Как работает терморегулятор
Перейти к содержимому

Как работает терморегулятор

Принципы работы простейших терморегуляторов

В современном мире довольно широко как в быту, так и на производстве применяется климатическая техника: котлы, кондиционеры, конвекторы и калориферы. Большинство из этих приборов работает в автоматическом режиме, поддерживая комфортную внутреннюю температуру воздуха.

Цифровые терморегуляторы

Сами по себе такие устройства не способны контролировать температуру, для этого в схему интегрируют специальный прибор — терморегулятор. Он может не только установить фактическую температуру окружающей среды, но сравнить ее с заданной величиной и послать сигнал на управляющий механизм котла или аналогичного устройства для регулирования процессом нагрева. Для того чтобы правильно им управлять, пользователь должен знать принцип работы терморегулятора.

Такие регуляторы хорошо работают не только в системах управления и настройки, но и при защите охладительного или отопительного оборудования. При высоком значении теплоносителя они подают сигнал на нагревающее или охлаждающее устройство для аварийной остановки оборудования, мгновенно прекращая подачу с энергоносителей, с подачей звукового и светового сигнала.

Что означает термин «терморегулятор»

Терморегулятор — это устройство, которое задействуется в системах отопления или кондиционирования для обеспечения установленного значения температуры нагреваемой среды: вода или воздух.

Схема подключения терморегулятора

Как правило, терморегулятор (ТР) выполняется в форме аппаратного модуля, который измеряет температуру среды и передает сигнал управляющему модулю на активизацию или прекращение процесса нагрева.

Таким образом, существует две исполнительные модификации терморегулятора:

  • Он выступает в роли самостоятельного устройства, имеющего функции по контролю и управлению процессом, например, контроль температуры и ее регулирование по проценту влажности в помещении;
  • в качестве аппаратного модуля в составе общей автоматики безопасности.

Устройство и принцип действия

Независимо от варианта конструктивного исполнения, устройство терморегулятора выполняется по одной общей схеме и состоит из 3-х главных модулей или блоков:

  • Первичный датчик температуры, оборудованный термочувствительным элементом;
  • настроечный модуль;
  • модуль управления.

Комплект терморегулятора с трехходовым клапаном

Первичный датчик определяет температуру нагрева контролируемой среды: воздуха или воды. При изменении температуры внутри измерительного датчика происходит изменение физических параметров первичного элемента, которые передаются на управляющий блок.

Важно! Выходной сигнал, в который преобразуется входная величина, может быть неэлектрическим и электрическим. Большинство первичных датчиков электрические, функционирующие по напряжению или ЭДС.

После получения сигнала, блок управления обрабатывает и передает его на исполнительный механизм, который соответственно отрегулирует объем энергоносителя для нагрева среды.

В качестве исполнительных механизмов в отопительных системах применяются:

  • электромагнитные реле;
  • клапан механического или электрического принципа срабатывания;
  • цифровой/аналоговый прибор, для последующей обработки сигнала.

ТР способен соблюдать определенное значение температуры либо установленный диапазон. На этот показатель влияет гистерезис первичного датчика.

В торговой сети сегодня существует довольно много моделей терморегуляторов, которые могут быть оснащены дополнительными функциями, например, запуск отопления по таймеру и программирование устройства по заданному графику. Но в основе работы всех этих приборов находится вышеназванный принцип действия.

Какие существуют модификации терморегуляторов

Все терморегуляторы классифицируются по нескольким группам, для того чтобы пользователям легче было ориентироваться при их выборе

Разновидности терморегуляторов

Первая группа ТР определяется по типу управления:

  • механические;
  • комбинированные электромеханические;
  • электронные или цифровые.

Виды терморегуляторов могут также группироваться по следующим признакам:

  1. Месторасположение: с внутренней установкой — комнатные и наружной — погодные.
  2. Способ установки: корпусные, настенные или на DIN рейке.
  3. Функциональность: проводное подключение от блока управления и беспроводное дистанционное с применением современных линий связи через интернет.
  4. Диапазон измерений температуры, в пределах от -60 до 1200 °С.
  5. Количество каналов: одно- и многоканальные с серией стандартных термодатчиков.
  6. Вид программирования: местное, на одном устройстве, например, радиаторе отопления и центральное управление сложных объектов происходит от одного центра, наиболее распространенный вид на практике. В этом варианте для управления используют специальное ПО и компьютер.

Перед тем как сделать выбор конкретной модели нужно понимать, для чего нужен терморегулятор, для местного управления или комплексного в общей автоматической системе.

Разновидности терморегуляторов

Механические

Обладают простой конструкцией, в большинстве случаев энергонезависимые, то есть не требующие в работе использования электроэнергии. Управление режимами выполняется ручкой со шкалой на корпусе, в некоторых случаях имеется тумблер для включения и выключения. На корпусе имеется простейший интерфейс со световой индикацией.

Механические терморегуляторы применяются для нагревательных и охлаждающих систем. Конструкционные особенности:

  1. Термоэлемент-сильфон, выполнен в виде цилиндра с внутренними гофрированными стенами, позволяющими ему растягиваться на некоторую длину.
  2. Клапан, отсекающий движение теплоносителя.
  3. Особая измеряемая среда жидкая или газообразная, которая способна реагировать на колебания температур внутри комнаты.
  4. Рабочий шток, открывающий или закрывающий клапан в зависимости от степени обогрева комнаты.
  5. Шкала с указаниями для настройки режима нагрева.

Принцип работы любого механического терморегулятора довольно простой и заключается в том, что при нагреве воздуха в помещении, в термоэлементе сильфонного типа рабочая среда нагревается, и расширяясь выпрямляет цилиндр, который воздействует на шток, а тот в свою очередь и давит на регулирующий клапан, плотнее прижимая его к отверстию пропуска теплоносителя, тем самым уменьшая его до полного закрытия, после чего вода в батарею не поступает. Температура воздуха в комнате падает, термоэлемент сжимается, шток опускается, освобождая проход греющей жидкости в батарею, тем самым запускается новый цикл нагрева.

Устройство терморегулятора сильфонного типа

Механические ТР несмотря на свою простоту обладают множеством преимуществ, среди которых надежность, устойчивость к перепадам температур, энергонезависимость и длительный срок эксплуатации.

К недостаткам можно отнести невысокую точность регулирования, низкую функциональность и наличие шумовых эффектов в виде щелчков при включении/отключении клапана.

Электромеханические

Электромеханические регуляторы температуры применяются для различных отопительных приборов, например для электрокотлов. Как правило, они могут быть исполнены в 2-х модификациях: с биметаллической пластиной, подключенной к группе электроконтактов и с капиллярной трубкой.

Биметаллическая пластина под воздействием температуры среды нагревается, что вызывает ее изгибание и разрыв контактов. В этом момент подача напряжения на нагревательные электрические элементы прекращается, котел останавливается. Теплоноситель продолжает циркулировать через котел, постепенно его температура снижается, биметаллическая пластина возвращается в первоначальное состояние, замыкая электроконтакты и подавая напряжение на ТЭНы котла.

Биметаллический терморегулятор

ТР с капиллярной трубкой, наполненной газом, помещается в емкость, где греется теплоноситель. При достижении установленной температуры воды в емкости, газ в трубке расширяется, тем самым замыкая электрический контакт, энергоноситель отключается, вода в емкости остывает, капиллярная трубка сжимается и размыкает контакты. Этот тип регуляторов устанавливается в бойлерах и отопительных электрорадиаторах.

Неприхотливые электромеханические ТР имеют много преимуществ, прежде всего являясь бюджетными по цене, кроме того они энергонезависимые, точно поддерживают автоматический режим включения/отключения нагревательного аппарата, при этом оставаясь герметичными, не загрязняя внутренний контур теплоносителя.

К минусу можно отнести довольно грубые настройки по пределам регулирования до 2–3 °С.

Цифровые

Это группа электронных терморегуляторов, которые устанавливаются в сложной климатической технике, например, в автоматике газового котла, в блоках регулирования работой теплых полов и сплит-системах кондиционирования воздуха.

Основные элементы конструкции цифровых ТР:

  • Первичный термодатчик в форме выносного устройства;
  • контроллер — командное устройство на термостатах, контролирующее температуру в помещении и формирующий команды «включить» и «отключить» исполнительному механизму нагревательного агрегата;
  • контактная группа, в форме электронного ключа.

Контроллер электронного ТР может работать с закрытой и открытой логикой. В первом случае алгоритм работы постоянный, корректировка программ невозможна, изменяются только параметры работы нагревательного устройства. Эти модели применяются для бытового оборудования небольшой мощности.

Во втором случае настройки имеют более широкий диапазон, в связи, с чем можно изменить алгоритм работы агрегата. Применяются для больших промышленных установок.

Этот современный тип терморегуляторов, позволяющие контролировать и управлять процессами нагрева дистанционно с применением обычных смартфонов и сети Интернет. Они обладают самым широким диапазоном регулирования и могут быть встроенные в любые современные теплонагревающие устройства.

Умный-дом

Важно! Высокая точность управления позволяет эффективно эксплуатировать оборудование с высокими КПД. На их базе сегодня внедрена инновационная система погодорегулируемой автоматики газовых котлов, они также являться частью системы «умный дом».

Наладка и эксплуатация

Наладку простейших механических и электромеханических ТР можно выполнить самостоятельно, для этого нужно внимательно изучить инструкцию завода-изготовителя.

Цифровые ТР устанавливаются на дорогостоящем климатическом оборудовании, которое, как правило, комплектуются заводом-изготовителем. В этом случае самостоятельная наладка его не допускается. Первый запуск регулятора производится в ходе настройки котла, которую выполняют сертифицированные организации, аттестованные на проведение этих работ заводом изготовителем. От выполнения этого правила будет зависеть сохранение гарантийных обязательств.

В процессе первого пуска оборудования наладочная организация проверяет работоспособность терморегулятора, настраивает его на работу и поясняет, обслуживающему персоналу, что такое терморегулятор, как он должен обслуживаться и порядок установки текущих настроек работы климатической техники.

Наладка и эксплуатация

В процессе эксплуатации ТР должен находится в чистом состоянии, не должен подвергаться воздействию воды и других агрессивных жидкостей, его нужно беречь от механических повреждений и не располагать под прямыми солнечными лучами. Запрещается самостоятельно разбирать ТР и менять его электронные схемы.

При выполнении таких простых условий, терморегулятор будет работать весь нормативный срок эксплуатации, качественно выполняя свои функции по управлению тепловыми процессами.

Современная климатическая техника в обязательном порядке должна комплектоваться терморегуляторами. Это требование вызвано необходимостью обеспечения энергоэффективности систем отопления. Даже применение простейших механических ТР позволяет экономить от 10 до 30 % топлива в течение отопительного сезона.

Применение цифровых терморегуляторов позволяет создать комфорт в доме, снижает ежемесячные затраты на электроэнергию, повышает эффективность работы климатического оборудования и его КПД, упрощает процессы управления. Все это приводит к снижению общих вредных выбросов в окружающую среду.

Принцип работы терморегулятора

В радиаторах и разного рода системах отопления с целью контроля температуры используются специальные электрические устройства. При проектировании или ремонте подобной системы нужно хорошо представлять себе, что такое терморегулятор, каковы его назначение и механизм действия, как подобрать подходящий термостат.

Устройства для регуляции температуры

Необходимость и особенности терморегуляторов

Терморегулятор это средство регуляции температурного уровня, используемое в приборах, имеющих дело с теплом: в отопительном, охладительном оборудовании и системах контроля температуры в помещении. Регуляторы применяются и в сельском хозяйстве, например, в тепличных установках. Когда температура в помещении или установке в ту или иную сторону отклоняется от рамок, заданных в настройках, устройство дает команду включить или отключить нагревательные элементы. С его помощью можно контролировать степень нагрева не только воздуха и иных газообразных сред, но и жидкостей и твердых тел (например, поверхностей электроприборов).

Как устроен термостат

При подборе подходящего устройства потребители интересуются, как работает терморегулятор. Хотя эти приборы выпускаются с разными типами действующих блоков (электроника, механический узел и т.д.), принцип работы терморегулятора, независимо от его типа, базируется на считывании данных из среды, подлежащей температурному контролю. Базируясь на получаемых данных, устройство определяет, есть ли необходимость в задействовании дополнительных термических элементов или отключении имеющихся.

Важно! Для предотвращения выхода устройства из строя и минимизации вероятности ошибочных показаний термический датчик следует размещать как можно дальше от зоны непосредственного воздействия обогревателя, батарей и иного подобного оборудования.

Преимущества и недостатки

Свойства термостатических устройств, их сильные и слабые стороны напрямую зависят от типа конструкции. Наиболее важный показатель – минимизация погрешности считывания температурных данных. В принципе, высокая точность характерна для любых термостатов, имеющих электронные компоненты, тогда как в случае механических устройств именно меньшая точность (погрешность может достигать трех градусов) является основным минусом. Зато они просты в регулировке и обладают весьма демократичной ценой.

Важно! Наиболее сложными в управлении (и дорогостоящими) являются программируемые устройства. При всем при этом они весьма экономичны в отношении потребления электроэнергии, обладают большой гибкостью настроек. Приобретать такое устройство пользователю следует лишь при уверенности, что он сможет правильно программировать работу термостата.

Виды терморегуляторов

Приспособления, предназначенные для регуляции температуры, могут быть классифицированы по различным основаниям. Выпускаются изделия, рассчитанные на разные виды монтажа: на стену или на дин-рейку. Варьируются поддерживаемый диапазон измерений и число каналов. Однако в первую очередь они различаются по строению, в зависимости от того, какие механические узлы и электронные компоненты в них задействованы.

Механические термостаты

Это наиболее простые изделия, лишенные электронной «начинки», чаще всего они используются для контроля температуры жилых помещений. Их работа базируется на способности некоторых материалов изменять свои характеристики под воздействием меняющейся температуры. Задавать рамки полагается посредством вращения колеса. При выходе за них возникает замыкание или разрыв электроцепи, ведущие к подключению дополнительных нагревательных элементов или отрубанию имеющихся.

Плюсы такой конструкции – надежность, долговечность, простота управления, способность функционирования при минусовых температурах, стойкость к скачкам напряжения. Основным минусом является вероятность погрешности, в ряде случаев довольно значительной (до 3 градусов). Кроме того, изделия нельзя назвать бесшумными: при срабатывании они издают щелкающие звуки.

Механический регулятор

Биметаллические пластины

При нагревании такая пластинка деформируется и открывает сомкнутые контакты. Вследствие этого к нагревательному элементу прибора перестает поступать ток. Остывая, пластинка возвращается в прежнюю позицию, и контакты соединяются снова. Тогда электроэнергия опять подается на соответствующий элемент, что влечет за собой нагревание. Такая конструкция вмонтирована в электрические чайники, плиты, утюги.

Работа биметаллической пластины

Газонаполненные датчики

Газовые термостаты включают в себя заполненную газом трубу и контактные элементы. При помещении в жидкость газ расширяется и провоцирует замыкание контакта. Размыкание происходит, когда жидкая среда охлаждается. Конструкция устанавливается в водонагреватели, отопительные приборы на масле.

Важно! Плюсами этого и предыдущего типов являются автоматическая регуляция и бюджетная цена, минус – отсутствие места для вариативных гибких настроек, что ограничивает сферу применения.

Восковые терморегуляторы

Эти аппараты состоят из герметически запаянной камеры, снабженной пробкой из воска, и стерженька из металла. При нагревании плавящийся воск вытесняет стержень наружу, и последний инициирует изменения в электрической цепи. Такие конструкции широко применяются в автомобилестроении, а также при проектировании смесителей.

Электронные термостаты

Их применяют в разного рода системах контроля климата, в конструкциях теплого пола. Они включают в себя датчик температуры, электронный ключ и блок контроля, генерирующий команды подключения и выключения нагревательных элементов. Приборы снабжены электронным табло, на котором репрезентируются температурные данные. Они бывают с закрытой и открытой логикой. Гибкость настроек и расширенные возможности управления присущи только второму типу, такие изделия выпускаются с кнопочным или сенсорным управлением.

Электронный прибор

Двухзонные термостаты

Двухзонный терморегулятор предоставляет возможность параллельного управления двумя отопительными системами, к примеру, кухни и жилой комнаты. Некоторые модели ограничиваются возможностью выбора из нескольких заданных программ, другие – дают возможность самостоятельного задания параметров. Термодатчики надо помещать в местах, куда не проникают влага и прямые лучи солнца.

Термостат 12 В

Использование терморегулятора 12 вольт практикуется в аквариумах, тепличных помещениях, при инкубации яиц. Прибор состоит из датчика и блока контроля. Температурные ограничения задаются самим пользователем. Как источник питания используется аккумулятор в 12 вольт. Преимущества такого устройства – несложное управление и низкая цена.

Применение регуляторов и датчиков температуры

Устройства устанавливаются как в жилых комнатах, так и в производственных помещениях. Если существует необходимость в регуляции работы теплого пола, можно купить прибор, снабженный двумя датчиками, один из которых монтируется на поверхность пола (будучи заточенным под считывание данных с твердых поверхностей), а другой – помещается на стену и работает с температурой воздуха. Терморегуляторы применяются и в бытовых приборах, работающих с температурными перепадами, а также в производстве автомобилей.

Без применения устройств контроля температуры не будет возможным слаженное функционирование систем и приборов, работающих с температурными перепадами. При выборе прибора нужно обращать внимание на то, насколько его конструкция и настройки подходят системе, в которой ему придется работать.

Устройство и принцип работы терморегулятора

Терморегулятором называют деталь изделия, автоматически поддерживающую температуру, значение которой устанавливает потребитель. Другое название устройства – термостат. Его используют в холодильных и морозильных камерах, системах отопления, в помещениях с искусственно созданным климатом. В этой статье, вы узнаете о том, как устроен и как работает терморегулятор на батарее, в холодильнике и утюге.

Холодильный терморегулятор

Устройство терморегулятора холодильника несколько отличается от того, что применяется в других системах. Это связано с особенностями строения камеры и ее назначением (охлаждать, а не нагревать).

устройство терморегулятора холодильника

Конструкция включает в себя (смотрите рисунок, где представлено устройство терморегулятора холодильника Т-110):

  1. Термическую систему;
  2. Пружину;
  3. Ползунок;
  4. Гайку;
  5. Винт регулировочный 1;
  6. Корпус термостата;
  7. Колодка;
  8. Винт регулировочный 2;
  9. Пружину для перебрасывания;
  10. Пружину контровочную;
  11. Рычажное устройство;
  12. Ось.

Конструкция различных моделей холодильников может отличаться между собой. Но у них можно выделить общие элементы:

  • Узел резкого замыкания. Необходим для защиты контактов от выгорания, которое свойственно процессам замыкания в электрической цепи. Подвижные контакты располагают не на силовом рычаге, а на другом, соединенным с ним с помощью пружины. При повороте силового рычага контакт не движется (цепь еще замкнута). Затем пружина резко меняет положение и размыкает цепь (или замыкает);
  • Узел, изменяющий температурный режим. Состоит из пружины и винта, перемещающего гайку. От натяжения пружины зависит объем подачи фреона – охлаждающей жидкости;
  • Узел, предназначенный для настройки дифференциала – устройства, ограничивающего ход силового рычага. Он определяет, при какой температуре цепь будет замыкаться, а при какой – размыкаться. Например, при установленной температуре в холодильнике в 3 градуса, цепь будет размыкаться при достижении 2,7 градусов. А при 3,3 цепь будет замыкаться вновь. Диапазон можно сделать больше или меньше.

3

На рисунке видно, что от термической системы отходит трубка, которую заполняют рабочей средой. Это фреон или хлорметил. Трубку встраивают в холодильные и морозильные камеры. Причем так, чтобы жидкая фаза находилась в конце трубки (в морозильнике), а пары вещества – в начале. Температура жидкой фазы всегда ниже паров одного и того же вещества. Поэтому в морозильнике шкала термометра всегда ниже нуля, а в холодильнике – выше.

Принцип действия

Принцип работы терморегулятора холодильника следующий:

схема терморегулятора холодильника

  1. Если в трубке температура понижается, то в термической системе давление паров рабочей среды понижается. Тогда гофрированная часть сильфона сжимается, отчего силовой рычаг относительно оси начинает вращение. Это приводит к размыканию цепи;
  2. Если температура растет, то внутри термической системы давление паров растет. От этого внутри сильфона расширяется гофра. Рычаг начинает движение в обратную сторону, вращаясь вокруг оси. Это приводит к тому, что контакты замыкаются.

Чтобы менять температурный режим, необходимо определить усилие пружины. Чем оно больше, тем выше температура устанавливается в холодильнике. И наоборот, усилить холод можно путем уменьшения натяжения пружины. Регулировка усиления производится с помощью поворотной рукоятки, вынесенной во внутреннюю часть холодильника.

Термостат в утюге

4

Конструкция электрического терморегулятора, используемого для утюгов, включает в себя элементы (смотрите рисунок):

  1. Биметаллическая пластинка;
  2. Пластинка-контакт подвижная;
  3. Пружина пластинки-контакта;
  4. Ручка термостата;
  5. Шайбы-изоляторы;
  6. Пластина-контакт неподвижная;
  7. Утюжная подошва;
  8. Регулировочный винт.

Отопительный терморегулятор

Регулировать температуру в помещении можно, вращая ручку шарового крана. Но он может находиться только в двух положениях: открыто или закрыто. Если кран закрыть не полностью, то конструкция потеряет герметичность из-за твердых частиц, содержащихся в носителе тепла, которые повреждают шарнир. Поэтому для систем отопления чаще используют специальный терморегулятор с механическим управлением.

В устройство терморегулятора отопления входят элементы (смотрите рисунок):
55

  1. Термический элемент;
  2. Термический перекрывающий клапан;
  3. Шкала настроечная.
  4. Чувствительный к изменению температуры элемент;
  5. Разъемное соединение;
  6. Шток передающий;
  7. Клапан от золотника;
  8. Компенсаторное устройство;
  9. Накидная гайка;
  10. Кольцо для фиксации;

Сложная конструкция свойственна и для термического элемента, который называют сильфоном. Это цилиндр с гофрированными изнутри стенками. Полость заполнена газом или жидкостью – рабочей средой, способной реагировать на изменение температуры вокруг. Именно этот элемент обусловливает принцип работы терморегулятора отопления.

6

Принцип действия

Принцип работы терморегулятора отопления основан на свойстве веществ увеличиваться в объеме при нагревании и уменьшаться при остывании. Термодатчик реагирует на изменение температуры снаружи конструкции. А каждому ее значению соответствует некоторое давление рабочей среды, которая заполняет полость сильфона.

Возможны два варианта действия:

  • Температура превысила установленное потребителем значение. Тогда сильфон растягивается от увеличения объема рабочей среды. Это заставляет перемещаться шток, от которого зависит работа перекрывающего клапана. Поток теплоносителя уменьшается, и температура падает;
  • Температура стала ниже установленной потребителем. Тогда сильфон сжимается, поскольку объем рабочей среды в нем уменьшается. Шток начинает двигаться в обратном направлении, приоткрывая клапан. Поток теплоносителя увеличивается, отчего температура начинает расти.

Эти два процесса постоянно сменяют друг друга. Современные терморегуляторы позволяют реагировать на изменение температуры в пределах одного градуса и даже десятых его долей. Для человека такая температурная разность несущественна, и он не заметит периодического повышения и понижения.

Принцип работы терморегулятора

Учитывая смену погодных условий, установить необходимую температуру в квартире не всегда просто. Сегодня для создания комфортного микроклимата в помещении существуют терморегуляторы. Температура, которую они способны поддерживать, варьируется от -40°С до +140°С. Устройство термостата может отличаться в зависимости от типа его управления: механического или электронного.

Схема механического терморегулятора Механический терморегулятор

Схема механического термостата

Механические терморегуляторы относятся к самым простым и недорогим устройствам. Они прекрасно подходят для помещений, где нет острой необходимости в точной регулировке температуры. Механические термостаты способны поддерживать оптимальную температуру в помещении, посредством несложной схемы работы.

Как работает терморегулятор можно понять, взглянув на утюг. Принцип работы термостата очень похож. Когда помещение нагревается до определенного предела, он отключается. А после охлаждения воздуха на несколько градусов включается вновь.

Например, термостат HEAT-PRO RTС-70 управляется при помощи поворотного регулятора (колесика) и при достижении заданного температурного уровня останавливает нагревательный процесс. Текущий режим работы можно проследить с помощью индикатора на корпусе термостата.

Схема электронного терморегулятора Электронный терморегулятор

Схема электронного терморегулятора

Электронный термостат (он же программируемый) регулируется специальным датчиком, от чего и зависит температурный режим. Датчик может располагаться как на самой системе, так и удаленно от нее. Некоторые электронные устройства способны менять температуру в зависимости от различных внешних факторов. Например, учитывая время суток или день недели. Многие современные модели оснащены жидкокристаллическим дисплеем, который отражает реальную и заданную температуру в помещении.

Пример такой модели — термостат HEAT-PRO S-603. Он оснащен двумя датчиками: для контроля температуры воздуха и для контроля температуры полов. LCD-дисплей отражает текущие показатели температуры и времени. Также прибор позволяет установить необходимый температурный режим на неделю.

Учитывая широкий ассортимент терморегуляторов, вы сможете без труда подобрать тот, который будет отвечать всем вашим пожеланиям.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *