Тайны Cолнца
• Солнце относится к типу G2V (жёлтый карлик). В нашей Галактике (Млечный Путь) насчитывается до 400 миллиардов звёзд. 85% звёзд менее яркие, чем Солнце (в большинстве своём красные карлики).
• Солнце находится на расстоянии около 26 000 световых лет от центра Млечного Пути и вращается вокруг него, делая один оборот за 225—250 миллионов лет.
• Масса Солнца составляет 99,866% массы всей Солнечной системы. На долю всех других планет, комет и астероидов остается всего 0,2%, из них половина приходится на Юпитер.
• Солнце — ближайшая к Земле звезда. Средняя удалённость Солнца от Земли составляет 149,6 млн км — это приблизительно равно астрономической единице (150 млн км).
• Гравитация Солнца примерно в двадцать восемь раз превышает гравитацию Земли.
• Свет доходит от Солнца до Земли за восемь минут.
• Температура поверхности Солнца — 5780 кельвина (5506 С).
• Солнечное излучение поддерживает жизнь на Земле (свет необходим для начальных стадий фотосинтеза), определяет климат.
• Солнце состоит из водорода (73%), гелия (25%) и других элементов: железа, никеля, кислорода, азота, кремния, серы, магния, углерода, неона, кальция и хрома.
• Ультрафиолетовое излучение Солнца имеет антисептические свойства, позволяющие использовать его для дезинфекции воды и различных предметов. Оно также вызывает загар и имеет другие биологические эффекты, например стимулирует производство в организме витамина D.
• Солнце состоит преимущественно из гелия и водорода, и не имеет твёрдой поверхности.
• Солнце вращается вокруг своей оси, причём слои звёздного вещества на экваторе вращаются почти на треть быстрее, чем слои в полярных областях.
• У Солнца, как и у любой звезды, есть своя атмосфера. Её верхняя граница уходит далеко за орбиту Плутона.
• Температура солнечного ядра составляет примерно пятнадцать миллионов градусов. Температура на его поверхности составляет примерно пять с половиной тысяч градусов.
• Примерно установленный возраст Солнца составляет 4,6 миллиарда лет. Солнце проживёт ещё 4-5 миллиардов лет.
• На Солнце воды куда больше, чем на Земле. Существующие в виде пара молекулы воды сконцентрированы в основном в «солнечных пятнах» и в узком слое под поверхностью звезды.
• Солнечное излучение смертельно опасно из-за сопутствующей ему радиации, но ее блокируют магнитосфера и атмосфера Земли.
• Ватикан лишь в 1992 году публично признал, что Земля действительно вращается вокруг Солнца.
• Солнечный ветер распространяется от Солнца со скоростью около 450 километров в секунду.
• Каждую секунду Солнце сжигает около семисот миллионов тонн своего вещества.
Солнце — ядерный реактор.
С открытием строения атома и ядерных реакций, в науке возобладала гипотеза о термоядерной природе свечения Солнца. Современный состав Солнца (по массе): 75% водорода, 25% гелия. Остальные элементы составляют всего 0,1%. Считается, что в ядре Солнца водород превращается в гелий в ходе термоядерных реакций.
Солнечное ядро занимает примерно 1/4 солнечного радиуса. Температура ядра оценивается в 15,6 млн.°С, а давление (в центре) — 250 миллиардов атмосфер. Плотность вещества в центре Солнца более чем в 150 раз выше плотности воды.
Мощность излучения Солнца — 3,86х1018 ватт. Считается, что эта энергия возникает в ходе термоядерных реакций. Для этого, 700 млн. тонн водорода каждую секунду превращаются в 695 млн. тонн гелия, и 5 млн. тонн высвобождается в виде гамма-излучения. Эта энергия многократно поглощается и переизлучается в толще Солнца и достигает поверхности преимущественно как видимый свет.
В теории "термоядерной природы свечения Солнца", есть огромное "НО"!
Термоядерные реакции обязаны сопровождаться выбросом большого количества нейтрино — незаряженных частиц, летящих со скоростью света и трудно "уловимых". Если Солнце — природный "термоядерный реактор", то Земля должна подвергаться нейтринному "обстрелу". Но специальные высокочувствительные установки этого не обнаруживают. Значит, либо теория ошибочна, либо Солнце — не совсем такое, каким мы его себе представляем.
Кроме света и тепла, Солнце излучает так называемый "солнечный ветер" — потоки заряженных частиц (в основном протонов и электронов), которые пронизывают Солнечную систему со скоростью порядка 450 км/с. Эти частицы оказывают большое влияние на Землю — от помех в радиопередачах до полярных сияний.
Это загадка для исследователей со времен Галилея. Поверхность Солнца — фотосфера, имеет температуру около 5530°С. Наблюдаемые солнечные пятна — относительно холодные (около 3500°С) и потому темные по контрасту с соседними области. Величина пятен — около 50 тыс. км, что составляет 4 диаметра Земли. Причина их появления не совсем ясна. Ритмы солнечной активности, появление, движение и периодичность пятен — все еще тайна для исследователей. Во второй половине XVII века количество пятен было аномально низким, что совпало с необычно холодным периодом в Северной Европе ("малый ледниковый период").
Вспышки на Солнце.
В феврале 2020 года, к Солнцу был запущен аппарат проекта Solar Orbiter. 16 июля НАСА обнародовало фотографии Солнца, сделанные с расстояния всего в 77 млн км, сообщает "Би-би-си". На них можно увидеть миниатюрные вспышки, в миллионы раз меньше вспышек на Солнце, которые можно увидеть с Земли с помощью телескопов. Природа происхождения этих мини-вспышек пока неизвестна. Возможно они играют важную роль в феномене нагрева солнечной короны, который в 200-500 раз горячее слоев под нею.
Большинство звезд в окружающем нас Космосе — двойные и тройные. Но у Солнца нет звезды-спутника — только планеты. Для астрономов это загадка, а для землян в целом — благо, потому что у отдельной звезды условия лучше подходят для жизни.
Магнитное поле Солнца.
Это поле защищает нашу планету от потока галактических космических лучей, которые поступают в Солнечную систему. Но Солнце и само может влиять на человечество, и весьма сильно.
В 1859 году на Землю с Солнца обрушился "Каррингтонский шторм", который полностью парализовал работу телеграфа в Северной Америке и Европе и вывел из строя электродвигатели. Но в то время, телеграфных установок и двигателей было немного, и солнечный шторм не привел к катастрофам.
В наши дни, самым известным стал солнечный "шторм", который на 9 часов обесточил канадскую провинцию Квебек, включая столицу Оттаву. Сумма ущерба составила 2 миллиарда долларов. После этого Солнце взяли под очень строгий контроль.
Кто в Солнышке живет?
За нашим светилом следят несколько космических аппаратов. В их числе — спутник NASA под названием "Solar Dynamics Observatory" (SDO) и солнечная обсерватория SOHO (Solar and Heliospheric Observatory). На снимке, сделанном SOHO 31 июля 2015 года, обнаружился объект, похожий на ангела. Он словно бы вылетел из светила. Спутники фиксируют похожие объекты вблизи Солнца каждые несколько месяцев в течение последних лет. Посмотреть эти объекты можно здесь
Спутники "Ahead" и "Behaind" ("Спереди" и "Сзади") были запущены в рамках эксперимента "Стерео", и уже несколько лет находятся с разных сторон Солнца. На многих снимках со спутника "Behaind", над полюсом Солнца наблюдается сферический объект, размером почти с Землю. Объект не стоит на месте, а передвигается над полюсом Солнца как маятник — вправо-влево, на несколько тысяч километров в каждую сторону. Согласно законам небесной механики, объект просто обязан был притянуться Солнцем и сгореть в солнечной короне, в которой температура примерно 1 миллион градусов по Кельвину. Но этого не происходит!
Есть множество снимков, на которых видно, как время от времени, в корону светила влетают "стержни" — удлиненные объекты невероятных размеров, сравнимых с диаметром Солнца! При входе в корону, они распадаются на множество "небольших" объектов, размером в 3 тысячи км. У объектов как бы выдвигаются "ноги", и они становятся похожи на крест. Впереди "крестов" видны "антенны", а позади — источники света, видимо, от "двигателей". Передвигаются "кресты" с невероятной скоростью, порядка 700-800 км в секунду! При возвращении из короны, "кресты" объединяются по парам.
Многое говорит о том, что наше светило — гигантский ядерный реактор. Но не природный, а искусственный. Весьма вероятно, что "кресты" не заправляются внутри Солнца, а наоборот, доставляют топливо для работы этого реактора, который, в свою очередь, поддерживает жизнь на Земле.
Примерно так же мы заботимся об искусственном муравейнике, помещенным в стеклянный ящик, стоящий на нашем столе.
dbalimov
Каждый сходит с ума по-своему. У меня тоже имеется индивидуальная, запатентованная технология.
Недавно меня крайне заинтересовал вопрос: какую площадь имеет такая часть поверхности Солнца, которая излучает ровно столько энергии, сколько Земля получает от всего Солнца в целом? Как вам вопрос?
Поискав готовый ответ на просторах интернета, я ничего толкового не нашел. Зато приметил на нескольких форумах обсуждающийся похожий вопрос: какая доля всей излучаемой солнечной энергии достается Земле? И тут же во всех источниках дается приблизительно такое решение: доля солнечной радиации, которую получает Земля, равна отношению площади сечения Земли диаметральной плоскостью к площади сферы c радиусом, равным радиусу земной орбиты.
Ну что же, давайте проверять.
Для начала придется сделать несколько допущений. Во всех дальнейших расчетах мы будем предполагать, что: Земля и Солнце являются идеальными шарами; Земля обращается вокруг Солнца по круговой орбите; излучение исходит от Солнца и распределяется в пространстве равномерно. Решать задачу мы будем исключительно на геометрическом уровне и не будем брать в расчет, что некоторая часть излучения вовсе не доходит до Земли, поглощаясь и отражаясь по пути сначала космической пылью и газами, а затем и земной атмосферой.
Для расчетов возьмем справочные средние значения нужных нам величин.
Радиус Земли r1 = 6 371 км.
Расстояние от центра Земли до центра Солнца R = 149 597 870 км.
Искомая доля излучения = π(r1) 2 / 4πR 2 = 0,000000000453…
То есть Земля получает приблизительно одну двухмиллиардную часть от общего солнечного излучения.
Теперь вычисляем площадь такой части поверхности Солнца, которая выдает именно эту долю излучения. Очевидно, что она будет равна произведению площади поверхности всего Солнца на только что найденную долю.
Радиус Солнца r2 = 695 700 км.
Искомая площадь части поверхности:
S = 4π(r2) 2 х 0,000000000453… = 2 757,771439343673… кв. километров.
Однако, выпив и рассудив трезво, я обнаружил, что такое решение нельзя назвать правильным. Если бы нам нужно было только оценить порядок этой величины, то можно было бы согласиться и с таким результатом. Но меня интересует точное решение, поэтому для его поиска придется немного пораскинуть мозгами. Хорошо бы заиметь какое-нибудь ненаглядное пособие.
Скажите мне, Киса, как художник – художнику: вы рисовать умеете? Нет? Я тоже. Но надо.
Рисовать мы будем на плоскости, а представлять нарисованное – в пространстве.
Рисуем Землю, рисуем Солнце. Рисуем, конечно, без соблюдения масштабов. Пунктирной линей разделяем Землю по диаметру. Для наглядности чертим круговую орбиту, по которой Земля обращается вокруг Солнца.
Проводим из центра Солнца касательные к окружности Земли (красные линии). Также проводим касательные между окружностями Земли и Солнца (синие линии).
Посмотрите, в каких точках красные касательные соприкасаются с Землей. Эти точки не совпадают с условными полюсами Земли, через которые проведена пунктирная линия.
А ведь в ранее рассмотренном алгоритме, который предлагают на различных сайтах и форумах, мы брали в расчет площадь сечения Земли, которое проходит через ее центр.
Теперь становится понятно, что приведенное выше решение является неверным.
Конечно же, невозможно провести из центра Солнца красные касательные к окружности Земли так, чтобы они коснулись Земли в точках условных полюсов. И чем ближе будут находиться друг к другу Земля и Солнце, или, чем больше будет отношение радиуса Земли к радиусу Солнца, тем дальше от полюсов будут отодвинуты точки, в которых красные касательные касаются Земли.
Теперь соединим отрезком точки пересечения красных касательных с поверхностью Солнца.
Этот отрезок отсекает часть Солнца. Перенеся построенную модель с плоскости в пространство, мы получим отсеченный от Солнца шаровой сегмент. Площадь его боковой (то есть выпуклой) поверхности, без учета площади основания, и будет равна той самой площади части Солнца, которую я ищу (вспомните мучивший меня вопрос).
Возможно, некоторый читатель воскликнет: не может быть! Ведь излучение исходит от Солнца не только перпендикулярно его поверхности! Солнце освещает Землю не только с части поверхности, ограниченной двумя красными касательными, но также и с других участков поверхности, что находятся между красными и синими касательными!
Конечно, это так. Но излучение, исходящее от Солнца с части поверхности, ограниченной двумя красными касательными, не всё идет на Землю, а частично уходит и в других направлениях. И если мы допускаем, что излучение исходит от Солнца и распределяется в пространстве равномерно, то становится очевидным, что количество излучения, исходящего от участков поверхности, находящихся между красными и синими касательными и направленного при этом на Землю, будет абсолютно равно количеству излучения, исходящему от части поверхности, ограниченной двумя красными касательными, но при этом не направленному в сторону Земли.
Следовательно, для вычисления нужной нам величины достаточно иметь только лишь рассмотренный выше отсеченный от Солнца шаровой сегмент. Если кто-то этого пока не понял, значит нужно поработать с более тщательным представлением модели сначала на плоскости, а потом и в пространстве.
Итак, мы будем искать площадь боковой (выпуклой) поверхности шарового сегмента, полученного отсечением части Солнца по точкам, где красные касательные пересекаются с его поверхностью.
Площадь боковой поверхности шарового сегмента:
S = 2πr2h, где r2 – радиус Солнца, h – высота шарового сегмента.
Теперь нам необходимо найти высоту шарового сегмента. Без тригонометрии здесь уже не обойтись. Проводим отрезки от центра Земли к точкам, в которых красные касательные касаются Земли. Соединяем отрезком центры Земли и Солнца.
Всем образующимся на нашей модели точкам даем имена.
Малюсенький отрезочек между точкой L и необозначенной точкой на поверхности Солнца – это и есть высота шарового сегмента, которую нам нужно найти. Точку на поверхности Солнца я не стал обозначать, чтобы она не сливалась с точкой L.
Но если увеличить картинку, то можно обозначить и вторую точку. Высота шарового сегмента равна длине отрезка NL.
Возвращаемся к предыдущей полной картинке, чтобы она была здесь, перед глазами.
Касательные, проведенные к окружности, всегда перпендикулярны радиусу, проведенному в точке касания.
Таким образом, мы имеем большой прямоугольный треугольник ACB и входящий в него маленький прямоугольный треугольник KLB. Углы ACB и KLB – прямые. Теперь нам нужно выяснить, чему равны острые углы треугольников.
Синус угла ABC будет равен отношению радиуса Земли к расстоянию между Землей и Солнцем.
sin (ABC) = AC / AB = 6 371 / 149 597 870 = 0,000042587504…
Зная синус угла ABC, определяем, что сам угол ABC = 0,002440084283… градуса.
Очевидно, что также и угол LBK = 0,002440084283… градуса.
Далее, угол LKB = 90 – 0,002440084283… = 89,997559915716… градусов.
Вычисляем длину отрезка LB, ведь нам теперь известны все углы и гипотенуза маленького треугольника, которая равна радиусу Солнца.
LB = KB х sin (LKB) = 695 699,999369105998… км.
Определяем высоту шарового сегмента:
NL = NB – LB = 0,000630894001… км, то есть всего около 63 сантиметров!
Площадь боковой поверхности шарового сегмента:
S = 2πr2h = 2 757,771440594113… кв. километров.
Это и есть та самая часть поверхности Солнца, которая излучает ровно столько энергии, сколько Земля получает от всего Солнца в целом. Сей участок сравним по площади с Москвой в её границах по состоянию на 2019 год.
Теперь сравним полученный результат с тем, что был найден ранее, при расчете по неверному алгоритму.
Было: 2 757,771439343673… кв. километров.
Стало: 2 757,771440594113… кв. километров.
Казалось бы, разница ничтожна: всего лишь в 1,25 квадратных метра! Однако, такая разница возникает не из-за округлений или погрешностей в расчетах, а из-за того, что Земля очень маленькая по сравнению с Солнцем, находится от него очень далеко, и красные касательные касаются Земли почти рядом с ее условными полюсами. На нашем рисунке, где масштабы не соблюдены, этого, конечно, не видно.
Но стоит нам изменить стартовые параметры, как разница в результатах будет более значительная.
Увеличим радиус Земли в 100 раз, до 637 100 км.
Уменьшим радиус Солнца в 100 раз, до 6 957 км.
Уменьшим расстояние от Земли до Солнца в 100 раз, до 1 495 978,70 км.
Подставим полученные значения в расчетные формулы и получим следующее.
При расчете по первому (неверному) алгоритму S = 27 577 714,3934… кв. километров.
При расчете по второму (моему) алгоритму S = 28 956 294,8228… кв. километров.
Как видите, разница стала более ощутимой.
Таким образом, мы убедились в том, что вести расчеты по первому принципу (делением площади сечения Земли диаметральной плоскостью на площадь сферы c радиусом, равным радиусу земной орбиты) нельзя.
И на десерт – несколько удивительных фактов о мощности Солнца.
Солнце излучает колоссальное количество радиации и теряет при этом свою массу: каждую секунду в результате термоядерных процессов 4,26 миллиона тонн солнечного вещества превращаются в лучистую энергию. Чтобы увезти такой груз на товарном поезде, понадобится 71 000 вагонов, в каждый из которых будет загружено 60 тонн. Длина такого состава будет равна 994 км.
Представьте себе, что мимо вас такой поезд проносится за одну секунду. 60 поездов в минуту. 3 600 поездов в час. И так постоянно: миллиарды лет в прошлом и миллиарды – в будущем. Вот с какой скоростью Солнце расходует свою массу! И тем не менее, для него это ничтожно мало и похудение Солнцу абсолютно не грозит: за один миллиард лет оно теряет таким образом всего лишь одну пятнадцатитысячную долю своей массы.
Полная мощность излучения Солнца составляет 3,83 х 10 (в 20 степени) МВт. Соответственно, плотность мощности излучения на его поверхности приблизительно равна 62,97 МВт на квадратный метр, чего достаточно для безостановочной постоянной работы в полную силу 10 000 бытовых электрических плит с четырьмя нагревательными элементами или 1 000 000 лампочек накаливания мощностью по 60 Вт каждая. На каждом квадратном метре!
За один год Солнце генерирует 33,57 х 10 (в 23 степени) МВт·час энергии. До верхних слоев атмосферы Земли доходит, как мы ранее установили, приблизительно одна двухмиллиардная часть, а именно 1,52 х 10 (в 15 степени) МВт·час. В среднем 53% излучения отражаются, рассеиваются и поглощаются атмосферой Земли, и только лишь 7,15 х 10 (в 14 степени) МВт·час достигает поверхности нашей планеты в течение одного года. Маловато будет?
Если всю эту энергию распределить равномерно во времени и по всей поверхности Земли, то на каждый квадратный метр придется всего лишь 0,16 кВт мощности (не стоит путать это значение с Солнечной постоянной – суммарной мощностью солнечного излучения, проходящего через единичную площадку, ориентированную перпендикулярно потоку, на расстоянии одной астрономической единицы от Солнца вне земной атмосферы, которая составляет 1,37 кВт на квадратный метр).
Полученной на поверхности Земли среднесуточной мощности 0,16 кВт на квадратный метр хватит, чтобы зажечь только лишь две с половиной лампочки. И тем не менее, в масштабах всей Земли эта энергия огромна.
Согласно справочным данным, мировое потребление всей энергии в 2008 году составило 143 000 000 ГВт·час (в это значение входит суммарно вся потребляемая человечеством и промышленностью энергия, получаемая на всех видах электростанций и от всех видов энергоресурсов и добываемого топлива). Так вот, суммарно солнечное излучение, достигшее поверхности Земли, приносит энергии в 5 000 раз больше, чем фактически расходуется во всем мире.
Для сравнения, самая мощная электростанция в России (Саяно-Шушенская ГЭС) имеет мощность 6 400 МВт, а годовая выработка электроэнергии на ней составляет 23 500 ГВт·час (так как станция работает приблизительно на 40 процентов от максимальной проектной мощности).
Количество фактически вырабатываемой станцией энергии меньше мирового потребления в 6 085 раз. Именно столько Саяно-Шушенских ГЭС потребовалось бы создать на нашей планете для обеспечения ее потребностей, если бы на Земле больше не было других электростанций и источников энергии. Выходит, что Солнце дает нам на поверхности Земли энергии в 30 425 000 раз больше, чем вырабатывает Саяно-Шушенская ГЭС!
Однако, использование человечеством энергии Солнца пока ничтожно мало. По состоянию на 2017 год, суммарная установленная электрическая мощность всех солнечных электростанций в России составляла всего 75,20 МВт, то есть 0,03% от мощности всех электростанций нашей страны, вместе взятых. В США и странах Европы солнечную энергию используют куда более активно, но все равно несоизмеримо меньше, чем другие виды энергоносителей.
Несмотря на то, что солнечная энергия бесплатна и экологически чиста, существуют факторы, сдерживающие развитие этого вида энергетики: фотоэлементы весьма дороги, а плотность потока солнечного излучения на поверхности Земли такова, что придется строить поистине гигантские сооружения для получения мощных электростанций.
Поскольку в среднем на один квадратный метр поверхности Земли приходится 0,16 кВт мощности солнечной энергии, то для построения солнечной электростанции такой же мощности, как и фактическая мощность Саяно-Шушенской ГЭС, необходимо будет всплошную укрыть фотоэлементами поле площадью 17 квадратных километров. И это при условии, что КПД таких солнечных батарей составит 100 процентов.
Но в реальности на сегодняшний день мы имеем средний КПД фотоустановок около 15-20 процентов. И тогда, с учетом такой производительности, чтобы перевести всю энергетику Земли на солнечную, под установку фотоэлементов потребуется выделение территории площадью около 600 000 кв. километров (при равномерном распределении электростанций по всей Земле, по разным ее широтам). Это сравнимо с площадью всей Украины (извините, но вместе с Крымом).
Поэтому строить такие электростанции целесообразно в районах с наибольшей инсоляцией – в широтах, близких к экватору, где реальное значение поступающей на поверхность Земли мощности в дневное время в ясную погоду может достигать 0,8-0,9 кВт на квадратный метр, что позволит более эффективно использовать энергию Солнца и сократить площадь необходимой для строительства территории.
Так сможем ли мы научиться эффективно использовать энергию Солнца и спасти Землю от экологической катастрофы, до которой остался один шаг? На этот вопрос я ответа уже найти не могу.
Солнечная энергия. Цифры и факты
Освещенность (усредненная мощность солнечного излучения, измеренная в верхней атмосфере Земли перпендикулярно солнечным лучам): 1366 Вт на квадратный метр (или 1361, в соответствии с НАСА).
«Стандартное солнце» (пиковая мощность излучения, которая достигает поверхности Земли на уровне моря в районе экватора в безоблачный полдень): 1000 Вт/м 2 , или 1 кВт/м 2 .
Это значение обычно используется в характеристиках фотоэлектрических систем. Здесь и далее все цифры приведены для поверхностей, оптимально расположенных относительно солнца (перпендикулярно лучам) в соответствии с широтой. Для горизонтальных поверхностей вы получите меньше солнечного света: чем дальше от экватора, тем ниже плотность солнечной энергии.
Инсоляция (среднее количество часов «стандартного солнца» на протяжении суток): от 4–5 солнечных часов на северо-востоке США до 5–7 часов на юго-западе. Инсоляция часто указывается в кВт·ч, численно вытекая из значения «стандартного солнца» в 1 кВт.
Общее количество излучаемой энергии солнечного света в день на м 2 на уровне моря: (энергия за день) = 1 кВт·ч × (инсоляция в часах). Учитывая среднюю инсоляцию в США, равную 5 солнечным часам, это значение обычно равно 5 кВт·ч/м 2 .
Солнечная мощность, усредненная за весь день: Wattsaverag = (энергия за день)/24. Для инсоляции в 5 кВт·ч мощность, усредненная за весь день – 5000 Вт/24 = 208 Вт/м 2 . Обратите внимание, что только небольшая часть этой энергии может быть преобразована в электричество из-за не очень высокой эффективности фотоэлектрических систем.
Типовые характеристики фотоэлектрических систем
Средний КПД распространенных коммерческих солнечных панелей: на кристаллическом кремнии (CSI) – 12–17%; тонкопленочных (из аморфного кремния и других материалов) – 8–12%.
Мощность, генерируемая панелью в один квадратный метр: PVwatts = (солнечная мощность) × (средний КПД), где КПД преобразуется в десятичное число.
Пиковая мощность в безоблачный полдень: PVwatts-peak = 1000 Вт × КПД. Как правило, пиковая мощность равна 120170 Вт/м 2 для CSi и 80–120 Вт/м 2 для тонких пленок (TF).
Суммарное усредненное количество энергии, производимой панелью в один м 2 за день: PVday = PVwatts-peak × (Инсоляция в часах). Для инсоляции в 5 часов это значение будет 0.6–0.85 кВт/м 2 для CSi и 0.4–0.6 кВт/м 2 для TF.
Выработанная энергия панели, усредненная за весь день: PVwatts-average = PVday/24. Это примерно 25–35 Вт/м 2 для CSi и 17–25 Вт/м 2 для TF.
Общая энергия, генерируемая фотоэлектрическим модулем на м 2 в год: PVyear = (полная энергия в день) × 365, которая будет равна примерно 219–310 кВт·ч для CSi и 146–219 кВт·ч для TF. Обратите внимание, что инверторы имеют эффективность 95–97%, поэтому фактической электроэнергии будет на 5% меньше.
Ожидаемая стоимость электроэнергии с одного м 2 , сэкономленной за год: Saving = PVyear × 0.95 × (стоимость кВт·ч), где 0.95 – КПД преобразователя и потери в проводах.
В среднем в США стоимость одного кВт·ч электроэнергии равна $0.12, это дает в год $24–35 для CSi и $17–24 для тонких пленок. Таким образом, в лучшем случае, можно будет сэкономить $35 в год на 1 м 2 панели. Эта цифра относится к высокоэффективной системе с номинальной мощностью 170 Вт/м 2 . Учитывая тот факт, что в настоящее время стоимость типичной фотоэлектрической системы составляет $8000 на 1000 Вт, такие установки будут стоить 170/1000 × $8,000 = $1,360 за м 2 . Это означает, что в нашем примере, гипотетический срок окупаемости будет 1360/35 = 39 лет. Никакое оборудование не сможет так долго функционировать. Скидки и кредиты могут сократить это время более чем на половину, однако, все равно, для среднестатистического домашнего хозяйства установка солнечной панели, скорее всего, не окупится. Конечно, это всего лишь пример. В районах с другой инсоляцией и другими затратами на установку срок окупаемости может быть выше или ниже.
Краткая информация о Солнце
- Диаметр: 1,392,000 км;
- Масса: 1,989,100 × 10 24 кг;
- Температура на поверхности:
Какую мощность излучения имеет Солнце?
Любая лампочка, излучающая свет, характеризуется мощностью излучения. Эта величина измеряется в ваттах, она определяет количество энергии (или тепла), выделяемого телом в единицу времени. Какова же мощность нашего Солнца?
Общую мощность электромагнитного излучения звезды, выделяемого ее в космическое пространство называют светимостью. Полная мощность излучения Солнца, то есть его светимость равна 3,828•10 26 Ватт (
3,75⋅10 28 Люмен). Это значит, что наша звезда светит примерно также мощно, как триллион триллионов лампочек мощностью 380 Вт! Это невероятно огромное значение. У многих атомных электростанций, например, у Запорожской АЭС, мощность одного реактора составляет 1ГВт. Получается, что Солнце вырабатывает за одну секунду столько же энергии, сколько выработает миллион атомных реакторов за 12 000 лет круглосуточной и беспрерывной работы.
Надо отметить, что до нашей планеты доходит только одна миллионная тепла, излучаемого Солнцем. Но именно эта энергия обеспечивает жизнь на Земле. Без солнечного света температура на нашей планете была бы не выше, чем, например, на Плутоне, где она равна –220°С.
Энергия в нашем светиле выделяется в ходе термоядерных реакций, топливом для которых является водород. При этом каждую секунду Солнце расходует более 4 млн тонн водорода. Из-за этого температура звезды составляет порядка 6000° С. Откуда же звезда берет этот водород? Он находился в ней ещё в тот момент, когда Солнце впервые вспыхнуло в космосе 4,6 млрд лет назад. С тех пор звезда просто сжигает свои запасы. Примерно через 5 млрд лет водород почти закончится.
Но это не значит, что Солнце погаснет. Оно начнет сжигать гелий, и при этом светило на время резко увеличится в размерах. Меркурий и Венера будут поглощены Солнцем. Естественно, что на Земле станет так жарко, что она будет абсолютно непригодна для жизни.
Однако ещё через некоторое время закончится и гелий, и тогда наша звезда постепенно потухнет и превратится в белого карлика. После этого Солнце будет медленно, в течение миллиардов лет остывать.