Проводимость
Когда учащиеся впервые видят формулу общего параллельного сопротивления, возникает естественный вопрос: «Откуда эта штука?». Это действительно странная арифметика, и ее происхождение заслуживает хорошего объяснения.
В чем разница между сопротивлением и проводимостью?
Сопротивление, по определению, является мерой «трения», которое компонент представляет для прохождения через него тока. Сопротивление обозначается заглавной буквой «R» и измеряется в единицах «Ом». Однако мы также можем думать об этом электрическом свойстве с обратной ему точки зрения: насколько легко току течь через компонент, а не насколько трудно.
Если сопротивление – это термин, которое мы используем для обозначения меры того, насколько трудно току течь, то хорошим термином, чтобы выразить, насколько легко ток течет, будет проводимость. Математически проводимость – это величина, обратная сопротивлению:
Чем больше сопротивление, тем меньше проводимость; и наоборот.
Это должно быть интуитивно понятно, потому что сопротивление и проводимость – противоположные способы обозначения одного и того же важного электрического свойства.
Если сравнивать сопротивления двух компонентов и обнаружится, что компонент «A» имеет сопротивление вдвое меньше сопротивления компонента «B», то в качестве альтернативы мы могли бы выразить это соотношение, сказав, что компонент «A» в два раза более проводящий, чем компонент «B». Если компонент «A» имеет сопротивление, равное только одной трети от сопротивления компонента «B», то мы можем сказать, что он в три раза более проводящий, чем компонент «B», и так далее.
Единица измерения проводимости
В продолжение этой идеи были придуманы символ и единица измерения проводимости. Символ представляет собой заглавную букву «G», а единицей измерения был mho, что означает «ohm» (ом), написанное в обратном порядке (вы думали, что у электронщиков нет чувства юмора?).
Несмотря на свою уместность, единицы измерения mho в последующие годы были заменены единицей Сименс (сокращенно «См», или, в англоязычной литературе, «S»). Это решение об изменении названий единиц измерения напоминает изменение единицы измерения температуры в градусах стоградусной шкалы (degrees centigrade – от латинских слов «centum», т.е. «сто», и «gradus») на градусы Цельсия (degrees Celsius) или изменение единицы измерения частоты c.p.s. (циклов в секунду) в герцы. Если вы ищете здесь какой-то шаблон переименования, то Сименс, Цельсий и Герц – это фамилии известных ученых, имена которых, к сожалению, о природе единиц говорят нам меньше, чем их первоначальные обозначения.
Возвращаясь к нашему примеру с параллельной схемой, мы должны быть в состоянии увидеть, что несколько путей (ветвей) для тока уменьшают общее сопротивление всей цепи, поскольку ток может легче проходить через всю цепь из нескольких ветвей, чем через любую из них отдельно. Что касается сопротивления, дополнительные ветви приводят к меньшему общему значению (ток встречает меньшее сопротивление). Однако с точки зрения проводимости дополнительные ветви приводят к большему общему значению (ток протекает с большей проводимостью).
Общее сопротивление параллельной цепи
Общее сопротивление параллельной цепи меньше, чем любое из сопротивлений отдельных ветвей, потому что параллельные резисторы вместе «сопротивляются» меньше, чем по отдельности:
Рисунок 1 – Полное сопротивление параллельной цепи
Общая проводимость параллельной цепи
Общая проводимость параллельной цепи больше, чем проводимость любой из отдельных ветвей, потому что параллельные резисторы «проводят» вместе лучше, чем по отдельности:
Рисунок 2 – Полная проводимость параллельной цепи
Чтобы быть более точным, полная проводимость в параллельной цепи равна сумме отдельных проводимостей:
\[G_ <общ>= G_1 + G_2 + G_3 + G_4\]
Если мы знаем, что проводимость – это не что иное, как математическая величина, обратная (1/x) сопротивлению, мы можем перевести каждый член приведенной выше формулы в сопротивление, подставив величину, обратную каждой соответствующей проводимости:
Решая приведенное выше уравнение для полного сопротивления (вместо значения, обратного общему сопротивлению), мы получим следующую формулу:
Итак, мы, наконец, пришли к нашей загадочной формуле сопротивления! Проводимость (G) редко используется в качестве практического параметра, поэтому при анализе параллельных цепей часто используется приведенная выше формула.
Электрическая проводимость
Электри́ческая проводи́мость (электропроводность, проводимость) — способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению. В СИ единицей измерения электрической проводимости является сименс (называемая также в некоторых странах Мо) [1] .
Содержание
Удельная проводимость
Удельной проводимостью (удельной электропроводностью) называют меру способности вещества проводить электрический ток. Согласно закону Ома в линейном изотропном веществе удельная проводимость является коэффициентом пропорциональности между плотностью возникающего тока и величиной электрического поля в среде:
— удельная проводимость,
— вектор плотности тока,
— вектор напряжённости электрического поля.
В неоднородной среде σ может зависеть (и в общем случае зависит) от координат, то есть не совпадает в различных точках проводника.
Удельная проводимость анизотропных (в отличие от изотропных) сред является, вообще говоря, не скаляром, а тензором (симметричным тензором ранга 2), и умножение на него сводится к матричному умножению:
(но такое соотношение для анизотропной среды реализуется только в одних выделенных координатах) [2]
Величина, обратная удельной проводимости, называется удельным сопротивлением.
Вообще говоря, линейное соотношение, написанное выше (как скалярное, так и тензорное), верно в лучшем случае [3] приближённо, причём приближение это хорошо только для сравнительно малых величин E . Впрочем, и при таких величинах E , когда отклонения от линейности заметны, удельная электропроводность может сохранять свою роль в качестве коэффициента при линейном члене разложения, тогда как другие, старшие, члены разложения дадут поправки, обеспечивающие хорошую точность. В случае нелинейной зависимости J от E вводится дифференциальная удельная электропроводность (для анизотропных сред:
).
Электрическая проводимость G проводника длиной L с площадью поперечного сечения S может быть выражена через удельную проводимость вещества, из которого сделан проводник, следующей формулой:
с коэффициентом теплопроводности
:
» width=»» height=»» /> направлено вдоль проводов. При торможении катушки к каждому свободному электрону приложена сила инерции —
— масса электрона). Под её действием электрон ведёт себя в металле так, как если бы на него действовало некоторое эффективное электрическое поле:
= \int\limits_L E_
где L — длина провода на катушке. [4]
Введём обозначения: I — сила тока, протекающего по замкнутой цепи, R — сопротивление всей цепи, включая сопротивление проводов катушки и проводов внешней цепи и гальванометра. Запишем закон Ома в виде:
Тогда за время торможения через гальванометр пройдёт заряд
62 500 000
медь 58 100 000 золото 45 500 000 алюминий 37 000 000 магний 22 700 000 иридий 21 100 000 молибден 18 500 000 вольфрам 18 200 000 цинк 16 900 000 никель 11 500 000 железо чистое 10 000 000 платина 9 350 000 олово 8 330 000 сталь литая 7 690 000 свинец 4 810 000 нейзильбер 3 030 000 константан 2 000 000 манганин 2 330 000 ртуть 1 040 000 нихром 893 000 графит 125 000 вода морская 3 земля влажная 10 −2 вода дистилл. 10 −4 мрамор 10 −8 стекло 10 −11 фарфор 10 −14 кварцевое стекло 10 −16 янтарь 10 −18 См. также
Примечания
, есть произвол в выборе такой системы координат (собственных осей тензора
), а именно довольно очевидно, что можно произвольно повернуть ее относительно оси с отличающимся собственным числом, и выражение не изменится. Однако это не слишком меняет картину. В случае же совпадения всех трех собственных чисел мы имеем дело с изотропной проводимостью, и, как легко видеть, умножение на такой тензор сводится к умножению на скаляр.
Самыми первыми материалами, которые стали использоваться в электротехнике исторически были металлы и диэлектрики (изоляторы, которым присуща маленькая электрическая проводимость). Сейчас получили широкое применение в электронике полупроводники. Они занимают промежуточное положение между проводниками и диэлектриками и характеризуются тем, что величину электрической проводимости в полупроводниках можно регулировать различным воздействием. Для производства большинства современных проводников используются кремний, германий и углерод. Кроме того, для изготовления ПП могут использоваться другие вещества, но они применяются гораздо реже.
В электротехнике важное значение имеет передача тока с минимальными потерями. В этом отношении важную роль играют металлы с большой электропроводностью и, соответственно, маленьким электросопротивлением. Самым лучшим в этом отношении является серебро (62500000 См/м), далее следуют медь (58100000 См/м), золото (45500000 См/м), алюминий (37000000 См/м). В соответствии с экономической целесообразностью чаще всего используются алюминий и медь, при этом медь по проводимости совсем немного уступает серебру. Все остальные металлы не имеют промышленного значения для производства проводников.
Какой буквой обозначается проводимость
Проводимость
Когда начинающие радиолюбители видят уравнение для расчета общего сопротивления параллельной цепи, у них возникает естественный вопрос , "Откуда оно взялось?". В этой статье мы попытаемся дать ответ на данный вопрос.
Ввиду того что электроны, сталкиваясь с частицами проводника, преодолевают некоторое сопротивление движению, принято говорить, что проводники обладают электрическим сопротивлением. Сопротивление обозначается буквой "R" и измеряется в Омах. Однако, всякий проводник можно характеризовать не только его сопротивлением, но и так называемой проводимостью — способностью проводить электрический ток. Проводимость есть величина, обратная сопротивлению:
Чем больше сопротивление, тем меньше проводимость и наоборот. Сопротивление и проводимость являются противоположными способами обозначения одного и того же электрического свойства материалов. Если при сравнении сопротивлений двух компонентов выясняется, что сопротивление компонента "А" составляет половину от сопротивления компонента "Б", то мы можем альтернативно выразить эту связь, сказав, что проводимость компонента "А" в два раза выше проводимости компонента "Б". Если сопротивление компонента "А" составляет одну треть от сопротивления компонента "Б", то можно сказать, что компонент "А" в три раза проводимее компонента "Б", и так далее.
Обозначается проводимость буквой "G", а ее единицей измерения первоначально было "Мо", то есть "Ом" записанный задом наперед. Но, несмотря на уместность этой единицы, позже она была заменена на "Сименс" (сокращенно — См или S).
Теперь давайте вернемся к нашему примеру параллельной цепи. Если рассматривать ее с точки зрения сопротивления, то наличие нескольких путей (ветвей) для потока электронов снижает общее сопротивление этой цепи, так как электронам легче течь по нескольким путям, чем по одному, обладающему некоторым сопротивлением. Если рассматривать цепь с точки зрения проводимости, то несколько путей для потока электронов наоборот, увеличивают проводимость схемы.
Общее сопротивление параллельной цепи меньше любого из ее отдельных сопротивлений, поскольку несколько параллельных ветвей создают меньше препятствий потоку электронов, чем каждый резистор по отдельности:
Общая проводимость параллельной цепи больше проводимости любой ее отдельной ветви, поскольку параллельно соединенные резисторы лучше проводят электрический ток, чем каждый резистор по отдельности:
Точнее будет сказать, что общая проводимость параллельной цепи равна сумме ее отдельных проводимостей:
Зная, что проводимость равна 1/R, мы можем преобразовать эту формулу в следующий вид:
Из данной формулы видно, что общее сопротивление параллельной цепи будет равно:
Ну вот мы и нашли ответ на поставленный в начале статьи вопрос! Вам следует знать, что проводимость очень редко используется на практике, в связи с чем данная статья носит чисто образовательный характер.