Какие явления были названы электрическими
Перейти к содержимому

Какие явления были названы электрическими

Урок физики в 8-м классе "Электрические явления"

Тема урока: Электризация тел. Два рода зарядов. Взаимодействие заряженных тел. Электроскоп. Проводники и непроводники электричества.

Оборудование: электроскоп, электрометры, гильза из фольги на подставке стеклянная и эбонитовая палочки, кусок меха и щелка, мультимедийный проектор, ноутбук.

I. Организационный момент.
II. Объяснение нового материала.
III. Запись домашнего задания.
IV. Закрепление изученного материала.
V. Подведение итогов. Выставление оценок.

I. Организационный момент.

Ребята, посмотрели друг на друга. Пожелали друг другу хорошего настроения.

Еще в древности люди обратили внимание на то, что потертый шерстью кусочек янтаря начинает притягивать к себе различные мелкие предметы: пылинки, ниточки и тому подобное.

Вы сами можете легко убедиться, что эбонитовая палочка, потертая о шерсть, начинает притягивать небольшие кусочки бумаги, листочки фольги. Расческа потертая о волосы также притягивает мелкие листочки бумаги.

Как объяснить что происходит ? Почему эбонитовая палочка потертая о шерсть притягивает к себе листочки фольги?

Сегодня на уроке мы с вами выясним сущность данного явления и постараемся его объяснить.

Запишите пожалуйста тему урока

Электризация тел. Два рода зарядов. Взаимодействие заряженных тел. Электроскоп. Проводники и непроводники электричества.

Учащимся предлагается план урока

Наука об электрических явлениях зародилась еще до нашей эры, начавшись с наблюдения за электрическими свойствами янтаря. В отличие от механики – науки о движении, давлении, равновесии, наука об электричестве до VI века так и оставалась в зачаточном "янтарном" состоянии. Крупный шаг вперед в изучении электрических явлений после древних греков сделал английский врач У.Гильберт (1540–1603). Он установил, что свойство притягивать легкие предметы после натирания, кроме янтаря, приобретают также и алмаз, сапфир, аметист, горный хрусталь, сера, смола и некоторые другие тела. Гильберт их назвал "электрическими", то есть "подобными янтарю". Все прочие тела, в первую очередь металлы, которые не обнаруживали таких свойств, он назвал "неэлектрическими". Так в науку вошел термин "электричество", и было положено начало систематическому изучению электрических явлений. Следующий шаг в изучении электрических явлений был сделан бургомистром немецкого города Магдебурга Отто фон Герике (1602–1686). Он сконструировал первую электрическую машину, представлявшую собой большой шар из серы, вращавшийся на железной оси. При натирании шара ладонью он сильно электризовался и мог электризовать другие тела. Используя свою машину, Герике впервые наблюдал отталкивание наэлектризованных тел и слышал треск электрических искр. С начала XVIII века электрическими экспериментами увлекаются члены Лондонского Королевского научного общества. Они наблюдают электрическое притяжение не только в воздухе, но и в вакууме, изучают возникновение электрических искр, открывают явление электропроводности и указывают, что для сохранения заряда тела оно должно быть изолировано от других тел. В 1733 году француз Ш. Дюфэ впервые устанавливает существование двух родов зарядов – положительного и отрицательного (прежде заряды тел считали отличающимися лишь по величине). С середины XVIII века электрические опыты проводились в светских салонах и королевских дворцах, на заседаниях ученых обществ и в частных домах.

Итак, что мы наблюдали?

Это явление называется электризацией, а силы, действующие при этом – электрическими силами.

Слово электризация происходят от греческого слова " электрон" , что означает " янтарь" . При трении расчески о волосы или эбонитовой палочки о шерсть предметы заряжаются, на них образуются электрические заряды.

Заряженные тела взаимодействуют друг с другом и между ними возникают электрические силы. Электризоваться трением могут не только твердые тела, но и жидкости, и даже газы.

Таким образом, электризация – физическое явление.Существует два разных рода электрических зарядов. Условно они названы " положительным" зарядом и " отрицательным" зарядом .

Тела при электризации могут заряжаться как положительно, так и отрицательно

Положительно заряженными называют тела, которые действуют на другие заряженные предметы так же, как стекло, наэлектризованное трением о шелк.
Отрицательно заряженными называют тела, которые действуют на другие заряженные предметы так же, как эбонит, наэлектризованный трением о шерсть.

Вывод : Основное свойство заряженных тел и частиц: одноименно заряженные тела и частицы отталкиваются, а разноименно заряженные – притягиваются.

Электризуя разные тела, легко заметить, что сила взаимодействия между ними может быть различной: больше или меньше. В физике это объясняют тем, что заряд тела может быть большим или маленьким. Следовательно, заряд – физическая величина. Единицей измерения заряда служит 1 кулон. (1Кл)

— Строение электроскопа представляет ученик

Для обнаружения наэлектризованных тел служат специальные приборы – электроскопы или электрометры

Электроскоп имеет цилиндрический корпус (1) , который закрыт стеклом (2). Внутрь прибора вставлен металлический стержень (3) с легкоподвижными лепестками (4). От металлического корпуса прибора стержень отделен пластмассовой втулкой (5). Если выступающей части стержня коснуться каким-нибудь наэлектризованным телом, то лепестки отклонятся друг от друга.

Электроскоп – прибор для обнаружения наэлектризованных тел. Принцип его действия основан на отталкивании одноименно заряженных тел.

Пусть левый электроскоп заряжен, а правый – нет. Соединим электроскопы проволокой. Мы увидим, что заряд поровну распределится между приборами. Убрав проволоку и коснувшись правого электроскопа рукой, мы заставим его заряд перейти внутрь нашего тела. После этого опять соединим электроскопы проволокой. Так можно поступать сотни раз: заряд будет делиться на все более мелкие части.

Однако американский физик Р.Милликен опытами установил, что заряд любого тела можно делить не бесконечно.

Вывод: Существует наименьшая порция заряда – элементарный заряд: 1,6·10 -19 Кл. Заряд никакого тела не может быть меньше этой величины.

Электрический заряд-это мера свойств заряженных тел определенным образом взаимодействовать друг с другом

Так что же такое электризация?

Наэлектризуем эбонитовую палочку шерстяной варежкой, а стеклянную палочку – шелковым платком. Подвесив палочки на нитях, увидим, что эбонит и шерсть, стекло и шелк притягивают друг друга, а стекло и шерсть, эбонит и шелк отталкиваются друг от друга:

При электризации трением два тела заряжаются равными по модулю и противоположными по знаку зарядами. Благодаря контакту одно тело теряет электроны, а другое их же приобретает. Поэтому на одном теле появляется избыток электронов (отрицательный заряд), а на другом — недостаток (положительный заряд).

Вывод : Тело заряжено отрицательно — у тела имеется избыток электронов

Тело заряжено положительно — у тела имеется недостаток электронов

В зависимости от способа электризации два наэлектризованных тела либо притягиваются, либо отталкиваются. Тела, наэлектризованные трением друг о друга, а также наэлектризованное и не наэлектризованное тела всегда только притягиваются.

Существуют вещества, электроны которых настолько слабо связаны со своими атомами, что могут отделяться от них даже и без трения. Достаточно простого соприкосновения тел, и они становятся заряженными. Это другой вид электризации — электризация индукцией .

Сначала электрометры не были заряжены. Предположим теперь, что поднесенная к ним палочка имеет положительный заряд. При этом в левой части правого шара образуется отрицательный заряд. А поскольку ионы металла прочно связаны друг с другом, образуя кристаллическую решетку, они не смогут никуда передвинуться, и во всех остальных местах образуется недостаток электронов, то есть положительный заряд. Если теперь палочку убрать, то электроны вновь равномерно распределятся между шарами, и они станут незаряженными. Но, если же, не убирая палочки, раздвинуть шары, то они так и останутся разноименно заряженными.

Вывод : Электризация тел индукцией объясняется перераспределением электрических зарядов между телами (или частями тела), в результате чего тела (или части тела) заряжаются разноименно.

Однако не все тела заряжаются в результате электризации индукцией . Электроны есть в атомах всех тел, тогда почему же не удается наэлектризовать индукцией пластмассовые или резиновые шары? Это значит, что электроны этих тел не являются свободными, то есть не образуют перераспределение зарядов между телами. Поэтому для электризации этих веществ необходимо прибегнуть к трению, способствующему отделению электронов от атомов.

В проводниках некоторые электроны слабо связаны с ядром атома и могут перемещаться от атома к атому. Такие электроны называются свободными. Именно они обеспечивают перенос заряда (проводимость).

В диэлектриках практически нет свободных электронов, некому переносить заряд, следовательно, практически нет проводимости.

Вывод : Следовательно, по электрическим свойствам все вещества можно разделить на два вида.

Диэлектрики – вещества, не имеющие свободных зарядов и, поэтому, не позволяющие заряду одного тела "перетекать" на другие тела.

Проводники – тела и вещества, в которых существуют свободные заряженные частицы; они могут перемещаться, перенося заряд в другие части тела или к другим телам.

Мы понимаем, что пластмасса, из которой изготовлена линейка, является диэлектриком, а металлическая проволока – проводником.

Вывод : Демонстрация показала, что при любых взаимодействиях, связанных с возникновением и переходом заряда от одних тел к другим, суммарный заряд всех участвующих в этом тел остается постоянным.

Это утверждение выражает закон сохранения электрического заряда.

Во всех явлениях электризации тел суммарный электрический заряд сохраняется.

Если одно тело приобретает положительный электрический заряд, то второе тело тоже приобретает равный по модулю отрицательный

10 необычных электрических явлений, существующих в природе

Электричество, которым человечество научилось управлять сравнительно недавно, можно наблюдать в природе, причём в самых разнообразных и удивительных формах.

1. Вистлеры (свистовые волны)

1

Вистлеры ещё называют свистящими атмосфериками или электромагнитным хором рассвета за то, что звуки, которые они производят, напоминают пение птиц ранним утром. Это почти неземные звуки, образующиеся в верхних слоях атмосферы при разрядах молний, причём их можно записать даже на простейшем радиооборудовании. Существует даже такое понятие как «охотники за вистлерами», обозначающее радиолюбителей, путешествующих на дальние расстояния в районы с минимальным наличием линий электропередач и других электромагнитных помех для того, чтобы сделать чистые звуковые записи.

2. Молнии Кататумбо

2

Молнии Кататумбо являются самым длительным грозовым явлением на Земле. Они зафиксированы в устье реки Кататумбо (Венесуэла), а их многочасовое свечение породило немало легенд и мифов среди коренного населения. Пары метана из местных болот в сочетании с ветром со стороны Анд поднимаются в атмосферу и фактически провоцируют непрерывные удары молний. Интенсивный гром с молниями начинается сразу после наступления сумерек и продолжается около 10 часов. Сами молнии красно-оранжевого цвета можно увидеть в ясные ночи из многих стран Карибского бассейна. Это явление настолько уникально, что его собираются включить в список Всемирного наследия ЮНЕСКО.

3. Грязные грозы

3

«Грязная гроза» – это мощное электрическое грозовое явление, формирующееся в шлейфе вулканического извержения. Что именно порождает эти массивные электрические разряды пока неизвестно, учёные предполагают, что частицы льда и пыли трутся друг о друга и вырабатывают статическое электричество, что и вызывает эти удивительные молнии необычного цвета. В течение 2011 года массовые грязные грозы наблюдались в Чили. Температура и плотность фонтанов пепла без присутствия воды, которая могла бы объяснить формирование молнии, по-прежнему делает это явление неразгаданной природной тайной.

4. Визуальный феномен космических лучей

4

Космические лучи зарождаются в глубоком космосе, они путешествуют в течение миллионов лет и, в конце концов, попадают на нашу планету. Эти лучи поглощаются нашей атмосферой, потому для нас они невидимы. Зато космонавты видят их даже с закрытыми глазами. Лучи воздействует иначе, чем земной свет. Космонавты миссии «Аполлон 11» описывали их как пятна и полосы, возникающие каждые три минуты. Хотя этот визуальный феномен полностью не изучен учёными, уже известно, что космические лучи движутся на высоких скоростях и проходят через космические корабли и через сетчатку глаз космонавтов.

5. Триболюминесценция

Триболюминесценции – световое явление, излучаемое из кристаллического вещества при его разрушении. На сегодняшний день считается, что через это вещество проходит электрический ток и заставляет молекулы газа, находящиеся внутри кристалла, светиться. Практическое современное использование триболюминесценции включает в себя обнаружение трещин внутри зданий, а также внутри космических аппаратов, плотин и мостов. Когда наши предки обнаружили этот источник, они приписали ему божественное происхождение. Индейские шаманы наполняли церемониальные трещотки кварцевыми кристаллами, которые светились при тряске, что придавало особую атмосферу проводимым ритуалам. Кстати, вы можете пронаблюдать этот свет в домашних условиях. Положите кусочки сахара на ровную поверхность в темном помещении и раздавите их стеклянным стаканом, чтобы увидеть синеватые вспышки света.

6. Сонолюминесценция

5

Сонолюминесценция, то есть выработка света звуковыми волнами, была обнаружена в 1930-е годы. Ученые впервые столкнулись с загадочными огнями, исследуя морские гидролокаторы. Когда звуковые волны проходили через воду, появлялось синее мерцание и вспышки света. Мелкие пузырьки в воде расширялись и быстро сжимались, возникало высокое давление и температура, хлопок, выработка энергии, а затем излучение света. Иными словами, звук превращался в свет. Кстати, механизм этого явления по сей день не является полностью изученным.

7. Спрайты

6

Спрайты – это мощные, яркие вспышки обычно красного цвета, возникающие высоко в атмосфере, выше грозовых туч, на высоте от 80 км. В диаметре они могут быть от 50 км и более. Ранее считалось, что спрайты – это разновидность молнии, но впоследствии было установлено, что это скорее определённый тип плазмы. Спрайты напоминают большую красную медузу с длинными синими щупальцами. Их сложно сфотографировать с земли, но есть много снимков, сделанных с самолетов.

8. Шаровая молния

7

Оказывается, что шаровые молнии как явление стали восприниматься всерьез только в 60-х годах, хотя их появление фиксировалось постоянно в течение многих столетий. Эти странные шары могут различаться по размерам: от горошины до небольшого автобуса. Трещащие, шипящие, яркие шары возникают во время грозы, в некоторых случаях они могут спонтанно и громко взрываться. Одна из самых странных тайн шаровой молнии – это её «разумное» поведение. Она влетает в здания через дверные проемы или окна и путешествует по комнатам, огибая столы, стулья и прочие предметы. Происхождение шаровых молний до сих пор тщательно изучается, но к единому мнению учёные так ещё и не пришли.

9. Огни святого Эльма

8

Еще во времена Колумба Огни святого Эльма считались сверхъестественным явлением. Моряки часто рассказывали о ярко-синем или фиолетовом свечении вокруг корабля. Свечение напоминало мерцающие на ветру языки пламени вокруг мачт. Внезапное появление Огней святого Эльма считалось добрым предзнаменованием, поскольку странный пучкообразный свет возникал перед окончанием мощных штормов. Наука имеет своё объяснение этому странному свечению. Разница в напряжении между воздушной атмосферой и морем вызывает ионизацию газов, которые начинают светиться. Кстати, Огни святого Эльма были также замечены на церковных шпилях, крыльях самолетов и даже рогах крупного скота.

10. Северное сияние

Полярные (северные) сияния – это изумительные световые явления, возникающие в ночном небе. Аврора Бореалис в северном полушарии и Аврора Австралис в южном полушарии получили свои имена от римской богини рассвета. Они выглядят как волнистая, светящаяся завеса зелёного цвета, хотя были также зафиксированы сияния красного, розового, желтого и изредка синего цветов. Причина земных Аврор заключается в том, что заряжённые частицы, высвобождаемые из атмосферы Солнца, сталкиваются с частицами газа в атмосфере Земли, и в результате мы становимся свидетелями впечатляющего природного светового шоу.

Электрические явления. Часть 1

«Солнечным камнем» называли в Древней Греции янтарь – затвердевшую сосновую смолу. Греки очень любили изделия из янтаря за его блеск и солнечный цвет.

1llllЯнтарная смола

Давно превратилась в легенду история открытия способности янтаря после трения о что-нибудь притягивать к себе другие тела. Вот о чем она говорит:

Природу этих явлений удалось объяснить только во второй половине двадцатого века, а сами явления, названные в честь янтаря электрическими, уже давно служили человеку. Электрических явлений очень много. Среди них, электризация – получение телом способности к притяжению после трения, касания или влияния.

Электризация наблюдается не только у двух твердых тел. Это происходит, когда жидкость течет по металлу или разбрызгивается на множество капель при ударе о твердое тело.

Зафиксированы случаи, когда в темное ночное время были не только слышны, но и видны сходящие снежные лавины. Их движение сопровождалось зеленоватым свечением.

Н. Тенсинг, покоритель Гималаев, наблюдал интересное явление, происходящее с его палатками. Они были вставлены друг в друга для сохранения тепла. Во время сильного сухого ветра пространство между палатками заполнялось мелкими искрами. Происходила электризация обледеневших палаток.

Тела, испытавшие на себе электризацию, называются наэлектризованными.

Такие тела могут повлиять на состояние других тел таким образом, что те тоже становятся наэлектризованными.

Объясняется это передачей электрического заряда от наэлектризованного тела нейтральному. Заряд характеризует величину наэлектризованности тел.

Зарядов существует два вида: отрицательные и положительные. Это деление условное. За положительный принято считать заряд, полученный при натирании шелком стеклянного тела. Тот заряд, который получает эбонитовая палочка, потертая о шерсть или мех, получил статус отрицательного заряда. Некоторые тела электризуются, как стекло, и приобретают положительные заряды. Другие, как эбонит, при электризации получают отрицательные заряды.

Наэлектризованные тела или заряды влияют друг на друга. Заряды одного знака отталкиваются, а разных знаков – притягиваются.

Электроскоп и электрометр – это одно и то же?

Существует небольшая путаница в этих двух понятиях: электроскоп и электрометр. Но, если рассмотреть вторые части этих слов, то уже можно говорить, что у них есть отличие. «Скоп» — «скопление», «вместе», «сообща». «Метр» значит что-то «измерять».

Внешний вид приборов тоже имеет отличия.

9tttr
Электроскоп

Электроскоп состоит из металлического корпуса, внутри которого металлический стержень. Сверху стержень выходит наружу. К нему можно прикрепить полый шар или плоскую пластину. Внизу к стержню прикреплены два тонких бумажных или металлических лепестка.

Если коснуться стержня заряженным телом, лепестки разойдутся в разные стороны.

Это происходит следующим образом. Металлы являются проводниками электрического заряда. Когда заряженное тело касается металлического стержня, заряд по нему проходит до лепестков. Но ведь этот заряд одного знака, значит, оба лепестка заряжаются одинаково, и происходит отталкивание.

12rtrtr
Электрометры

Электрометр также имеет металлический корпус, металлический стержень, но в отличие от электроскопа на нижнем конце стержня нет лепестков. К средней части стержня крепится стрелка, а к корпусу небольшая шкала.

Электрометр может показать не только наличие заряда. Он выполняет несложные измерения.

Получается, что электроскоп и электрометр немного отличаются по своей конструкции и назначению.

Передача (проведение) электричества

Все ли вещества могут одинаково передавать электрический заряд? Ответ можно получить с помощью двух электрометров, металлического стержня и эбонитовой палочки. Стержень и палочка крепятся к пластмассовой ручке.

  • а – сообщить первому электрометру заряд, коснувшись шарика каким-либо заряженным телом;
  • б – стержнем из металла соединить оба электрометра. Половина заряда с первого электрометра перейдет на второй;
  • в – соединить электрометры эбонитовой палочкой. Перехода заряда не наблюдается.

Вещества, способные проводить электрические заряды, как в случае под буквой б, называются проводниками (металлы, кислотные, щелочные и солевые растворы). Вещества, с помощью которых нельзя передать заряды, называются диэлектриками (изоляторами). Хорошие диэлектрики – это резина, стекло, эбонит, фарфор, пластмассы, воздух и др.

Делимость электрического заряда. Электрон

В эксперименте с электрометрами металлическим стержнем часть заряда переносится от одного электрометра на другой. Из опыта видно, что заряд делится. Если коснуться стержня второго электрометра рукой, то заряд с него снимется, и распределится по всему телу (человеческое тело является хорошим проводником электричества). Если снова соединить приборы стержнем из металла, оставшийся заряд опять разделится. При повторении тех же шагов заряд каждый раз будет делиться. Кажется, что этот процесс будет происходить до бесконечности.

Заряды постепенно настолько уменьшаются, что электрометр уже не в состоянии их измерить. Уже очень точные опыты показали, что делить заряд до бесконечности нельзя, существует наименьший электрический заряд, который поделить уже нельзя. Называют его элементарным зарядом с абсолютной величиной e. Заряды измеряют в кулонах (Кл) в честь Шарля Кулона, французского физика.

Элементарным электрическим зарядом с отрицательным знаком обладает частица электрон (греч. «еlectron» – «янтарь»).

Электрическое поле

Механически действовать друг на друга тела могут лишь при касании (удар, толчок, соприкосновение). Подействовать первое тело на второе может с помощью посредника, третьего тела. Например, звучание музыкального инструмента барабанная перепонка уха воспринимает через посредника, которым является воздух. Для электрических зарядов ситуация другая. Они взаимодействуют без касания и без посредника. Взаимодействие это определяется электрическим полем, которое существует вокруг любого электрического заряда.

Поле невидимо. Его наличие подтверждается приборами или действием на тела или заряды.

Английский ученый Майкл Фарадей, введя понятие электрического поля, предложил его схематическое изображение с помощью линий со стрелками. Стрелки были названы силовыми линиями. Силовые линии поля отрицательного заряда направлены к заряду, у положительного – от заряда.

При сближении двух зарядов на близкие расстояния электрические поля изображаются следующим образом:

Силовые линии одноименных зарядов отталкиваются, разноименных – притягиваются. Как результат такого поведения полей, отталкивание или притяжение электрических зарядов.

При попадании в электрическое поле тело или частица испытывает на себе действие некоторой силы. Это главное свойство электрического поля.

Направление действия электрической силы зависит от знака заряда и расстояния от заряженного тела.

Как тела электризуются?

В восемнадцатом веке американский ученый Франклин (1706-1790) высказал предположение, что электричество – это особая невесомая жидкость, столь тонкая, что она пропитывает все тела. Электризация же, по его мнению, основана на том, что электричество переплывает с одного тела на другое. Эта теория не нашла поддержки, так как правильность ее не удалось подтвердить на опытах.

23hlhlh
Наэлектризованные волосы

Известно, что молекулы вещества состоят из более мелких частиц – атомов. Объяснить, почему тела электризуются, удалось лишь после изучения строения атомов. Оказалось, что атомы представляют сложную систему элементарных частиц:

  • электроны, имеющие отрицательный заряд, движутся вокруг ядра;
  • протоны с положительным зарядом находятся в ядре;
  • нейтроны, не имеющие заряда частицы, находятся в ядре.

Все эти мельчайшие частицы обладают элементарным зарядом. У протона заряд с плюсом, у нейтрона заряда нет, значит, ядро в сумме является положительно заряженным. В атоме электронов столько же, сколько и протонов. В результате атом в целом электрически нейтрален, то есть не имеет заряда.

В обычных условиях вещества, состоящие из таких атомов, тоже электрически нейтральны.

В результате трения часть электронов может переместиться с одного тела на другое. Это происходит на расстояниях, очень близких к межмолекулярным. Но, когда после трения тела разъединить, электроны, покинувшие свои атомы, оказываются на другом теле. Получается на одном теле не хватает электронов (недостаток), а на другом электронов стало больше (избыток). Там, где избыток, тело отрицательно заряжено. Там, где недостаток, тело заряжается положительно.

Полезное и вредное действие электризации

Если подробно изучить и правильно использовать электризацию, то она может стать полезным физическим явлением.

Существуют электрофильтры, которые применяются в дымовых трубах. Частицы сажи при трении о трубу электризуются и оседают на ее стенках. В воздух попадает уже меньшее количество вредных веществ.

Чтобы покрасить автомобиль, его корпус заряжают положительно, а краску – отрицательно. Частицы краски друг от друга отталкиваются и одновременно притягиваются к деталям автомобиля, что способствует равномерному, плотному и тонкому окрашиванию.

25lkhh

На хлебокомбинатах легче получить хорошо перемешанное тесто, если зарядить муку положительно, а воду – отрицательно, крупинки муки устремятся к каплям воды. В такой ситуации тесто превратится в однородную массу быстрее, что значительно увеличит производительность предприятия.

Используется электризация при копчении рыбы. Тушки рыбы соединяют с отрицательно заряженными стержнями, а коптильный дым заряжают положительно. Дым прилипает к поверхности рыбы и проникает в нее. Электрокопчение происходит равномерно и быстро. Прокопченный слой придает продукту особый вкус и одновременно защищает рыбу от порчи.

Электрофильтры, притягивающие к себе пыль, используют на крупных птицефабриках. Они очищают воздух от запыленности, что положительно сказывается на яйценоскости куриц и развитии молодняка.

Электризация может принести и большой вред.

Очень опасна электризация для цистерн по перевозке горючего. Во время наполнения цистерны заряды накапливаются внутри. При движении заряды продолжают накапливаться. Во время освобождения цистерны от самой малой искры может произойти взрыв.

В работающих типографских машинах от трения электризуется бумага, что может привести к ее воспламенению и пожару. Часто и в домашних принтерах при долгом печатании замечается слипание листов бумаги. Это тоже электризация.

В текстильной промышленности страдают от электризации чесальные машины, подстригающие ворс специальные ножницы. Все это приводит к запутыванию нитей, их обрыву и, как результат, поломкам станков.

При производстве резины электризуется каучук, проходящий между двумя вращающимися валами. Приближение к такому каучуку любого проводящего тела может вызвать искру и пожар.

И, конечно же, человек испытывает на себе неприятные ощущения от электризации одежды, волос, синтетических покрывал и ковров. Это происходит чаще в зимнее время, когда воздух более сухой. При трении во время ходьбы по синтетическим покрытиям или снятии одежды электроны «не могут найти» капельки воды в воздухе и оседают на коже человека, электризуя ее. Вместо антистатических веществ, проведя влажной рукой по одежде, накопленные на ней заряды снимаются. Одежда перестает прилипать к телу. Другой причиной электризации является неправильное сочетание одежды. Разные ткани через трение друг о друга электризуются и передают заряды человеку. Реакция людей на эти явления различна, потому что у каждого человека электрическая проводимость тела индивидуальна. Кто-то не заметит электризации, а кого-то сильно тряхнет в момент возникновения зарядов. Проветривание комнат для увлажнения воздуха, грамотный подход к выбору одежды и уходу за ней повлияют на снижение проявлений электризации человеческого тела.

Эффективно защищает от электризации заземление. Заряд уходит по проводнику в землю и распределяется в ней, предотвращая большие и малые неприятности.

Материалы

1. Органическое стекло – твердый, прозрачный синтетический материал, хорошо плавится, с пониженной хрупкостью.

2. Сургуч – легко плавящаяся и затвердевающая смесь, состоящая из твердой смолы, воска, мела, гипса.

3. Эбонит – черного или темно-коричневого цвета резина с высоким содержанием в своем составе серы (30-40%).

Билет № 8

По-гречески электрон – это янтарь. Древнегреческие учёные заметили, что если потереть янтарь о шерсть, то он начнёт притягивать к себе различные предметы.

Опыт: Если потереть стеклянную палочку о лист бумаги, а затем поднести ее к мелко нарезанным листочкам бумаги, то они начнут притягиваться к стеклянной палочке.

Наблюдаемые явления в начале XVII в. Были названы электрическими. Стали говорить, что тело, получившее после натирания способность притягивать другие тела, наэлектризовано или, что ему сообщен электрический заряд.

Электризоваться могут различные вещества. Электризация происходит при соприкосновении тел. Про тело после натирания говорят – оно наэлектризовано или имеет заряд. Электрический заряд можно передавать от одного тела к другому. Все наэлектризованные тела притягивают к себе кусочки бумаги.

*На явлении электризации тел при соприкосновении основан принцип работы ксероксов.

Существует два рода эл. заряда: положительный и отрицательный. Потёртое о щёлк тело получает отрицательный заряд, а шёлк – положительный. Одноимёно-заряженные тела отталкиваются, а розноимёно-заряженные тела притягиваются.

Все тела можно разделить на проводники, полупроводники и диэлектрики.

Проводники – это вещества, которые проводят электрический заряд (металлические, человеческие, животные тела и растворы солей).

Диэлектрики – это вещества, которые не проводят электрический заряд (резина, дерево, стекло, пластмасса, бумага, ткани, керосин, воздух).

Приборы для измерения электрического заряда: электроскоп, электрометр.

Пространство вокруг заряженного тела отличается от пространства вокруг незаряженного тела. Вокруг заряженного тела существует электрическое поле. Электрическое поле – материально. Вблизи заряженных тел действие поле сильнее, при удалении оно ослабевает.

Электрическая сила – это сила, с которой электрическое поле действует на внесённый в него электрический заряд.

Силовые линии – это линии, касательная к которым показывает направление силы, с которой эл. поле действует на заряд, помещённый в данную точку поля.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *