Способы получения поляризованного света
Степень поляризации (степень выделения световых волн с определенной ориентацией электрического (и магнитного) вектора) зависит от угла падения лучей и показателя преломления.
2. пропускание света сквозь анизотропную среду.
Все прозрачные кристаллы (кроме кристаллов кубической системы, которые оптически изотропны) обладают способностью двойного лучепреломления, т. е. раздваивания каждого падающего на них светового пучка. Если на толстый кристалл исландского шпата направить узкий пучок света, то из кристалла выйдут два пространственно разделенных луча, параллельных друг другу и падающему лучу.
Даже в том случае, когда первичный пучок падает на кристалл нормально, преломленный пучок разделяется на два, причем один из них является продолжением первичного, а второй отклоняется. Второй из этих лучей получил название необыкновенного (е), а первый — обыкновенного (о).
3. поляризаторы
Типичным представителем поляризационных призм является призма Ннколь*, называемая часто ни́колем. Призма Николя.
Поляризация света для «чайников»: определение, суть явления и сущность
В нашем блоге уже можно найти статьи про преломление, дисперсию и дифракцию света. Теперь пришло время поговорить о том, в чем заключается сущность поляризации света.
В самом общем смысле правильнее говорить о поляризации волн. Поляризация света, как явление, представляет собой частный случай поляризации волны. Ведь свет представляет собой электромагнитное излучение в диапазоне, воспринимаемом глазами человека.
Что такое поляризация света
Поляризация – это характеристика поперечных волн. Она описывает положение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.
Если этой темы не было на лекциях в университете, то вы, вероятно, спросите: что это за колеблющаяся величина и какому направлению она перпендикулярна?
Как выглядит распространение света, если посмотреть на этот вопрос с точки зрения физики? Как, где и что колеблется, и куда при этом летит?
Свет – это электромагнитная волна, которая характеризуется векторами напряженности электрического поля E и вектором напряженности магнитного поля Н. Кстати, интересные факты о природе света можно узнать из нашей статьи.
Согласно теории Максвелла, световые волны поперечны. Это значит, что векторы E и H взаимно перпендикулярны и колеблются перпендикулярно вектору скорости распространения волны.
Поляризация наблюдается только на поперечных волнах.
Для описания поляризации света достаточно знать положение только одного из векторов. Обычно для этого рассматривается вектор E.
Если направления колебаний светового вектора каким-то образом упорядочены, свет называется поляризованным.
Возьмем свет на рисунке, который приведен выше. Он, безусловно, поляризован, так как вектор E колеблется в одной плоскости.
Если же вектор E колеблется в разных плоскостях с одинаковой вероятностью, то такой свет называется естественным.
Поляризация света по определению – это выделение из естественного света лучей с определенной ориентацией электрического вектора.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Откуда берется поляризованный свет?
Свет, который мы видим вокруг себя, чаще всего неполяризован. Свет от лампочек, солнечный свет – это свет, в котором вектор напряженности колеблется во всех возможных направлениях. Но если вам по роду деятельности приходится весь день смотреть в ЖК-монитор, знайте: вы видите поляризованный свет.
Естественный, поляризованный и частично поляризованный свет
Чтобы наблюдать явление поляризации света, нужно пропустить естественный свет через анизотропную среду, которая называется поляризатором и «отсекает» ненужные направления колебаний, оставляя какое-то одно.
Анизотропная среда – среда, имеющая разные свойства в зависимости от направления внутри этой среды.
В качестве поляризаторов используются кристаллы. Один из природных кристаллов, часто и давно применяемых в опытах по изучению поляризации света — турмалин.
Еще один способ получения поляризованного света — отражение от диэлектрика. Когда свет падает на границу раздела двух сред, луч разделяется на отраженный и преломленный. При этом лучи являются частично поляризованными, а степень их поляризации зависит от угла падения.
Связь между углом падения и степенью поляризации света выражается законом Брюстера.
Когда свет падает на границу раздела под углом, тангенс которого равняется относительному показателю преломления двух сред, отраженный луч является линейно поляризованным, а преломленный луч поляризован частично с преобладанием колебаний, лежащих в плоскости падения луча.
Линейно поляризованный свет — свет, который поляризован так, что вектор E колеблется только в одной определенной плоскости.
Практическое применение явления поляризации света
Поляризация света – не просто явление, которое интересно изучать. Оно широко применяется на практике.
Пример, с которым знакомы почти все – 3D-кинематограф. Еще один пример – поляризационные очки, в которых не видно бликов солнца на воде, а свет фар встречных машин не слепит водителя. Поляризационные фильтры применяются в фототехнике, а поляризация волн используется для передачи сигналов между антеннами космических аппаратов.
Фото, сделанные с применением поляризационного фильтра и без него
Поляризация — не самое сложное для понимания природное явление. Хотя если копнуть глубоко и начать основательно разбираться с физическими законами, которым она подчиняется, могут возникнуть сложности.
Чтобы не терять время и преодолеть трудности максимально быстро, обратитесь за советом и помощью к нашим авторам. Мы поможем выполнить реферат, лабораторную работу, решить контрольные задания на тему «поляризация света».
- Контрольная работа от 1 дня / от 120 р. Узнать стоимость
- Дипломная работа от 7 дней / от 9540 р. Узнать стоимость
- Курсовая работа 5 дней / от 2160 р. Узнать стоимость
- Реферат от 1 дня / от 840 р. Узнать стоимость
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.
Какие способы получения поляризованного света вам известны
Перейдем к рассмотрению способов получения поляризованного света. Свет, испускаемый различными источниками, в частности раскаленными твердыми телами или светящимися газами,
обычно естественный. Это объясняется тем, что элементарные источники света — атомы и молекулы — движутся беспорядочно и испускаемые ими световые волны имеют всевозможные направления колебаний вектора Поэтому необходимо найти способы выделения поляризованного света из естественного. Перечислим важнейшие из них.
1. Поляризация при отражении и преломлении. Если естественный свет (рис; IV.33, а) падает на отражающую поверхность диэлектрика (стекла, слюды и т. п.) под углом а, удовлетворяющим условию Брюстера:
то отраженная волна оказывается плоскополяризованной показатель преломления).
При Соблюдении условия (1.27) отраженный луч оказывается перпендикулярным преломленному лучу . У отраженной волны вектор перпендикулярен плоскости падения, поэтому в преломленной (прошедшей во вторую среду) волне энергия колебаний в плоскости падения будет больше, чем в перпендикулярной плоскости, и волна частично поляризована.
Недостатком поляризации при отражении является малая доля отражаемого от диэлектриков излучения (например, от стеклянной пластинки отражается 3—5% падающего света). Поэтому пользуются многократным отражением волны от «стопы пластин» (рис. IV.33, б); отраженные лучи уносят колебания, перпендикулярные плоскости падения, и проходящий луч, постепенно «очищаясь» от этих колебаний, становится почти плоскополяризованным (с вектором лежащим в плоскости падения).
2. Поляризация при двойном лучепреломлении в кристаллах; призма Николя. При преломлении света на границе оптически анизотропных сред, например кристаллов, естественный луч расщепляется на два луча (обыкновенный и необыкновенный), поляризованные в двух взаимно перпендикулярных плоскостях (рис. IV.34, а).
Обыкновенный и необыкновенный лучи имеют в кристалле различные скорости распространения, следовательно, различные показатели преломления этим объясняется двойное лучепреломление в точке падения волны на грань призмы: при одном и том же угле падения имеются два угла преломления: . Однако поляризованные лучи выходят из кристалла под очень малым углом друг к другу, что затрудняет их раздельное использование. Чтобы «развести» эти лучи, пользуются различными «поляризующими призмами». Наиболее распространенной является призма Николя; из кристалла исландского шпата вырезаются две призмы (рис. IV.34, б), которые склеиваются канадским бальзамом. Показатель преломления этого клея лежит между показателями преломления исландского шпата для обыкновенного и необыкновенного лучей (значение не зависит от угла между лучом и оптической осью кристалла; его минимальное значение 1,486).
Углы в призме подобраны так, чтобы обыкновенный луч на поверхности канадского бальзама испытал полное внутреннее отражение. При помощи этой призмы естественная световая волна разделяется на две плоскополяризованные волны, содержащие почти по 50% падающей энергии (потери в призме невелики). Допустим теперь, что на призму падает плоскополяризованная волна. На рис. IV.35 изображена входная грань призмы; луч падает в точку О перпендикулярно плоскости чертежа. Вектор падающей волны следует разложить на две составляющие: . Вектор перпендикулярен оптической оси и соответствующий ей луч — обыкновенный; вектор Ее лежит в главной плоскости и принадлежит необыкновенному лучу. Очевидно, если то и падающий луч является для призмы необыкновенным; он пройдет без двойного лучепреломления. При падающий луч является для призмы обыкновенным и отразится от границы с канадским бальзамом; в этом случае через призму в прямом направлении свет не проходит. Если же а имеет промежуточною значения, то через поляризатор проходит только составляющая Так как энергия электромагнитной волны пропорциональна квадрату электрического вектора, то и поэтому прошедший через поляризатор
необыкновенный луч содержит энергию
где энергия волны, поступающей в поляризатор. Следовательно, если плоскополяризованный свет пропускается через поляризатор, то прошедшая через него энергия пропорциональна квадрату косинуса угла между вектором поступающего излучения и оптической осью поляризатора (закон Малюса).
Для некоторых целей используются поставленные один за другим два николя. Первый николь является поляризатором (выделяет плоско-поляризованный свет из естественного); оптическую ось второго николя располагают под углом а к оптической оси первого николя. Изменяя этот угол от до 90°, можно наблюдать изменение интенсивности света, вышедшего из второго николя («анализатора») по закону (1.28).
3. Поляризация при прохождении света через поглощающие анизотропные вещества; поляроиды. Некоторые кристаллические вещества (турмалин, герапатит, т. е. сернокислый иод-хинин, и др.) обладают различным поглощением для лучей с различными ориентациями вектора относительно осей этих кристаллов. Например, турмалиновая пластинка толщиной около или чешуйка герапатита толщиной около почти полностью поглощают обыкновенные лучи (у которых, как указывалось выше, вектор перпендикулярен оптической оси); необыкновенные же лучи частично поглощаются, частично выходят из пластинки. Если на такую пластинку падает естественный свет, то из пластинки выходит только необыкновенный плоскополяризованный луч. Так же действуют так называемые поляроиды — целлулоидные пленки, содержащие определенным образом ориентированные мелкие кристаллики герапатита. Следует иметь в виду, что эти вещества обладают селективным (избирательным) поглощением по отношению к различным длинам волн, т. е. коэффициент поглощения их зависит от длины волны. Поэтому если на такие вещества подается не монохроматический, а, например, белый свет, то вышедший из них свет получается окрашенным, причем эта окраска оказывается различной в различных направлениях («дихроизм»).
2. Способы получения поляризованного света.
Существует.несколько способов получения и анализа поляризованного света.
1. Поляризация при помощи поляроидов
Поляроиды представляют собой целлулоидные пленки с нанесенным на них тончайшим слоем кристалликов сернокислого нодхинина. Применение поляроидов является в настоящее время наиболее распространенным способом поляризации света.
2. Поляризация посредством отражения
Если естественный луч света падает на черную полированную поверхность, то отраженный луч оказывается частично поляризованным. В качестве поляризатора и анализатора может быть употреблено зеркальное или достаточно хорошо отполированное обычное оконное стекло, зачерненное с одной стороны асфальтовым лаком.
Степень поляризации тем больше, чем правильнее выдержан угол падения. Для стекла угол падения равен 57°.
3. Поляризация посредством преломления
Световой луч поляризуется не только при отражении, но и при преломлении. В этом случае в качестве поляризатора и анализатора используется стопка сложенных вместе 10—15 тонких стеклянных пластинок, расположенных к падающим на них световым лучам под углом в 57°.
3. Поляризация при отражении света от диэлектрика. Закон Брюстера.
Поляризация при отражении и преломлении света на границе двух диэлектриков
Одним из способов получения поляризованного света является его отражение и преломление на границе раздела двух изотропных диэлектриков. Пусть на границу раздела диэлектриков 1 и 2 падает естественный свет. Отраженный и преломленный лучи оказываются частично поляризованными. В отраженном луче преобладают колебания, перпендикулярные к плоскости падения, в преломленном луче — колебания, параллельные плоскости падения. Степень поляризации зависит от угла падения. При некотором угле падения, называемом углом Брюстера, отраженный луч становится полностью поляризованным (плоско поляризованным).
Закон Брюстера — закон оптики, выражающий связь показателя преломления с таким углом, при котором свет, отражённый от границы раздела, будет полностью поляризованным в плоскости, перпендикулярной плоскости падения, а преломлённый луч частично поляризуется в плоскости падения, причем поляризация преломленного луча достигает наибольшего значения. Легко установить, что в этом случае отраженный и преломленный лучи взаимно перпендикулярны. Соответствующий угол называется углом Брюстера.
Это явление оптики названо по имени шотландского физика Дэвида Брюстера, открывшего его в 1815 году.
Закон Брюстера: , где n21 — показатель преломления второй среды относительно первой, θBr — угол падения (угол Брюстера).
4. Закон Малюса.
Закон Малюса — физический закон, выражающий зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла между плоскостями поляризации падающего света и поляризатора.
где — интенсивность падающего на поляризатор света,
— интенсивность света, выходящего из поляризатора,
— коэффициент прозрачности поляризатора.
Установлен Э. Л. Малюсом в 1810 году.
В релятивистской форме
где и
— циклические частоты линейно поляризованных волн, падающей на поляризатор и вышедшей из него.
Свет с иной (не линейной) поляризацией может быть представлен в виде суммы двух линейно-поляризованных составляющих, к каждой из которых применим закон Малюса. По закону Малюса рассчитываются интенсивности проходящего света во всех поляризационных приборах, например в поляризационных фотометрах и спектрофотометрах. Потери на отражение, зависящие от и не учитываемые законом Малюса, определяются дополнительно.