАЛЕЕ: Как подключить магнитофон который работает и от 220 В и от батареек
- Как уже можно было догадаться сегодня речь пойдёт о том, как проверить транзистор мультиметром.
- Прежде чем начать работу с мультиметром, нужно уметь им пользоваться, знать какую модель вы применяете, а также уметь подсоединять его к сети.
- Узнать, что за модель вы используете, можно посмотрев на его маркировку.
- Обычно маркировка находится на коробке от прибора и там имеется полная информация о нём, а именно:
- Модель транзистора.
- Страна производитель.
- Выпускающая фирма.
- Гарантия на товар.
- Если же по каким-то причинам у вас нет коробки от транзистора, исправить это можно путём поиска похожей фотографии в интернете, где и будет подробное описание прибора.
Далее мы поговорим об инструкции, как проверить транзистор:
- Присоединить большой красный щуп (СЕМ) – это будет считаться минусом, а чёрный присоединить к (МА) – это плюс.
- Далее необходимо включить устройство и перенаправить его в режим прозвонки или можно перевести в режим сопротивления на ваше усмотрение.
- После чего на экране вы увидите величину сопротивления энергии. В норме она колеблется от 0,3 до 0,7 Ом.
- Чтобы отобразить минимальное сопротивление необходимо обозначить мощность вашего перехода, и после всего проделанного ваш прибор полностью настроен и готов к его активному и длительному использованию.
- Выпаивание любой детали из электроприбора очень ответственно дело, при котором допущение малейшей ошибки может полностью вывести из строя любой электроприбор.
- Так как проверить транзистор не выпаивая его из схемы?
- Сначала нужно убедиться в его целостности.
- Затем проверить его генерацию.
- Далее вам следует обратить внимание на Л2, которое находится близ размыкания красных щупов.
- Свечение лампы Л2 свидетельствует о его работоспособности.
Если лампа Л2 не будет гореть, то это является верным признаком того, что прибор сломан.
В таком случае не рекомендуется чинить его самостоятельно, так как велика вероятность того, что во время ремонта вы повредить остальные детали.
- Советуем вам обратиться с такой проблемой к грамотному специалисту, который сможет починить транзистор.
Теперь мы переходим к тому, как проверить транзистор на плате? Следует отметить, что это один из самых популярных вопросов по данной тематике.
Его сначала нужно подключить к плюсовой базе с помощью мощного источника. Если сделать всё правильно, то у вас должна загореться лампочка.
- Чтобы провести аналогичное тестирование нужно аккуратно подать минус, в результате чего лампочка должна перестать светиться.
Проведение таких несложных манипуляций с прибором должно удостоверить вас о работоспособности детали. Если вы не получите таких результатов, то это свидетельствует о поломке транзистора.
Транзистор IGBT был создан в Литве, и поэтому он несколько будет отличаться от отечественных приборов. Для его проверки вам необходимо осуществить каскадное соединение в биполярной структуре и затем посмотреть на показатели.
Далее провести прибор в режим полупроводника. Если все манипуляции сделаны верно, это показатель исправности мультиметра.
Заключение
Спасибо что воспользовались нашей статьёй. Мы попытались грамотно изложить мысли и ответить на все интересующие вопросы.
При работе с электроприборами будьте внимательны и тогда работа с ними принесёт невероятный энтузиазм и удовольствие. Желаем удачи!
Полупроводниковые элементы используются практически во всех электронных схемах. Те, кто называют их наиболее важными и самыми распространенными радиодеталями абсолютно правы.
Но любые компоненты не вечны, перегрузка по напряжению и току, нарушение температурного режима и другие факторы могут вывести их из строя.
Расскажем (не перегружая теорией), как проверить работоспособность различных типов транзисторов (npn, pnp, полярных и составных) пользуясь тестером или мультиметром.
С чего начать?
Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке.
Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.
Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.
Рисунок 2. Фрагмент спецификации на 2SD2499
Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.
Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.
Подключение фоторезистора
Так как фоторезисторы по сути являются сопротивлением, они не имеют полярности. Это значит, что вы можете их подключать их ноги ‘как угодно’ а они будут работать!
Фоторезисторы реально неприхотливы. В можете их припаять, установить их на монтажную плату (breadboard), использовать клипсы для подключения. Единственное, чего стоит делать — слишком часто изгибать ‘ноги’, так как они запросто могут отломаться.
Использование фоторезисторов
Метод считывания аналогового напряжения
Самый простой вариант использования: подключить одну ногу к источнику питания, вторую — к земле через понижающий резистор. После этого точка между резистором с постоянным номиналом и переменным резистором — фоторезистором — подключается к аналоговому входу микроконтроллера. На рисунке ниже показана схема подключения к Arduino.
В этом примере подключается источник питания 5 В, но не забывайте, что вы с таким же успехом можете использовать питание 3.3 В. В этом случае аналоговые значения напряжения будут в диапазоне от 0 до 5 В, то есть приблизительно равны напряжению питания.
Это работает следующим образом: при понижении сопротивления фоторезистора суммарное сопротивление фоторезистора и понижающего резистора уменьшается от 600 кОм до 10 кОм. Это значит, что ток, проходящий через оба резистора, увеличивается, что приводит к повышению напряжения на резистора с постоянным сопротивлением 10 кОм. Вот и все!
В этой таблице приведены приблизительные значения аналогового напряжения на основании уровня освещенности/сопротивления при подключении напряжения питания 5 В и 10 кОм понижающего резистора.
Если вы хотите использовать сенсор на ярко освещенной территории и использовать резистор 10 кОм, он быстро ‘сдуется’. То есть он практически моментально достигнет допустимого уровня напряжения 5 В и не сможет различать более интенсивное освещение. В этом случае вам стоит заменить резистор на 10 кОм на резистор 1кОм. При такой схеме резистор не сможет определять уровень темноты, но лучше определи оттенки высокого уровня освещенности. В общем, вам стоит с этим поиграться в зависимости от ваших условий!
Кроме того, вы также сможете использовать формулу «Axel Benz» для базовых измерений минимального и максимального значения сопротивления с помощью мультиметра и дальнейшего нахождения значения сопротивления резистора с помощью: Понижающий резистор = квадратный корень(Rmin * Rmax), что в результате даст вам гораздо лучший результат в виде:
В таблице выше приведены приблизительные значения аналогового напряжения при использовании сенсора с питанием от 5 В и понижающим резистором 1 кОм.
Не забывайте, что наш метод не дает нам линейную зависимость напряжения от освещенности! Кроме того, каждый датчик отличается по своим характеристикам. С увеличением уровня освещенности аналоговое напряжение будет расти, а сопротивление падать:
Vo = Vcc ( R / (R + Photocell) )
То есть напряжение обратно пропорционально сопротивлению фоторезистора, которое, в свою очередь, обратно пропорционально уровню освещения.
Разновидности
Различают готовые изделия по многим параметрам. К ним относятся мощность (1-3 кВт), месту установки (внутри и снаружи помещения, накладной и на DIN-рейку, с выносным датчиком). Есть модели, которые работают с энергосберегающими или лампами накаливания.
Управление может осуществляться разными способами:
- механический (принудительный);
- автоматический;
- программируемый.
Существуют сенсоры со встроенной функцией энергосбережения в ночное время. Различают также фотореле по наполненности. Это могут быть модели с таймерами или датчиками движения.
Вам это будет интересно Виды светодиодных ламп освещения и их характеристики
Фотореле с таймером
С таймером
Наличие встроенного таймера позволяет исключить ложное срабатывание, например, при свете фар или появлении тени. Для этого выставляется время выдержки. Если оно занимает несколько минут, то сенсор на кратковременные сигналы не отреагирует.
Другой вариант использования таймера актуален для бытовых приборов. Например, жильцы дома возвращаются с работы после полуночи. Тогда они устанавливают время включения датчика. То есть до приезда владельца свет будет оставаться в выключенном состоянии.
С датчиком движения
Такие устройства считаются самыми экономными. Причиной тому является включение света только тогда, когда в зоне действия датчика появляется человек. Различают модели по получения информации, которая приводит к замыканию цепи:
Датчики движения
- акустические различают звуки;
- инфракрасные реагируют на тепловое излучение;
- радиоволновые срабатывают на изменения волн;
- ультразвуковые работают по аналогии с предыдущими, только диапазон другой;
- комбинированные отличаются точностью.
При выборе устройства стоит знать, что домашние животные чувствительны к УФ излучению и вызывают реакцию ИК датчиков. Ложно сработать может радиоволновый сенсор от движения предмета за пределами зоны охвата чувствительного элемента.
С программируемыми настройками
Такие сумеречные датчики оснащены системой управления в виде релейного блока. Он имеет установки, которые можно запрограммировать на включение света во время движения и в соответствии с сезонными изменениями на любой период. Также имеется блок памяти для автоматического сохранения введенных данных.
Программируемый сенсор
Простой код для аналоговых измерений уровня освещенности
В скетче не проводится никаких расчетов, исключительно отображение значений, которые интерпретируются как уровень освещения. Для многих проектов этого вполне достаточно.
/* Простой проверочный скетч для фоторерезистора.
Подключите одну ногу фоторезистора к 5 В, вторую к пину Analog 0.
После этого подключите контакт резистора на 10 кОм к земле, а второй к аналоговому пину Analog 0 */
int photocellPin = 0; // сенсор и понижающий резистор на 10 кОм подключены к a0
int photocellReading; // данные считываемые с аналогового пина
// Передаем информацию для дебагинга на серийный монитор
Serial.print(photocellReading); // аналоговые значения
> else if (photocellReading
> else if (photocellReading
> else if (photocellReading
Serial.println(» — Very bright»);
Эта проверка проводилась в комнате днем. Я прикрывал сенсор рукой, а после этого куском ткани.
Считывание значений с фоторезистора без использования аналоговых пинов
Считывание значений с фоторезистора без использования аналоговых пинов
Так как фоторезисторы по сути своей являются обычными резисторами, их можно использовать даже если на вашем микроконтроллере нет аналоговых пинов (или если все аналоговые пины заняты). Этот метод основан на базовых свойствах резисторов и конденсаторов. Если вы возьмете конденсатор, который может передать потенциал и подключите его к источнику питания (например, 5 В) через резистор, изменение напряжения будет происходить постепенно. Чем больше сопротивление резистора, тем медленнее будет изменяться напряжение.
Ниже представлен кусок осцилограммы, который характеризует, что именно происходит с цифровым пином (желтый). Голубая линия показывает когда начинает отрабатывать сам скетч Arduino и когда он заканчивает свою работу (участок по длительности около 1.2 мс).
Если проводить простые аналогии, то конденсатор выполняет роль корзины, а резистор — трубка. Для наполнения корзины с помощью тонкой трубки понадобится много времени. В зависимости от толщины трубки, скорость заполнения корзины будет разной.
В нашем случае ‘корзина’ представляет из себя керамический резистор емкостью 0.1 мкФ. Вы можете поэкспериментировать с емкостью конденсатора. И этот показатель напрямую повлияет на время. Если вы хотите померять уровень освещенности, используйте конденсатор емкостью 1 мкФ. Если вы работаете в условиях плохой освещенности, можете использовать конденсатор емкостью 0.01 мкФ.
/* простой скетч для проверки работоспособности фоторезистора.
Подключите одну ногу фоторезистора к питанию, вторую — к пину 2.
После этого подключите одну ногу конденсатора 0.1 мкФ к пину 2, а вторую — к земле */
int photocellPin = 2; // фоторезистор подключен к пину 2
int photocellReading; // цифровые значения
int ledPin = 13; // вы можете использовать встроенный светодиод
// отправляем информацию для дебаггинга для отображения в окне серийного моитора
pinMode(ledPin, OUTPUT); // используем светодиод в качестве выходного сигнала
// считывааем показания с сенсора с использованием технологии RCtime
if (photocellReading == 30000)
// если показания достигают 30000, это значит, что мы достигли граничного значения
Serial.println(photocellReading); // поток считанных аналоговых данных
// чем ярче, тем чаще светодиод мигает!
// используем цифровой пин для измерения сопротивления
//делаем мы это подавая ток на конденсатор и
// рассчитывая сколько времени пройдет, чтобы достичь Vcc/2 (для большинства Arduino это значение равно 2.5 В)
int RCtime(int RCpin)
int reading = 0; // начинаем с 0
// инициализируем пин в качестве output и присваиваем ему значение LOW (земля)
// Теперь устанавливаем пин в качестве input и.
reading++; // инкремент для отсчета времени
if (reading == 30000)
// если мы дошли до такого уровня, сопротивление настолько велико,
// что скорее всего ничего не подключено!
break; // выходим за пределы цикла
С чего нужно начать?
Прежде чем начать работу с мультиметром, нужно уметь им пользоваться, знать какую модель вы применяете, а также уметь подсоединять его к сети.
Узнать, что за модель вы используете, можно посмотрев на его маркировку.
Проверка резистора мультиметром
В разъем COM вставляется черный щуп, а в VΩ красный. VΩ — это измерение напряжения и сопротивления.
Единица обозначает две ситуации. Если у резистора сопротивление выше, чем выбранный предел, мультиметр покажет зашкаливающее значение. Так же единица обозначает, что прибор не видит радиодеталь или есть плохой контакт между щупами и деталью.
Точка на экране показывает предел измерения. Здесь выбран предел 20 кОм.
Мультиметр показывает 2,7 кОм. При измерениях нельзя касаться одновременно двух металлических оснований щупов. Ваше тело может шунтировать измеряемую деталь, и показания пробора будут ложными.
Тоже самое с резисторами, чьи номиналы сопротивления выше, чем у измеряемого прибора. Можно его проверить и с помощью диодной прозвонки. При исправном резисторе диодная прозвонка не будет пищать, она покажет падение напряжения. Но и тут проблема.
Какой мультиметр будем использовать?
В качестве мультиметра использовался многофункциональный мультитестер Victor VC9805 , хотя для измерений подойдёт любой цифровой тестер, вроде всем знакомых DT-83x или MAS-83x. Такие мультиметры можно купить не только на радиорынках, магазинах радиодеталей, но и в магазинах автозапчастей. Подходящий мультиметр можно купить в интернете, например, на Алиэкспресс.
Вначале проведём проверку кремниевого биполярного транзистора отечественного производства КТ503. Он имеет структуру n-p-n. Вот его цоколёвка.
Для тех, кто не знает, что означает это непонятное слово цоколёвка, поясняю. Цоколёвка — это расположение функциональных выводов на корпусе радиоэлемента.
Для транзистора функциональными выводами соответственно будут коллектор (К или англ.- С), эмиттер (Э или англ.
— Е), база (Б или англ.- В).
Сначала подключаем красный ( ) щуп к базе транзистора КТ503, а чёрный (-) щуп к выводу коллектора. Так мы проверяем работу p-n перехода в прямом включении (т. е. когда переход проводит ток). На дисплее появляется величина пробивного напряжения. В данном случае оно равно 687 милливольтам (687 мВ).
Далее не отсоединяя красного щупа от вывода базы, подключаем чёрный («минусовой») щуп к выводу эмиттера транзистора.
Как видим, p-n переход между базой и эмиттером тоже проводит ток. На дисплее опять показывается величина пробивного напряжения равная 691 мВ. Таким образом, мы проверили переходы Б-К и Б-Э при прямом включении.
Чтобы удостовериться в исправности p-n переходов транзистора КТ503 проверим их и в, так называемом, обратном включении. В этом режиме p-n переход ток не проводит, и на дисплее не должно отображаться ничего, кроме «1». Если на дисплее единица «1», то это означает, что сопротивление перехода велико, и он не пропускает ток.
Чтобы проверить p-n переходы Б-К и Б-Э в обратном включении, поменяем полярность подключения щупов к выводам транзистора КТ503. Минусовой («чёрный») щуп подключаем к базе, а плюсовой («красный») сначала подключаем к выводу коллектора…
…А затем, не отключая минусового щупа от вывода базы, к эмиттеру.
Как видим из фотографий, в обоих случаях на дисплее отобразилась единичка «1», что, как уже говорилось, указывает на то, что p-n переход не пропускает ток. Так мы проверили переходы Б-К и Б-Э в обратном включении.
Если вы внимательно следили за изложением, то заметили, что мы провели проверку транзистора согласно ранее изложенной методике. Как видим, транзистор КТ503 оказался исправен.
В случае если какой либо из переходов (Б-К или Б-Э) пробиты, то при их проверке на дисплее мультиметра обнаружиться, что они в обоих направлениях, как в прямом включении, так и в обратном, показывают не пробивное напряжение p-n перехода, а сопротивление. Это сопротивление либо равно нулю «0» (будет пищать буззер), либо будет очень мало.
При обрыве, p-n переход не пропускает ток ни в прямом, ни в обратном направлении – на дисплее в обоих случаях будет «1». При таком дефекте p-n переход как бы превращается в изолятор.
Проверка биполярных транзисторов структуры p-n-p проводится аналогично. Но при этом необходимо сменить полярность подключения измерительных щупов к выводам транзистора. Вспомним рисунок условного изображения транзистора p-n-p в виде двух диодов. Если забыли, то гляньте ещё раз и вы увидите, что катоды диодов соединены вместе.
В качестве образца для наших экспериментов возьмём отечественный кремниевый транзистор КТ3107 структуры p-n-p. Вот его цоколёвка.
В картинках проверка транзистора будет выглядеть так. Проверяем переход Б-К при прямом включении.
Как видим, переход исправен. Мультиметр показал пробивное напряжение перехода – 722 мВ.
То же самое проделываем и для перехода Б-Э.
Как видим, он также исправен. На дисплее – 724 мВ.
- Теперь проверим исправность переходов в обратном направлении – на наличие «пробоя» перехода.
- Переход Б-К при обратном включении…
- Переход Б-Э при обратном включении.
В обоих случаях на дисплее прибора – единичка «1». Транзистор исправен.
Подведём итог и распишем краткий алгоритм проверки транзистора цифровым мультиметром:
- Определение цоколёвки транзистора и его структуры;
- Проверка переходов Б-К и Б-Э в прямом включении с помощью функции проверки диода;
- Проверка переходов Б-К и Б-Э в обратном включении (на наличие «пробоя») с помощью функции проверки диода;
При проверке необходимо помнить о том, что кроме обычных биполярных транзисторов существуют различные модификации этих полупроводниковых компонентов. К таковым можно отнести составные транзисторы (транзисторы Дарлингтона), «цифровые» транзисторы, строчные транзисторы (так называемые «строчники») и т.д.
Все они имеют свои особенности, как, например, встроенные защитные диоды и резисторы. Наличие этих элементов в структуре транзистора порой усложняют их проверку с помощью данной методики.
Поэтому прежде чем проверить неизвестный вам транзистор желательно ознакомиться с документацией на него (даташитом).
Главная » Радиоэлектроника для начинающих » Текущая страница
Чем заменить неисправный
Учитывайте цепь, в которой надо поменять деталь. Если SMD резистор, то подойдет только такой же +-5% от номинала. Если это DIP резистор, который стоит в блоке питания, то можно обойтись с большей погрешностью. Проблема в том, что некоторые схемы могут быть рассчитаны на большую погрешность, а схемы для точны приборов нет. SMD компоненты обладают меньшей емкостью и индуктивностью, чем DIP. И в тоже время, SMD не предназначены для высокой мощности.
Еще можно объединить разные резисторы в один нужный, для временного ремонта. Например, резистор мощностью 2 Вт и сопротивлением 10 кОм чернеет и перегревается. Чем можно его заменить? Можно соединить два резистора по 20 кОм 2 Вт параллельно, и получим эквивалентную мощность 4 Вт и сопротивление 10 кОм. А можно и последовательно соединить два по 5 кОм 2 Вт. И получится резистор 10 кОм 4 Вт.
Процесс упрощенного испытания заключается в следующем:
1) присоединяют испытываемый диод к гнездам «Общ» и « Ω X 100» омметра (рис. 2, а) и замечают показания омметра при освещении диода настольной лампой мощностью 60-100 Вт (расстояние между фотодиодом и баллоном лампы принимают равным 60—80 мм) и затемнении его путем прикрытия окна диода пальцем;
2) меняют местами выводы фотодиода (рис. 2, б) и снова измеряют сопротивления при затемнении и освещении испытываемого образца.