Как проверить конденсатор магнето мультиметром
Перейти к содержимому

Как проверить конденсатор магнето мультиметром

Как проверить конденсатор мультиметром

Одной из самых распространённых причин неисправности электронной техники, это выход из строя конденсатора. Любая электроника, бытовая техника и цифровые процессоры все имеют в своем оборудовании конденсаторы и достаточно одной незначительной неисправности конденсатора, что бы весь механизм прекратил выполнять свои функции.

Как проверить конденсатор мультиметром

Я рад снова видеть все вас на страницах сайта «Электрик в доме». Сегодня мы познакомимся и изучим одну из самых используемых деталей в электронике – конденсатор. История создания первого конденсатора относит нас назад в 1745 год («лейденская банка»).

В наше время, в век технологий нас со всех сторон окружает электротехнические машины и оборудование. Вы конечно хорошо знакомы с конденсатором и если не сталкивались технически, то слышали о нем однозначно.

Одной из самых распространённых причин неисправности электронной техники, это выход из строя конденсатора. Любая электроника, бытовая техника и цифровые процессоры все имеют в своем оборудовании конденсаторы и достаточно одной незначительной неисправности конденсатора, что бы весь механизм прекратил выполнять свои функции.

Вот почему, в случае неисправности оборудования, первым делом необходимо обратить ваше внимание на работоспособность в схеме конденсаторов. И сделать это можно только при помощи электронного прибора, так как визуально определить состояние невозможно, если нет внешних повреждений.

Фотография мультиметра с конденсаторами

Для этих целей и предназначен недорогой прибор мультиметр, выполняющий многие функции. Об одной из них — проверки сопротивления, я уже знакомил вас в своей предыдущей статье. Этот же материал предназначен для изучения методики проверки конденсатора мультиметром.

С этой проблемой ко мне обратился один из моих подписчиков. Следуя уже своей традиции, я как всегда, буду излагать материал просто и доступно для легко понимания всем желающим.

Проверка конденсатора мультиметром

Для лучшего усвоения материала, начнем с небольшой теории:

  • Устройство и принцип работы мультиметра;
  • Виды и особенности конденсаторов.

Устройство (прибор) предназначенное для накопления электрического заряда – это основное определение конденсатора. Конструктивно он состоит из определенного корпуса, внутри которого расположены две параллельные металлические пластины. Между пластинами установлена прокладка (диэлектрик). Площадь пластин напрямую влияет на величину электрического заряда. Чем больше площадь пластин, тем больше величина накопленного заряда.

Конденсаторы могут быть двух видов: полярными и неполярными.

Конденсаторы полярные.

Определить какой вид конденсаторов достаточно не сложно, уже название вам дает подсказку, что «полярные» должны иметь полярность, то есть иметь (+ плюс) и (- минус). Их подключение в электросхему строго регламентировано в соответствие полярности. Плюс подключается к плюсу, минус к минусу. При нарушении этого правила — конденсатор не будет работать, а вместе с ним и вся схема.

Все полярные конденсаторы заполнены электролитом (твердым или жидким), поэтому их классифицируют как электролитические. Их физические параметры (емкость) находится в следующих параметрах 0.1 ÷ 100000 мкФ.

Конденсаторы неполярные

Неполярные конденсаторы, как вы уже поняли, не имеют полярности и не требуют строгого соблюдения условий подключений. У них нет ни плюса, ни минуса. Роль диэлектрика у них могут выполнять: бумага, стекло, керамика и слюда. Их физические параметры (емкость) незначительна и находится в следующем диапазоне (от нескольких микрофарад до нескольких пикофарад).

Забегая вперед, сразу хочу ответить на ваши вопросы, зачем нам с вами необходимо знать эти технические тонкости. Это очень важно, так как к каждому типу конденсаторов применима своя методика проверки мультиметром. И пред началом проверки, мы должны первым делом, установить тип конденсатора. Это очень важный момент. Прошу вас обратить на это внимание!

Как проверить конденсатор с помощью приборов

Любую проверку конденсаторов необходимо начинать с внешнего осмотра, на наличие внешних признаков повреждений корпуса (трещин, вздутия). Достаточно часто происходит повреждение электролита, что приводит к повышению давления на внутреннюю поверхность оболочки и последующее ее вздутие.

После того как визуальный осмотр окончен и мы не установили внешних повреждений конденсатора, необходимо продолжить проверку специальным прибором, в нашем случае мультиметром. Этот простейший прибор поможет нам установить емкость конденсатора и обрывы внутри.

Перед проверкой незабываем, установить тип конденсатора, более подробно об этом написано выше. Продолжаем процесс проверки с соблюдением полярности, для этого подключаем плюсовой щуп к плюсовому контакту конденсатора и соответственно минусовой щуп к контакту минус.

Проверяя неполярный конденсатор, подключение мультиметра проводим произвольно без соблюдения правила полярности. Единственное, что здесь необходимо выполнить, это выставить переключатель мультиметра на отметку 2 Мом. Это важно, так как при меньшем значении дисплей прибора отобразит — «1» (единицу), что укажет на неисправность конденсатора.

Проверяем конденсатор мультиметром в режиме омметра

Для примера мы свами выполним проверку четырех конденсаторов: два полярных (диэлектрических) и два неполярных (керамических).

Но перед проверкой мы должны обязательно разрядить конденсатор , при этом достаточно замкнуть его контакты при помощи любого металла.

Пример разрядки конденсатораПример разрядки конденсатора

Для того чтобы перейти в режим (омметра) сопротивления, мы перемещаем переключатель в группу измерения сопротивления, для того чтобы установить наличие обрыва или короткого замыкания.

Итак, первым делом проверим полярные кондиционеры (5.6 мкФ и 3.3 мкФ), установленных ранее у неработающих энергосберегающих лампочек

Разряжаем конденсаторы путем замыкания их контактов обычной отверткой. Вы можете использовать, удобный для вас, любой другой металлический предмет. Главное чтобы к нему плотно прилегали контакты. Это позволит нам получить точные показания прибора.

Следующим шагом выставляем переключатель на шкалу 2 МОм и соединяем контакты конденсатора и щупы прибора. Далее наблюдаем на дисплее быстро увиливающие параметры сопротивления.

Пример измерения сопротивления конденсатораПример измерения сопротивления конденсатора

Вы спросите меня, в чем дело и почему на дисплее мы наблюдаем «плавающие показатели» сопротивления? Это объяснить довольно просто, поскольку питание прибора (батарейка) имеет постоянное напряжение и за счет этого происходит зарядка конденсатора.

С течением времени конденсатор все больше и больше накапливает заряд (заряжается), тем самым увеличивая сопротивление. Емкость конденсатора влияет на скорость зарядки. Как только конденсатор получит полную зарядку, значение его сопротивления будет соответствовать значению бесконечности, а мультиметр на дисплее покажет «1». Это параметры рабочего конденсатора.

Нет возможности показать картинку на фотографии. Так для следующего экземпляра емкостью 5.6 мкФ, показатели сопротивления начинаются с 200 кОм и плавно возрастают до тех пор, пока не преодолеют показатель 2 МОм. Эта процедура не занимает более -10 сек.

Для следующего конденсатора емкостью 3.3 мкФ происходит все аналогично, но время процесса занимает менее — 5 сек.

Проверить следующую пару неполярных конденсаторов можно точно также по аналогии с предыдущими конденсаторами. Соединяем щупы прибора и контакты, следим за состоянием сопротивления на дисплее прибора.

Рассмотрим первый «150nК». Вначале его сопротивление несколько снизится примерно до 900 кОм, затем следует его плавное увеличение до определенной отметки. Время процесса занимает — 30 сек.

Пример измерения сопротивления конденсатораПример измерения сопротивления конденсатора

При этом на мультиметре модели МБГО переключатель устанавливаем на шкалу 20 МОм (сопротивление приличное, очень быстро идет зарядка)

Процедура классическая, снимаем заряд при помощи замыкания контактов отверткой:

Смотрим на дисплей, отслеживая показатели сопротивления:

Делаем вывод, что в результате проверки все представленные конденсаторы исправны.

Как проверить емкость конденсатора

Главный показатель, основная характеристика всех конденсаторов — это «емкость». Измеряя эту характеристику и сравнивая ее с указанными параметрами на корпусе, мы сможем выяснить, исправен кондиционер или нет. Есть приборы, которые легко позволят вам выполнить эту проверку.

Но можно ли проверить емкость конденсатора, как в нашем случае, мультиметром . Если вы будет проверять емкость при помощи щупов, вы не получите желаемого результата. Как же быть?

В этом нам помогут разъемы «гнезда» -CX+(«-» и «+» — это полярность подключения)

изображение разьема мультиметра для измерения емкости

Для этого примера мы будем использовать кондер «150нФ». Маркировка 150nK:

Пример измерения емкости конденсатора

Устанавливаем переключатель на отметку – ближайшее большее значение. В нашем случае это 200 нФ. Следующим шагом вставляем ножки конденсатора в разъемы -CX+. (не обращаем внимание на полярность, наш кондер неполярный). Дисплей показывает значение емкости– 160.3 нФ, что совпадает с номинальными показателями.

Продолжаем проверку конденсатора с емкостью 4700 пФ. Устанавливаем переключатель на шкале в положение 20 n.

Пример измерения емкости конденсатора

Теперь вставляем ножки в разъёмы прибора и наблюдаем на дисплее параметры 4750 пФ. Вы это можете увидеть на фото. Параметры точно соответствуют параметрам заявленным производителем.

Запомните, если показатели сильно отличаются от номинальных параметров или вообще равны нулю, это говорит нам, что конденсатор не рабочий и его необходимо заменить.

Как проверить конденсатор при помощи прибора ESR-METR

Недавно я приобрел ESR-METR и я решил выполнить им ту же самую проверку.

Фото ESR-METR и мультиметра

Методика проверки очень проста. Прибор необходимо откалибровать, в моем случае в комплекте идет специальная перемычка, при помощи которой замыкается нужная группа контактов на колодке 1-4. Нажимаем кнопку и прибор автоматический калибруется, сообщив нам об этом на своем экране. После калибровки не забываем разрядить конденсатор и подключаем его к нужным нам разъемам. и производим измерение.

пример диагностики конденсатора ЕСР метром

Каждый конденсатор обладает и паразитными свойствами, например сопротивлением. Из фото видно, что емкость конденсатора соответствует заявленным характеристикам, а также присутствует паразитное последовательное сопротивление номиналом 1.2 Ом, из за этого потери на данном конденсаторе составляют 0,5%.

Таблица максимальных значений ESR для конденсатора

В нашем случает этот показатель великоват, что говорит о высыхании конденсатора, устанавливать его в схему не рекомендуется.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Как продиагностировать мультиметром конденсатор: общие рекомендации и принципы проведения измерений

Конденсаторы встречаются в самой разной технике. Но они зачастую и приводят к неисправностям механизмов. Для того, чтобы своевременно определить неисправность и устранить её, необходимо понимать общие принципы проверки конденсатора мультиметром. Этот способ является наиболее простым.

Рассмотрим варианты применения недорогого и эффективного прибора, чтобы выявить элементы, вышедшие из строя. В статье подробно представлены различные виды конденсаторов, а также последовательность их проверки. Благодаря практическим советам вы без труда сможете обнаружить неисправность в любой схеме.

Для чего используют конденсатор?

Промышленная отрасль производит самые разнообразные конденсаторы, которые затем используются во многих областях. Они требуются в следующих отраслях:

  • автомобилестроении;
  • радиотехнике;
  • электронике;
  • электробытовой технике;
  • приборостроении.

Конденсаторы можно назвать «сосудами» для хранения энергии. Они отдают энергию при коротких сбоях в питании. Кроме вышеперечисленного, специальный вид данных компонентов отделяет нужные сигналы, определяет частоту устройств, которые формируют сигналы. Конденсатор имеет быстрый период зарядки-разрядки.

Справка! Данный электрический элемент (конденсатор) располагает в своём составе парой проводников — это токопроводящие обкладки. При пропускании постоянного тока цепью его запрещено включать, так как это будет равносильно разрыву цепи.

В электроцепи переменного тока обкладки конденсатора попеременно заряжаются с частотой проходящего тока. Это можно объяснить следующим: зажимы данного источника тока время от времени подвергаются смене напряжения. Далее в цепи появляется ток переменного характера.

Подобно катушке, а также резистору, конденсатор оказывает переменному току сопротивление. Следует учесть, для токов различных частот оно будет разным. Например, проявляя хорошую пропускную способность для токов высокочастотных, он будет оказывать изолирующие свойства для токов низкочастотных.

Сопротивление электрического компонента взаимосвязанно с частотой, а также ёмкостью тока.

Неполярные и полярные разновидности

Среди многообразия конденсаторов следует выделить два основных типа: полярные или электролитические, а также неполярные. В качестве диэлектрика в данных приборах используют — стекло, бумагу и воздух.

Специфика полярных конденсаторов

Само название наглядно говорит о том, что они имеют полярность, потому являются электролитическими. Потребуется верное и точное следование схеме, когда их будут подключать — «минус» к «минусу», а «плюс» к «плюсу». Если не соблюдать данное правило, то элемент не только утратит работоспособность, но вполне способен взорваться. Электролит встречается как в состоянии твёрдом, так и в жидком.

В качестве диэлектрика в устройствах применяется бумага, которая пропитана электролитом. Ёмкость варьируется в пределах от 0,1 тыс. и до 100 тыс. МкФ.

Справка! Полярные конденсаторы предназначены для выравнивания электрофильтрации поступающих сигналов. Метка «+» имеет большую длину. Пометка «-» обозначена на самом корпусе.

Когда происходит замыкание пластин, то осуществляется выделение тепла. Под его действием происходит испарение электролита, а затем следует взрыв.

Сверху у конденсаторов современного исполнения имеется крестик и незначительное вдавливание. Толщина вдавлиной части немного меньше, чем остальная поверхность. Если происходит взрыв, тогда верхний участок открывается, как роза. Поэтому при наблюдении за повреждённым элементом можно заметить вспучивание на корпусе.

Отличительные особенности неполярных конденсаторов

Плёночные неполярные части используют диэлектрик из керамики, а также из стекла. Если сравнивать с конденсаторами электролитическими, то у них самозаряд меньше. Это можно объяснить тем, что керамика имеет более высокое сопротивление, чем бумага.

Конденсаторы подразделяются на детали как специального назначения, так и общего. Они бывают следующими:

  1. Пусковыми. Используются для поддержания надёжной и качественной работы электродвигателей. Увеличивают в двигателе стартовый момент, например, это компрессор или насосная станция, осуществляющие запуск.
  2. Дозиметрическими. Предназначены для работы в цепях, в которых незначительный показатель токовых нагрузок. У них необъёмный самозаряд, но сопротивление изоляции повышенное. Большей частью это фторопластовые элементы.
  3. Импульсными. Используются для формирования повышенного скачка напряжения, а также его перевода на принимающую панель устройства.
  4. Высоковольтными. Применяются в высоковольтных приборах. Производятся в разнообразном исполнении. Встречаются масляные и керамические, плёночные и вакуумные. Они заметно отличаются от других деталей и имеют ограниченный доступ.
  5. Помехоподавляющими. Предназначены для смягчения в частотной вилке электромагнитного фона. Имеют незначительную собственную индуктивность, что даёт возможность повысить резонансную частоту, а также увеличить полосу сдерживаемых частот.

Если сравнивать в процентном отношении, то наиболее значительное число неисправных элементов приходится на случаи, когда наблюдается подача напряжения превосходящее стандартные показатели. Оплошности в проектировании вполне могут вызвать неисправности элементов.

Когда диэлектрик утрачивает свои характеристики и свойства, то могут возникнуть сбои и перепады в деятельности конденсатора. Например, при его растрескивании, вытекании или высыхании. Ёмкость может сразу измениться. Определить её значение возможно только благодаря измерительным устройствам.

Алгоритм диагностики мультиметром

Тестирование конденсаторов рекомендуется проводить после их изъятия из электроцепи. Таким образом достигаются более верные показатели.

Центральным показателем конденсаторов является способность пропускать только ток переменного характера. Постоянный же ток он способен пропускать лишь небольшой промежуток времени и исключительно в начале процесса. Сопротивление здесь напрямую зависит от ёмкости.

Как произвести тестирование полярного конденсатора

Для диагностики элемента мультиметром, потребуется обеспечить ёмкость, которая не будет превышать показатель равный 0,25 мкФ.

Алгоритм проверки неисправностей конденсатора при помощи мультиметра следующий:

  1. Потребуется взять электрический компонент за ножки и закоротить его каким-то предметом из металла, например, это может быть пинцет или отвёртка. Это надлежит сделать для разрядки элемента. Искры, которые появятся при этом, дадут знать, что разряд произошел.
  2. Затем надлежит установить переключатель мультиметра в режим замера данных сопротивления или на прозвонку.
  3. Далее следует прикоснуться щупами к выводам конденсатора, при этом следует учитывать их полярность, то есть к минусовой ножке подвести щуп чёрного цвета, а к плюсовой — красного. При этом происходит выработка постоянного тока, поэтому через определённый отрезок времени можно ожидать минимальное сопротивление электрического компонента.

В то время, когда щупы располагаются на вводах конденсатора, происходит его подзарядка. Продолжает повышаться сопротивление пока не достигнет максимального уровня.

Если при соединении со щупами прибор начинает пищать, а стрелка его склоняет к нулевой отметке, то это говорит о наличии короткого замыкания. Оно и вывело из строя работу конденсатора. При указании стрелки на единицу, можно предположить, что в конденсаторе произошёл внутренний обрыв. Подобные элементы можно признать испорченными и заменить. Если на приборе, спустя некоторое время, единица высвечивается, то деталь в порядке.

Важно сделать измерения таким образом, чтобы на их качество не повлияло неправильное поведение. Запрещается в продолжении диагностики прикасаться руками к щупам. Человеческое тело имеет небольшой показатель сопротивления, поэтому соответствующие данные утечки будут превышать его многократно.

Ток последует по пути наименьшего сопротивления и обойдёт конденсатор. Таким образом мультиметр представит ложный результат измерений. Можно разрядить электрический компонент благодаря лампе накаливания. В подобном случае процесс станет идти более плавным образом.

Разрядку необходимо производить в обязательном порядке, тем паче, если элемент является высоковольтным. Это делают из-за соблюдения норм безопасности, а также, чтобы сам прибор остался в рабочем состоянии. Его способно привести в негодность остаточное напряжение.

Неполярный конденсатор и его диагностика

Такого рода элементы проверить с помощью мультиметра ещё легче. Вначале на самом приборе проставляют предельный показатель измерения на мегаомы. Затем прикладывают щупы. Если данные на приборе будут менее 2 Мом, то это показатель неисправности конденсатора.

В период подзарядки элемента с помощью мультиметра можно продиагностировать его работоспособность, когда ёмкость колеблется от 0,5 мкФ. Если показатель меньше, то измерения будут незаметны на приборе. Когда требуется протестировать элемент менее 0,5 мкФ на мультиметре, то это можно сделать, если будет короткое замыкание между обкладками.

При исследовании неполярного конденсатора, у которого напряжение выше 400 В, то это возможно выполнить при зарядке его от источника, ограждённого от к.з. автоматическим выключателем. По порядку с конденсатором соединяют резистор, сопротивление его должно быть предусмотрено свыше 100 Ом., что ограничит мощность первичного токового броска.

Возможно определить работоспособность конденсатора и другим способом, например, протестировав его на искру. Заряжают электрический компонент до рабочей ёмкости, а потом выводы закорачивают при помощи металлической отвёртки, у которой имеется изолированная ручка. По мощности разряда делают вывод о работоспособности компонента.

До зарядки, а также через время после неё, следует измерить на ножках детали показатели напряжения. Существенным является способность заряда продолжительное время сохраняться. Затем потребуется разрядка конденсатора с помощью резистора, благодаря которому он и производил зарядку.

Определение ёмкости конденсатора

Ёмкость — это основополагающая характеристика конденсатора. Её требуется измерять для определения того, что накапливает сам элемент, а также удовлетворительно ли удерживает заряд.

Для того, чтобы удостовериться в работоспособности компонента, надлежит измерить данный параметр и сравнить его обозначенным на самом корпусе. Перед проверкой любого конденсатора на эффективность и функциональность, требуется принять во внимание некоторую особенность данной процедуры.

Пытаясь произвести измерение при помощи щупов, возможно не добиться желаемых результатов. Доступным может стать только проверка общей работоспособности обследуемого конденсатора. Для чего выставляют режим прозвона, затем прикасаются к ножкам щупами.

Справочная информация! Когда последует писк, то надлежит поменять щупы местами, тогда звук повторится. Его будет слышно при показателях ёмкости в районе от 0,1 мкФ. Чем выше данное значение, тем продолжителльнее воспроизводится звук.

Если требуются точные результаты, то наилучшим выходом в подобной ситуации является применение модели, которая имеет особые контактные площадки, а также способность регулировки вилки, которая вычисляет емкость элемента.

Прибор следует переключить на номинальное значение, которое прописано на корпусе. Затем требуется вставить электрический компонент в посадочные «гнезда», произведя перед этим его разрядку при помощи металлического предмета.

На экране будут высвечиваться показатели ёмкости, приблизительно равные номинальным. Если этого не наблюдается, тогда надлежит сделать вывод, что конденсатор неисправен. Следует отследить, чтобы в мультиметре была новая и работоспособная батарейка. Это предоставит наиболее точные показания.

Определение напряжения при помощи мультиметра

Проверить исправную работу конденсатора возможно благодаря измерению напряжения, сравнив затем полученный результат с номиналом. Для выполнения диагностики, необходим источник питания, у которого напряжение должно быть немного меньше, чем у исследуемого элемента.

Например, если у конденсатора показатель в 25 В, то подойдёт 9-вольтный источник. Подсоединяют щупы к ножкам, предварительно обращая внимание на полярность, затем ждут немного времени — примерно несколько секунд. Случается, что время прошло, а просроченный компонент всё еще функционирует, хотя характеристики приведены иные. В подобном случае его требуется систематически контролировать.

Мультиметр следует настроить на режим определения напряжения и производят диагностику. При быстром появлении на дисплее значения равного номинальному, элемент полностью годен к использованию. В противоположном случае конденсатор надлежит поменять.

Проверка конденсаторов без выпаивания из платы

Можно обойтись без выпаивания из платы конденсаторов для их тестирования. Главное условие, чтобы сама плата была полностью обесточена. После обесточивания потребуется определённое время подождать, чтобы электрические компоненты разрядились.

Следует знать, что для получения 100% результата, невозможно будет обойтись без выпаивания элемента из платы. Детали, которые располагаются рядом, мешают достоверной проверке. Надлежит удостовериться лишь в отсутствии пробоя.

Для проверки исправного функционирования конденсатора, не выпаивая, необходимо к выводам элемента прикоснуться щупами для измерения сопротивления. Исходя из разновидности конденсатора, будет отличаться и диагностика самого параметра.

Советы по проверке электронных компонентов (конденсаторов)

У конденсаторных элементов имеется одно не очень приятное свойство. Дело в том, что при пайке, когда происходит воздействие на детали тепла, они часто не подлежат восстановлению. Однако качественно исследовать элемент возможно лишь, если выпаять его из схемы. В ином случае детали, которые находятся поблизости, станут его шунтировать. По данной причине необходимо учитывать определённые нюансы.

Когда продиагностированный конденсатор можно будет снова впаять в схему, потребуется ввести в работу ремонтируемый прибор. Это позволит отследить его работу. Если работоспособность благополучно возобновилась, устройство стало функционировать эффективнее, то протестированный компонент меняет на новый.

Важная информация! Для сокращения проверки, следует выпаивать не два, а лишь один из выводов. Требуется учитывать и понимать, что для подавляющего большинства электролитических элементов данный способ нельзя применять. Это связано со специфическими конструктивными особенностями самого корпуса.

Если схема сложная и включает в себя значительное количество конденсаторов, то дефекты вычисляют благодаря измерению напряжения на них. При несоответствии параметра требованиям, деталь, которая вызывает подозрение, надлежит убрать и произвести проверку.

При фиксировании в схеме сбоев, требуется перепроверить дату изготовления электронного компонента. Усыхание элемента происходит в течение пяти лет функционирования и составляет более 65%. Подобную деталь, даже если она в рабочем состоянии, надлежит заменить. В противоположном случае она станет ухудшать работу всей схемы.

Мультиметры современного поколения отличаются тем, что их наивысшим показателем для измерения является параметр ёмкости, который варьируется в районе 200 мкФ. При превышении данного показателя контрольный прибор способен выйти из рабочего состояния, даже если он и имеет предохранитель. В электротехнике нового поколения есть высокотехнологичные smd электроконденсаторы. Их отличие и преимущество состоит в очень небольших размерах.

Выпаять один вывод от подобного компонента очень непростая задача. Здесь наилучшим выходом будет поднять один из выводов уже после отпаивания, затем произвести изоляцию его от схемы, или вовсе отделить два вывода.

Итоги и практические рекомендации

Нет особого смысла покупать сложное и дорогостоящее оборудование для того, чтобы произвести тестирование конденсаторов. Вполне возможно применять с данной целью обычный мультиметр с подходящим диапазоном. Самое важное — это грамотно и правильно использовать его возможности.

Хотя мультиметр не является узкоспециализированным прибором и его возможности ограничены, для диагностических мероприятий и ремонта огромного количества популярных радиоэлектронных приборов, этого вполне хватит.

Дополняйте, пожалуйста, своим комментариями расположенный ниже блок, публикуйте фотографии и задавайте вопросы любой сложности по предложенной теме статьи. Расскажите о своём опыте, как вы проводили диагностику конденсаторов на эффективность и работоспособность. Делитесь рекомендациями и полезной информацией, которая может пригодится пользователям сайта.

Как правильно проверить конденсатор мультиметром

При использовании конденсаторов важно точно знать, что они исправны. Наличие испорченной детали в электросхеме не позволит ей нормально функционировать. Поэтому если есть сомнения, следует знать, как проверить конденсатор мультиметром на работоспособность.

Конденсаторы бывают разные

Как работает конденсатор

Классическая схема этого радиоэлемента включает в себя две плоские пластины, расположенные параллельно друг другу на очень близком расстоянии. Между ними находится слой диэлектрика. Пластины присоединяются к источнику тока.

Ток, как известно, представляет собой упорядоченное движение электронов. При отсутствии электрического поля они движутся хаотически, но как только к проводам, ведущим к пластинам конденсатора, будут подсоединены клеммы батареи, электроны начнут перемещаться от отрицательного потенциала к положительному.

Конденсатор не образует непрерывный проводник из-за слоя изолятора между пластинами, но упорядоченное движение частиц будет происходить независимо от этого обстоятельства.

Простая схема конденсатора

Таким образом, с той стороны, которая подключена к отрицательной клемме, частицы будут накапливаться, а с противоположной они будут перемещаться к положительной клемме. В результате этого процесса на обкладках накапливаются положительный и отрицательный заряды, равные по величине.

Их накопление сначала будет идти сравнительно быстро, потом замедлится, а затем и вовсе прекратится, так как накопленный заряд будет равен потенциалу соответствующей клеммы. Если речь идёт о постоянном напряжении, то эта ситуация останется стабильной до отключения батарейки.

Если в качестве источника взять сеть электропитания, то в этом случае принцип действия будет аналогичным. Однако поскольку потенциал на обкладках будет меняться, то конденсатор будет заряжаться циклически: произойдёт увеличение заряда до предельного значения, затем он начнёт падать, После этого накопится противоположный заряд, затем он тоже начнёт падать, и так будет циклически повторяться до отключения от сети.

Каждый конденсатор способен накопить строго определённый заряд, величина которого определяется его ёмкостью. Некоторые их разновидности можно подключать с различной полярностью, а для других нужна только определённая. Если напряжение слишком большое, то будет происходить пробой — между пластинами проскочит искра.

По внешнему виду и устройству конденсаторы отличаются. Например, они могут иметь цилиндрическую форму, а в промежутке между обкладками иногда применяется жидкий электролит. Существуют устройства переменной ёмкости.

Устройство электролитического конденсатора

В качестве диэлектрика используются различные материалы: стекло, бумага, воздух, керамика и некоторые другие материалы. При измерении на омметрах сопротивление конденсатора может отображаться как бесконечность. Если произойдёт пробой, то оно упадёт до нескольких десятков Ом или станет ещё меньше.

Маркировка

При изготовлении емкостей на корпус наносится необходимая информация. Её объем в некоторых случаях зависит от величины детали. Это необходимо учитывать, так как на мелких деталях иногда хватает места только для указания ёмкости.

Иногда для обозначения используют три цифры. Две первых обозначают ёмкость, а последняя информирует о порядке величины. Если она находится в диапазоне 0–5, то речь идёт о количестве нулей, которые нужно дописать справа (554 означает, например, 550000). При наличии 8 результат умножают на 0.01, а если 9 — на 0.1.

Также применяется буквенно-цифровое обозначение. Принцип кодировки удобно пояснить на следующем примере. Обозначения Н25, 2Н5 и 25Н обозначают, соответственно 0.25 нФ, 2.5 нФ и 25 нФ. Положение буквенного символа при этом указывает место, куда нужно поставить запятую.

Маркировка конденсатора

Если места на корпусе достаточно, могут быть указаны дополнительные данные:

  • Частота электротока, при которой возможно использование емкости.
  • Конструктивное исполнение.
  • На какой ток рассчитан радиоэлемент: постоянный или переменный.
  • Точность значения емкости: указывается, на сколько процентов она может отклоняться при проверке.
  • Полярность. В большинстве случаев она не имеет значения, но иногда к ней предъявляются жёсткие требования.

Если уметь читать эти обозначения, то можно без проблем получить всю необходимую информацию для работы с радиоэлементом.

Виды мультиметров

Проверку удобно проводить с помощью мультиметра. Большинство таких приборов обеспечивает измерение трёх основных электрических величин: напряжения, силы тока и сопротивления. Обычно доступны и другие режимы работы, но они различаются в зависимости от используемой модели. С помощью некоторых из них, например, можно выполнить непосредственное измерение емкости конденсатора. Существуют следующие типы мультиметров:

  • Аналоговые ещё недавно были очень распространены. Они отличаются наличием стрелки и шкалы измерения. Их достоинством является доступность и простота использования. Наличие небольшого входного сопротивления может приводить в некоторых случаях к значительной погрешности измерений. Некоторым людям неудобно пользоваться нелинейной шкалой.
  • Цифровые устройства обладают более высокой точностью. Погрешность их измерений в большинстве случаев не превосходит 1%. Работа такого измерительного прибора строится на использовании электронных микросхем. Информация о результате измерений отображается на цифровом дисплее.

Цифровой мультиметр

Распространены такие разновидности мультиметров:

  • Портативные. Активно применяются не только специалистами, но и в быту. В них используются специальные щупы, которые подсоединяют к контактам измеряемых деталей.
  • У некоторых приборов имеются встроенные токоизмерительные клещи. Они позволяют определять силу тока без необходимости выпаивания деталей. Для применения их сначала разводят в стороны, а затем охватывают нужный провод. Открывают и закрывают клещи при помощи специальной клавиши. Некоторые мультиметры позволяют работать и с токоизмерительными клещами, и с обычными щупами по выбору мастера.

Мультиметр с токоизмерительными клещами

  • Стационарные мультиметры отличаются высокой надёжностью и точностью работы. Питаются они не от батарейки, а от электросети. Их часто используют для профессиональной работы с электронными устройствами.

Стационарный мультиметр

  • Существуют модели измерительных приборов, которые дополнительно обладают функциями осциллографов. Они имеют более высокую цену, но позволяют получать информацию о форме сигналов. Такие устройства обычно используются только в профессиональных целях.

Мультиметр с возможностями осциллографа

Какие возможны неисправности конденсатора

При неправильной эксплуатации возможны следующие нарушения работы этой детали:

Пробой изолятора между обкладками. В этом случае часто конденсатор чернеет и вздувается. Это может, например, произойти в результате резкого скачка напряжения в сети электропитания.

  • Уменьшение ёмкости до значения, которое ниже допустимого.
  • Слишком большой ток утечки.
  • Нарушение подключения проводника к обкладке.
  • Физическое повреждение детали.

Именно эти признаки неисправности считаются наиболее вероятными. В большинстве случаев работоспособность конденсатора страдает из-за подачи слишком высокого электронапряжения на его контакты. Также распространена неисправность, связанная с потерей функциональности диэлектрика. Эта проблема особенно актуальна при использовании электролитических конденсаторов.

Как проверяются конденсаторы

Для этих радиоэлементов обычно выполняется:

  • Проверка ёмкости.
  • Определение сопротивления диэлектрического слоя.

Перед тем как проверить емкость конденсатора, надо произвести его разрядку. Для этого у слабых радиоэлементов достаточно на короткое время закоротить провода, которые ведут к обкладкам. После этого можно приступать к работе с деталью. Если это условие проигнорировать, то от остаточного напряжения пострадает измерительный прибор.

При необходимости разрядить конденсаторы, емкость которых превышает 100 мкФ, рекомендуется использовать сопротивление 5–20 кОм. Применение резистора гарантирует, что не возникнет мощной искры. Во время разрядки не стоит прикасаться к контактам руками.

Перед тем как проверить конденсатор тестером на исправность, следует провести внимательный осмотр детали. При этом надо искать следующие видимые признаки:

  • Наличие даже небольшого вздутия.
  • Сколы или трещины. Возникновение таких проблем особенно актуально для керамических конденсаторов.
  • Наличие вмятин.

При обнаружении этих или других видимых повреждений радиодетали независимо от их состояния эксплуатировать нельзя.

При осмотре можно обнаружить-различные повреждения

Дальнейшая проверка конденсаторов должна помочь определить сопротивление изоляционного слоя между обкладками. Это удобно делать мультиметром. Пошаговая инструкция выглядит так:

  1. Включить прибор.
  2. Перед тем как проверить керамический конденсатор, электролитический или любой другой, нужно установить мультиметр в режим проверки сопротивления.
  3. Красным и чёрным щупами нужно прикоснуться к контактам детали.
  4. Исправность конденсатора подтверждается показателем на дисплее, соответствующим бесконечности. Если появилось небольшое значение, то это свидетельствует о пробое.

Проверка сопротивления конденсатора

У нормально работающей детали целостность изолятора не должна быть нарушена. В процессе проверки необходимо соблюдать правила техники безопасности. Сопротивление человеческого тела ниже, чем у тестируемого изолятора, поэтому человек может получить удар электротоком.

Проверка ёмкости

В некоторых моделях мультиметров имеется режим, позволяющий определить емкость конденсатора. На лицевой панели его обозначают при помощи двух вертикально расположенных параллельных линий. Чтобы замерить емкость нужно предпринять такие действия:

Гнёзда для подключения щупов при замере -емкости

  1. Включить мультиметр.
  2. Установить режим проверки ёмкости.
  3. Подсоединить красный и чёрный щупы в соответствующие разъёмы. Для первого предназначено гнездо, рядом с которым имеются обозначения напряжения, сопротивления и, возможно, другие. Чёрный вставляют в то, рядом с которым находится надпись COM.
  4. Щупы необходимо подсоединить к выводам конденсатора.
  5. На дисплее обычно отображается значение ёмкости в микрофарадах. Используемые единицы указываются на лицевой панели прибора.

Чтобы сделать вывод о результате, который показала проверка конденсатора мультиметром, следует еще учесть значение допустимого отклонения ёмкости конденсатора. Оно может быть указано на корпусе, его также можно найти в соответствующем справочнике. Если отклонение полученного значения не превышает заданной величины, значит, деталь исправна. В противном случае можно сказать, что она проверку не прошла.

Аналогично проверяется пусковой конденсатор, обеспечивающий стабильность работы электродвигателя. Перед тестированием нужно обесточить электроустройство, разрядить конденсатор, отсоединить клемму, а на мультиметре выбрать режим измерения емкости и соответствующий диапазон значений этого параметра. Если полученное в ходе проверки значение емкости будет отличаться от того, что указано на корпусе, то радиодеталь неисправна и ее следует заменить.

Особенности проверки полярного конденсатора

Радиолюбителю нужно также знать, как можно проверить конденсатор мультиметром, который подключается только в определенной полярности. У такой радиодетали вывод «плюс» несколько длиннее, чем «минус». Кроме того, на корпусе есть метка «–».

Сопротивление изолятора у неполярного радиоэлемента от 100 кОм до 1 МОм (мегаома). Поэтому перед тем как проверить конденсаторы мультиметром, их обязательно надо разрядить. Для этого достаточно прикоснуться отвёрткой к выводам.

Чтобы проверить работоспособность радиодетали, нужно сделать следующее:

  1. Включить прибор.
  2. Установить режим проверки сопротивления.
  3. Перед тем, как измерить нужную величину, нужно правильно выбрать диапазон измерений. Он должен соответствовать параметрам проверяемого конденсатора.
  4. Присоединить красный щуп к выводу со знаком плюс, а чёрный — со знаком минус. Перед проверкой детали, нужно помнить, что должна использоваться определённая полярность.
  5. У исправного конденсатора сопротивление будет соответствовать расчётной величине.

Важно учитывать, что при проверке мультиметром начнётся зарядка конденсатора. При этом величина проверяемого сопротивления будет постепенно расти и это отобразится на дисплее мультиметра.

Что делать, если конденсатор впаян в схему

Проводить проверку удобно, когда детали отсоединены от платы, но это не всегда возможно. Поэтому и возникает вопрос, как проверить конденсатор мультиметром, не выпаивая. В этом случае удастся только проверить наличие емкости и отсутствие КЗ, а вот измерить значение емкости не получится.

Конденсаторы на плате

Если возникла необходимость проверить электролитический конденсатор на плате или пленочный без выпаивания, нужно сначала провести тщательный осмотр детали. При обнаружении явных следов повреждений, можно сразу же делать вывод о неисправности конденсатора. Если таких признаков найти не получилось, то мастер должен перейти к последующим этапам проверки.

Далее проводят измерения в цепи разряда конденсатора. Также для получения нужной информации можно подключить заведомо исправную деталь параллельно проверяемой и замерить сопротивление. Более точное значение можно получить, если выпаять одну из его ножек.

Выполнение прозвонки

Чтобы прозвонить конденсатор мультиметром, нужно сделать следующее:

  1. Включить мультиметр и перевести его в режим прозвонки.
  2. Чёрный и красный щупы подсоединить к контактам детали.
  3. Если прибор издаёт звуковой сигнал или показывает низкое сопротивление, речь идёт о неисправном конденсаторе. Когда сопротивление стремительно возрастает и показывает бесконечность, то изоляция не пробита, деталь можно считать исправной.

Установка режима прозвонки

Вместо того, чтобы прозванивать конденсатор, можно воспользоваться батарейкой и лампочкой. Собрав цепь, в которой к клеммам батарейки последовательно подключены лампочка и проверяемый конденсатор, можно будет точно установить наличие пробоя. Если лампочка светится на протяжении длительного времени, то конденсатор неисправен. Если же она не загорается, или несколько секунд светится, когда на нее воздействует пусковой ток зарядки, а потом перестает, то пробой отсутствует.

Определение внутреннего обрыва

Одним из возможных повреждений может быть отсоединение проводника от обкладки. Поэтому следует проверить неполярный конденсатор на отсутствие внутреннего обрыва. Наиболее частой причиной такой неисправности является резкое повышение напряжения.

При обрыве значение емкости фактически становится нулевой. Используя этот факт, можно проверить работоспособность детали. Если ёмкость имеет реальное значение, соответствующее характеристикам детали, то обрыва нет, следовательно, конденсатор исправен.

Проверка с помощью формулы

Емкость можно определить с помощью формул. В этом случае, чтобы проверить конденсатор, необходимо собрать схему, как на рисунке ниже.

Схема для проверки

В схеме используется конденсатор с номинальным значением 6880 мкФ, блок питания и резистор с точно известным сопротивлением 9880 Ом. Питающее наряжение составляет 12 В.

После подключения питания узнаем подаваемое напряжение, и записываем его. Далее нужно определить 95% от полученной величины. Это будет 11.4 В.

Теперь нужно позволить конденсатору заряжаться и засечь время, которое потребуется для этого. Следует периодически проверять разность потенциалов на обкладках конденсатора. Требуется подождать до тех пор, пока эта величина не возрастёт до 11.4 В. Это время также необходимо записать. Например, оно может быть равно 210 секунд.

Согласно законам электротехники время в секундах определяется по следующей формуле.

Формула для проведения расчётов

В ней все величины, кроме ёмкости, известны. При помощи несложных вычислений можно получить её значение. Оно будет равно С = 210 / (3 × 9880) = 0.007085 Ф = 7085 мкФ.

Нужно, чтобы полученное значение отличалось от номинала не более, чем на 20%. Поскольку номинальное значение составляет 6880 мкФ, то это условие выполняется. Следовательно, проверяемый конденсатор исправен.

Ремонт микроволновой печи Vitek VT-1655

Конденсатор является приспособлением, имеющим способность копить определенный заряд электричества. Он представляет собой две пластины из металла, установленные параллельно, между которыми находится диэлектрик. Увеличение площади пластин увеличивает накопленный заряд в устройстве.

Конденсаторы бывают 2-х видов: полярные и неполярные. Все полярные приспособления – электролитические. Емкость их от 0.1 ÷ 100000 мкФ.

При проверке полярного приспособления важно соблюдение полярности, когда плюсовая клемма присоединена к плюсовому выводу, а минусовая к минусовому.

Высоковольтными являются именно полярные конденсаторы, у неполярных – малая емкость.


Микроволновка с указанием места расположения конденсатора

В цепь питания магнетрона микроволновки входит диод, трансформатор, конденсатор. Через них к катоду идет до 2-х, 3-х киловольт.

Конденсатор – это большая деталь весом до 100 гр. К нему присоединяется вывод диода, второй на корпусе. Вблизи блока размещается также цилиндр. Конкретно данный цилиндр представляет собой высоковольтный предохранитель. Он не должен допустить перегревание магнетрона.


Расположение конденсатора

Питание магнетрона

Тут все просто, если у вас не «крутая» микроволновка с инвертором на борту. Что такое инвертор я уже писал, и если у кого-то возникнут вопросы добро пожаловать на форум. А сейчас я расскажу о простом трансформаторе. Проверяем питание магнетрона

Питается магнетрон от трансформатора и если предположить, что Вы все цепи до трансформатора уже прозвонили и уверены, что с коммутацией всё в порядке… Смотрим на картинку.

1. Обрыв алюминиевого провода вторичной обмотки от корпуса трансформатора. Обнаружить легко тестером, исправить сложнее; 2. Обрыв предохранителя стоящего в цепи анодного тока. Обычно проявляется из-за разгеметизации магнетрона; 3. Обрыв обмотки накала; 4. Выход из строя конденсатора; 5. Выход из строя высоковольтного диода.

Кстати конденсатор

(как и диод) не так и часто выходит из строя. 1. Пробой или утечка ножка-корпус; 2. Короткое замыкание между обкладками; 3. Обрыв обкладок; 4. Потеря ёмкости (высох электролит). Проверить работоспособность конденсатора легко, а вот диод нет. При проверке высоковольтного диода обычным тестером, скорее всего, покажет обрыв. Если у Вас нет заведомо исправного диода, то Вы не сможете проверить работоспособность этой детали простыми подручными средствами.

Как разрядить конденсатор в микроволновке

Разрядить его возможно такими способами:

Отключив от электросети, конденсатор разряжают, осмотрительно замкнув отверткой его клеммы. Хороший разряд свидетельствует о его исправном состоянии. Такой способ разрядки самый распространенный, хотя некоторые считают его опасным, способным нанести вред и разрушить приспособление.


Разряд конденсатора отвертками

У высоковольтного конденсатора есть интегрированный резистор. Он работает для разряда детали. Приспособление располагается под высочайшим напряжением (2 кВ), и потому есть необходимость в его разряде в основном на корпус. Детали с ёмкостью более 100 мкФ и напряжением от 63V лучше разряжать через резистор 5-20 килоОм и 1 – 2 Вт. Для чего концы резистора объединяют с клеммами приспособления на некоторое количество секунд, чтобы снять заряд. Это необходимо для предотвращения возникновение сильной искры. Потому надо побеспокоиться об личной безопасности.

Простые неисправности микроволновки и их ремонт

В большинстве случаев возникают такие неисправности, когда ремонт микроволновки своими руками может сделать любой, даже не имеющий знаний в электрике. К таким неисправностям относится ремонт сетевого шнура, ремонт защитного выключателя на дверцах микроволновой печи, замена предохранителей, замена высоковольтного конденсатора и диода.

Открытая микроволновка

Расположение элементов в микроволновке

Можно практически устранить любую неисправность печи не связанную с магнетроном, высоковольтным трансформатором и электронной платой. Помните, что заниматься ремонтом нужно предварительно вынув вилку из розетки, и важно выждать несколько минут, пока не разрядится высоковольтный конденсатор. Далее снимаем кожух печи. По бокам имеются несколько шурупов, которые нужно открутить. На рисунке показана микроволновая печь без кожуха.

Ремонт сетевого шнура довольно прост. Его нужно прозвонить тестером или лампочка с батарейкой (прозвонкой). Во время прозвонки шнура, его нужно перегибать по всей длине. После того как обрыв найден устраняют его ремонтом или заменой.

После тестирования сетевого шнура нужно проверить целостность высоковольтного предохранителя. Для этого разъединяем защитный корпус предохранителя. Если предохранитель целый, мы увидимся растянутую пружину с припаянной проволокой. Если предохранитель перегорел, тогда его нужно заменить таким же. Не устанавливайте самодельные предохранители, так как возможен выход из строя самого магнетрона.

Высоковольтный предохранитель

Визуальный осмотр высоковольтного предохранителя

Целостность высоковольтного конденсатора проверяют его включением последовательно с лампочкой 15 Вт Х 220 В. Далее подают 220 В на последовательно соединенные конденсатор и лампочку, из розетки. При исправном конденсаторе лампочка будет гореть в половину накала, а при неисправном, лампа горит ярко или совсем не горит. Далее отключив от сети, конденсатор нужно разрядить, осторожно замкнув отверткой его клеммы. В результате мы увидим хороший разряд, что также говорит о его исправности.

Следующим проверяем высоковольтный диод, включив его также последовательно с лампочкой 15 Вт 220 В. Лампа при пробитом диоде будет гореть ярко, при его обрыве лампа не горит, а при исправном диоде лампа горит в половину накала. Все электронные компоненты микроволновки можно приобрести в специализированном магазине.

В районе правого торца дверцы, со стороны корпуса, находится конечный выключатель. Если дверца не плотно закрыта, тогда не замкнуться контакты защитного выключателя, и не включится микроволновая печь. Прозвонить микрик можно тестером или прозвонкой.

На анод магнетрона подается 4 кВ, поэтому иногда происходит оплавление колпачка магнетрона. Такая неисправность может возникнуть при плохом контакте колпачка магнетрона с разъемом. Чтобы устранить эту неисправность достаточно повернуть разъем на 180°.

Иногда микроволновка издает гром и молнию. Такой эффект проявляется при попадании жира на слюдяной фильтр, который расположен на выходе волновода магнетрона. Жир на фильтре может вызвать пробой слюдяной изоляции, жир начинает гореть на слюдяном фильтре, что провоцирует появление грома и молнии. Слюдяной фильтр защищает магнетрон от влаги, брызг жира и должен быть сухим и чистым.

Как проверить высоковольтный конденсатор микроволновки

Высоковольтный конденсатор проверяют его подключением вместе с лампой 15 Вт Х 220 В. Дальше выключают объединенные конденсатор и лампочку из розетки. При рабочем состоянии детали лампа станет светиться в 2 раза меньше, чем обычно. При нарушениях в работе лампочка ярко светит или не светится вообще.


Проверка с лампочкой

Конденсатор микроволновки имеет емкость 1.07 мф, 2200 в, потому испытать его с поддержкою мультиметра достаточно просто:

1. Необходимо подключить мультиметр так, чтобы измерять сопротивление, а именно наибольшее сопротивление. На устройстве сделать до 2000k.

2. Потом необходимо включить незаряженное приспособление к клеммам мультиметра, не дотрагиваясь их. При рабочем состоянии показания станут 10 кОм, переходящие в бесконечность (на мониторе 1).

3. Потом необходимо изменить клеммы.

4. Когда при включении его к устройству на мониторе мультиметра ничто не поменяется, это означает, приспособление в обрыве, когда будет нуль, означает, что в нем пробой. При показании в устройстве постоянного сопротивления, пусть небольшого значения, значит, в приспособлении есть утечка. Его необходимо сменить.

Проверка мультиметром


Проверка мультиметром

Эти испытания сделаны на невысоком напряжении. Часто неисправные приспособления не показывают нарушения на невысоком напряжении. Потому для испытания нужно применять или мегаомметр с напряжением одинаковым напряжению конденсатора, или будет нужен наружный источник высокого напряжения.

Мультиметром его элементарно так испытать невозможно. Он продемонстрирует лишь, что обрыва нет и короткое замыкание. Для этого необходимо в режиме омметра присоединить его к детали – в исправном состоянии он продемонстрирует невысокое сопротивление, которое за некоторое количество секунд вырастет по бесконечности.

Неисправный конденсатор имеет утечку электролита. Сделать определение емкости особым устройством не трудно. Надо его подключить, поставить на большее значение, и соприкоснуться клеммами к выводам. Сверить с нормативными. Когда отличия маленькие (± 15 %), деталь исправна, но когда их нет или значительно ниже нормы, значит, она пришло в негодность.

Для испытания детали омметром:

1. Надо снять наружную крышку и клеммы.

2. Разрядить его.

3. Переключить мультиметр для испытания сопротивления 2000 килоОм.

4. Исследуйте клеммы на присутствие механических дефектов. Плохой контакт станет негативно воздействовать на качество измерения.

5. Соедините клеммы с концами устройства и смотрите за числовыми измерениями. Когда числа начинают изменяться так: 1…10…102.1, означает, что деталь в рабочем состоянии. Когда значения не изменяются или появляется нуль, значит приспособление в нерабочем состоянии.

6. Для другого испытания приспособление надо разрядить и снова подтвердить.

Возможные неисправности

Внутренняя схема магнетрона содержит множество деталей, и, если случается поломка, то причина может крыться именно в них. Случается так, что одна из частей пришла в негодность, но влияет на работу всей лампы. Следует понять, в чем причина неисправности, и решить проблему в домашних условиях. Как именно, мы расскажем далее.

  • Металлический колпачок отвечает за сохранность вакуума внутри трубы.Зачастую он ломается, и требуется новая замена;
  • Радиатор может прийти в негодность, если деталь перегорает;
  • Нить накаливания в результате перегрева может оборваться. Для выявления такой неисправности нужен специальный прибор;
  • Фильтр может также перестать нормально функционировать, следует проверять тестером. Исправный элемент будет показывать бесконечность, а сломанный — численное сопротивление;
  • Изменение герметичности детали из-за перегрева;
  • Нарушение работы высоковольтного диода;
  • Неисправность конденсатора высокого напряжения;
  • Разлом контактов предохранителя, основная задача которого не допускать перегрева.

Как проверить не выпаивая

Прозвонить конденсатор мультиметром без выпаивания возможно. Для такой проверки подбираем исправный экземпляр с аналогичными характеристиками и впаиваем его в схему параллельно исследуемому. Рабочее устройство скажет о проблеме в первом элементе. Способ не применяется на схеме с высоким напряжением.

Проверить мощный пусковой конденсатор мультиметром можно не выпаивая на наличие искры. Заряженный кондер замыкается отверткой или иным инструментом с изолированной ручкой. Характерный звук с искрой покажут работоспособность прибора.

Замеривать без специальных приборов нежелательно. Легко получить удар током на высоковольтных образцах, да и точные значения не выявить.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *