Расскажите об опытах Фарадея, которые привели к открытию явления электромагнитной индукции.
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
ФАРАДЕЙ. ОТКРЫТИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ
Одержимый идеями о неразрывной связи и взаимодействии сил природы, Фарадей пытался доказать, что точно так же, как с помощью электричества Ампер мог создавать магниты, так же и с помощью магнитов можно создавать электричество.
Логика его была проста: механическая работа легко переходит в тепло; наоборот, тепло можно преобразовать в механическую работу (скажем, в паровой машине). Вообще, среди сил природы чаще всего случается следующее соотношение: если А рождает Б, то и Б рождает А.
Если с помощью электричества Ампер получал магниты, то, по-видимому, возможно «получить электричество из обычного магнетизма». Такую же задачу поставили перед собой Араго и Ампер в Париже, Колладон — в Женеве.
Фарадей ставит множество опытов, ведет педантичные записи. Каждому небольшому исследованию он посвящает параграф в лабораторных записях (изданы в Лондоне полностью в 1931 году под названием «Дневник Фарадея»). О работоспособности Фарадея говорит хотя бы тот факт, что последний параграф «Дневника» помечен номером 16041. Блестящее мастерство Фарадея-экспериментатора, одержимость, четкая философская позиция не могли не быте вознаграждены, но ожидать результата пришлось долгих одиннадцать лет.
Кроме интуитивной убежденности во всеобщей связи явлений, его, собственно, в поисках «электричества из магнетизма» ничто не поддерживало. К тому же он, как его учитель Дэви, больше полагался на свои опыты, чем на мысленные построения. Дэви учил его:
— Хороший эксперимент имеет больше ценности, чем глубокомыслие такого гения, как Ньютон.
И тем не менее именно Фарадею суждены были великие открытия. Великий реалист, он стихийно рвал путы эмпирики, некогда навязанные ему Дэви, и в эти минуты его осеняло великое прозрение — он приобретал способность к глубочайшим обобщениям.
Первый проблеск удачи появился лишь 29 августа 1831 года. В этот день Фарадей испытывал в лаборатории несложное устройство: железное кольцо диаметром около шести дюймов, обмотанное двумя кусками изолированной проволоки. Когда Фарадей подключил к зажимам одной обмотки батарею, его ассистент, артиллерийский сержант Андерсен, увидел, как дернулась стрелка гальванометра, подсоединенного к другой обмотке.
Дернулась и успокоилась, хотя постоянный ток продолжал течь по первой обмотке. Фарадей тщательно просмотрел все детали этой простой установки — все было в порядке.
Но стрелка гальванометра упорно стояла на нуле. С досады Фарадей решил выключить ток, и тут случилось чудо — во время размыкания цепи стрелка гальванометра опять качнулась и опять застыла на нуле!
Фарадей был в недоумении: во-первых, почему стрелка ведет себя так странно? Во-вторых, имеют ли отношение замеченные им всплески к явлению, которое он искал?
Вот тут-то и открылись Фарадею во всей ясности великие идеи Ампера — связь между электрическим током и магнетизмом. Ведь первая обмотка, в которую он подавал ток, сразу становилась магнитом. Если рассматривать ее как магнит, то эксперимент 29 августа показал, что магнетизм как будто бы рождает электричество. Только две вещи оставались в этом случае странными: почему всплеск электричества при включении электромагнита стал быстро сходить на нет? И более того, почему всплеск появляется при выключении магнита?
На следующий день, 30 августа, — новая серия экспериментов. Эффект ясно выражен, но тем не менее абсолютно непонятен.
Фарадей чувствует, что открытие где-то рядом.
23 сентября он пишет своему другу Р.Филиппсу:
«Я теперь опять занимаюсь электромагнетизмом и думаю, что напал на удачную вещь, но не могу еще утверждать это. Очень может быть, что после всех моих трудов я в конце концов вытащу водоросли вместо рыбы».
К следующему утру, 24 сентября, Фарадей подготовил много различных устройств, в которых основными элементами были уже не обмотки с электрическим током, а постоянные магниты. И эффект тоже существовал! Стрелка отклонялась и сразу же устремлялась на место. Это легкое движение происходило при самых неожиданных манипуляциях с магнитом, иной раз, казалось, случайно.
Следующий эксперимент — 1 октября. Фарадей решает вернуться к самому началу — к двум обмоткам: одной с током, другой — подсоединенной к гальванометру. Различие с первым экспериментом — отсутствие стального кольца — сердечника. Всплеск почти незаметен. Результат тривиален. Ясно, что магнит без сердечника гораздо слабее магнита с сердечником. Поэтому и эффект выражен слабее.
Фарадей разочарован. Две недели он не подходит к приборам, размышляя о причинах неудачи.
Эксперимент триумфальный — 17 октября.
Фарадей заранее знает, как это будет. Опыт удается блестяще.
«Я взял цилиндрический магнитный брусок (3/4 дюйма в диаметре и 8 1/4 дюйма длиной) и ввел один его конец внутрь спирали из медной проволоки (220 футов длиной), соединенной с гальванометром. Потом я быстрым движением втолкнул магнит внутрь спирали на всю его длину, и стрелка гальванометра испытала толчок. Затем я так же быстро вытащил магнит из спирали, и стрелка опять качнулась, но в противоположную сторону. Эти качания стрелки повторялись всякий раз, как магнит вталкивался или выталкивался».
Секрет — в движении магнита! Импульс электричества определяется не положением магнита, а движением!
Это значит, что «электрическая волна возникает только при движении магнита, а не в силу свойств, присущих ему в покое».
Эта идея необыкновенно плодотворна. Если движение магнита относительно проводника создает электричество, то, видимо, и движение проводника относительно магнита должно рождать электричество! Причем эта «электрическая волна» не исчезнет до тех пор, пока будет продолжаться взаимное перемещение проводника и магнита. Значит, есть возможность создать генератор электрического тока, действующий сколь угодно долго, лишь бы продолжалось взаимное движение проволоки и магнита!
28 октября Фарадей установил между полюсами подковообразного магнита вращающийся медный диск, с которого при помощи скользящих контактов (один на оси, другой — на периферии диска) можно было снимать электрическое напряжение. Это был первый электрический генератор, созданный руками человека.
После «электромагнитной эпопеи» Фарадей был вынужден прекратить на несколько лет свою научную работу — настолько была истощена его нервная система.
Опыты, аналогичные фарадеевским, как уже говорилось, проводились во Франции и в Швейцарии. Профессор Женевской академии Колладон был искушенным экспериментатором (он, например, произвел на Женевском озере точные измерения скорости звука в воде). Может быть, опасаясь сотрясения приборов, он, как и Фарадей, по возможности удалил гальванометр от остальной установки. Многие утверждали, что Колладон наблюдал те же мимолетные движения стрелки, что и Фарадей, но, ожидая более стабильного, продолжительного эффекта, не придал этим «случайным» всплескам должного значения.
Действительно, мнение большинства ученых того времени сводилось к тому, что обратный эффект «создания электричества из магнетизма» должен, по-видимому, иметь столь же стационарный характер, как и «прямой» эффект — «образование магнетизма» за счет электрического тока. Неожиданная «мимолетность» этого эффекта сбила с толку многих, в том числе Колладона, и эти многие поплатились за свою предубежденность.
Фарадея тоже поначалу смущала мимолетность эффекта, но он больше доверял фактам, чем теориям, и в конце концов пришел к закону электромагнитной индукции. Этот закон казался тогда физикам ущербным, уродливым, странным, лишенным внутренней логики.
Почему ток возбуждается только во время движения магнита или изменения тока в обмотке?
Этого не понимал никто. Даже сам Фарадей. Понял это через семнадцать лет двадцатишестилетний армейский хирург захолустного гарнизона в Потсдаме Герман Гельмгольц. В классической статье «О сохранении силы» он, формулируя свой закон сохранения энергии, впервые доказал, что электромагнитная индукция должна существовать именно в этом «уродливом» виде.
Независимо к этому пришел и старший друг Максвелла, Вильям Томсон. Он тоже получил электромагнитную индукцию Фарадея из закона Ампера при учете закона сохранения энергии.
Так «мимолетная» электромагнитная индукция приобрела права гражданства и была признана физиками.
Но она никак не укладывалась в понятия и аналогии статьи Максвелла «О фарадеевских силовых линиях». И это было серьезным недостатком статьи. Практически ее значение сводилось к иллюстрации того, что теории близко— и дальнодействия представляют различное математическое описание одних и тех же экспериментальных данных, что силовые линии Фарадея не противоречат здравому смыслу. И это все. Все, хотя это было уже очень много.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
1 ДЭВИД ФАРАДЕЙ И БЕТТИ ЛУ ДЖЕНСЕН
1 ДЭВИД ФАРАДЕЙ И БЕТТИ ЛУ ДЖЕНСЕН Пятница, 20 декабря 1968 годаДэвид Фарадей неторопливо вел машину между пологих холмов Вальехо, не обращая особого внимания на мост «Золотые ворота», на яхты и глиссеры, мелькавшие в бухте Сан-Пабло, на четкие силуэты портовых кранов и
Открытие юга
Открытие юга Осенью 1881 года Ницше попал под обаяние творчества Жоржа Бизе – его «Кармен» в Генуе он слушал около двадцати раз! Жорж Бизе (1838–1875) – знаменитый французский композитор-романтистВесна 1882 года – новое путешествие: из Генуи на корабле в Мессину, о которой чуть
Приложение 10. Пример доказательства по индукции
Приложение 10. Пример доказательства по индукции В математике важно иметь точные формулы, позволяющие вычислять сумму различных последовательностей чисел. В данном случае мы хотим вывести формулу, дающую сумму первых n натуральных чисел.Например, «сумма» всего лишь
МАЙКЛ ФАРАДЕЙ (1791–1867)
МАЙКЛ ФАРАДЕЙ (1791–1867) Воздух в переплетной мастерской был пропитан запахом столярного клея. Расположившись среди груды книг, рабочие весело переговаривались и усердно сшивали печатные листы. Майкл[321] клеил толстый том Британской энциклопедии. Он мечтал прочитать ее
ГЛАВА ОДИННАДЦАТАЯ Вуд растягивает свой отпускной год на три, стоит на том месте, где когда-то стоял Фарадей, и пересекает нашу планету вдоль и поперек
ГЛАВА ОДИННАДЦАТАЯ Вуд растягивает свой отпускной год на три, стоит на том месте, где когда-то стоял Фарадей, и пересекает нашу планету вдоль и поперек Обыкновенный университетский профессор счастлив, если ему удается получить свободный год раз в семь лет. Но Вуд не
Открытие
Открытие Один из моих коллег родом из Австрии. Мы с ним дружим, и однажды вечером за разговором он замечает, что фамилия Гласер была весьма распространена в довоенной Вене. Мой отец как-то рассказывал, вспоминаю я, что наши далекие предки жили в немецкоговорящей части
Вот оно, открытие!
Вот оно, открытие! Крепкий орешек Академика Иоффе и его сотрудников давно уже заинтересовало необычное поведение в электрическом поле кристаллов сегнетовой соли (двойная натрикалиевая соль виннокаменной кислоты). Исследовалась эта соль пока мало, и было только
К ЭЛЕКТРОМАГНИТНОЙ ТЕОРИИ СВЕТА
К ЭЛЕКТРОМАГНИТНОЙ ТЕОРИИ СВЕТА Статья «О физических силовых линиях» выходила по частям. И третья часть ее, как и обе предыдущие, содержала новые идеи чрезвычайной ценности.Максвелл писал: «Необходимо предположить, что вещество ячеек обладает эластичностью формы,
Фарадей Майкл
Фарадей Майкл (род. в 1791 г. – ум. в 1867 г.) Выдающийся английский ученый, физик и химик, основоположник учения об электромагнитном поле, открывший электромагнитную индукцию – явление, которое легло в основу электротехники, а также законы электролиза, названные его
Открытие
Открытие В один из пасмурных осенних дней 1965 года в редакции художественной литературы Лениздата появился молодой человек с тощей канцелярской папкой в руке. Можно было со стопроцентной вероятностью догадаться, что в ней – стихи. Он был явно смущен и, не зная к кому
Трансатлантический кабель. Кабельное судно “Фарадей"
Трансатлантический кабель. Кабельное судно “Фарадей" Очевидный успех индоевропейской линии как в техническом, так и в финансовом отношении должен был воодушевить ее создателей на дальнейшие начинания. Случай начать новое дело представился, и вдохновителем оказался
1. Какую задачу в 1821 году поставил перед собой учёный М. Фарадей? 2. Как он решил эту задачу? 3. При каком условии во всех опытах в катушке, замкнутой. — презентация
Презентация на тему: » 1. Какую задачу в 1821 году поставил перед собой учёный М. Фарадей? 2. Как он решил эту задачу? 3. При каком условии во всех опытах в катушке, замкнутой.» — Транскрипт:
2 1. Какую задачу в 1821 году поставил перед собой учёный М. Фарадей? 2. Как он решил эту задачу? 3. При каком условии во всех опытах в катушке, замкнутой на гальванометр, возникал индукционный ток? 4. В чём заключается явление электромагнитной индукции? 5. В чём практическая важность открытия явления электромагнитной индукции?
3 Рис. 1 Проволочное кольцо помещено в однородное магнитное поле (рис. 1). Стрелочки, изображенные рядом с кольцом, показывают, что в случаях а и б кольцо движется прямолинейно вдоль линий индукции магнитного поля, а в случаях в, г и д — вращается вокруг оси 00′. В каких из этих случаев в кольце может возникнуть индукционный ток?
4 ( 4 – «5», 3 – «4», 2 – «3», 1 – «2») 1. Когда якорем замыкают полюса дугообразного магнита, стрелка гальванометра отклоняется. Почему? А. Магнитное поле порождает электрический ток. Б. При замыкании полюсов магнита меняется индукция магнитного поля, что приводит к появлению индукционного тока. В. Когда якорем замыкают полюса магнита, магнитное поле усиливается и действует с большей силой на стрелку гальванометра.
5 ( 4 – «5», 3 – «4», 2 – «3», 1 – «2») 2. При каком направлении движения контура в магнитном поле в контуре будет возникать индукционный ток? А. Движется в плоскости рисунка вверх — вниз. Б. Поворачивается вокруг стороны АГ. В. Движется перпендикулярно рисунку.
6 ( 4 – «5», 3 – «4», 2 – «3», 1 – «2») 3. Укажите направление индукционного тока в рамке при введении ее в однородное магнитное поле (а) и выведении из него (б). А. а – по часовой стрелке, б – против часовой. Б. В обоих случаях — против часовой стрелки. В. а – против часовой стрелке, б – по часовой.
7 ( 4 – «5», 3 – «4», 2 – «3», 1 – «2») 4. Всегда ли при изменении потока магнитной индукции в проводящем контуре в нем возникает: а) ЭДС индукции; б) индукционный ток А. а – всегда, б – нет. Б. а – нет, б — всегда. В. а, б – всегда.
9 Как это работает? Исследуем Модель генератора
10 каким образом приводится во вращение ротор генератора на гидроэлектростанции, на тепловой электростанции?
12 1. Какой электрической ток называется переменным? С помощью какого простого опыта его можно получить? 2. Где используют переменный электрический ток? 3. На каком явлении основано действие наиболее распространенных в настоящее время генераторов переменного тока? 4. Расскажите об устройстве и принципе действия промышленного генератора. 5. Чем приводится во вращение ротор генератора на тепловой электростанции? На гидроэлектростанции? 6. Какова стандартная частота промышленного тока, применяемого в России и многих других странах?
14 Темы: «Тепловые станции Дальнего Востока» и «Экологические проблемы, связанные с работой тепловых и гидроэлектростанций».
Что за опыты проводил Майкл Фарадей
В девятнадцатом веке стало известно, что вокруг проводника, по которому протекает электроток, возникает магнитное поле. Изучением данного явления занимался английский физик Майкл Фарадей. С помощью своих опытов он доказал, что и само магнитное поле способно создавать электрический ток.
Суть опытов Фарадея
Ученый убедился и доказал, если гальванометр подключить к проволочной катушке и поместить в нее северным полюсом плоский магнит, то гальванометр среагирует на это. Такой опыт дает понять, что в подсоединенной к прибору катушке появляется электрический ток. Если магнит перемещаться в катушке не будет, то стрелка прибора вернется на место. Если же начать вынимать из катушки магнит, то в ней снова появится электроток, но у него сформируется противоположное направление. Образование электроэнергии происходит из-за воздействия магнитного поля на катушку при перемещении магнита. Данное явление получило название электромагнитная индукция.
Эксперимент Фарадей проводил, используя 2 намотанных на основу из древесины спирали из проволоки, друг от друга они были изолированы. Одна из них подключалась к гальванической батарее, вторая соединялась с гальванометром, способным улавливать слабые токи. При соединении и отключении цепи первой катушки регистрировались на второй из них отклонения стрелки от нейтрального положения.
Проведенные опыты ученого Фарадея по электромагнитной индукции делят на три группы:
- Формирование индукционного тока в процессе погружения или извлечения магнита в спираль из проводника. При опускании магнита, подключенного к измерительному прибору, возникает индукционный ток. Когда магнит извлекают, также появляется электроток, но он имеет противоположное направление.
- Формирование в одной из катушек индукционного тока, если в другой меняются параметры электротока. Возникновение электротока во второй катушке происходит во время соединения и отключения контактов в первой цепи. Направление перемещения электроэнергии изменяется в результате перемены магнитного потока.
- Явление электромагнитной индукции наблюдается и в том случае, когда перемещается не магнит, а катушка.
Выполняя разные опыты, Фарадей выяснил, что в контурах проводника, соединенных в цепь, электроток появляется лишь в том случае, когда на проволоку воздействует изменяемое магнитное поле. На результат эксперимента не влияет, как производится изменение магнитного поля.
Кратко суть 3 опытов Фарадея можно сформулировать так: электроток возникнет в катушке, если к ней поднести магнит или наоборот. Подобное явление можно наблюдать и при использовании двух близко расположенных катушек: если одну из них подключить к источнику переменного электротока, то во второй появится такой же ток. Такой же эффект проявляется при соединении двух катушек сердечником.
Проведение экспериментов и их объяснение
Магнитное поле может меняться по-разному. Опыты Фарадея дают понять, что электроток формируется практически при любых переменах магнитного поля, способного прямо влиять на проводник. Электроэнергия, перемещающаяся в такой цепи, именуется индукционным током.
Получается, что, направление протекающего в катушке электротока меняется в зависимости от того, как перемещается магнит. Кроме того, на направление электротока оказывает влияние, каким полюсом направляют в катушку магнит. Если это сделать, используя не северный, как было описано ранее, а южный магнитный полюс, то на приборе стрелка переместится в противоположную сторону. Кроме того, направление электротока изменяется при опускании и извлечении южного полюса магнита. Выходит, что на течение индукционного тока влияет как полюс, так и направление перемещения магнитного поля.
Опускать магнит можно не спеша и быстро. Опыты Фарадея подтверждают, сила вырабатываемого электротока зависит от скорости перемещения магнита, проще говоря, от того, насколько быстро передвигается магнитное поле. Сила возрастает пропорционально скорости передвижения магнитного поля, которое прямо влияет на контур проводника.
В то же время при изменении силы электротока в проводнике вокруг него формируется магнитное поле. В попавшем под его воздействие проводнике возникает так называемый ток самоиндукции.
Следовательно, опыты Фарадея наглядно демонстрируют, что существует связь между магнитными и электрическими процессами. Эту взаимосвязь подтверждает существование общего для пространства электромагнитного поля.
Как электромагнитная индукция применяется на практике
Явление электромагнитной индукции взято за основу при создании генератора электротока — установки, способной вырабатывать электроэнергию благодаря превращению механической работы в электричество. Основные элементы данной установки — закрепленная на валу рамка и магнит.
При перемещении рамки, влияющие на нее магнитные линии, или увеличиваются, или уменьшаются, в итоге появляется индукционный ток. Его с помощью коллектора и щеток снимают с рамки (коллектор конструктивно — это 2 полукольца, соединенных с разными частями рамки). Промышленные мощные генераторы состоят из вращающегося ротора и неподвижного статора. В качестве первого конструктивного элемента используется электромагнит, а неподвижной частью служит обмотка.
Теорию электромагнитной индукции окончательно сформулировал Максвелл. Он доказал, что изменяющееся магнитное поле гарантированно формирует переменное электрическое поле. При любых переменах с магнитом свойства электромагнитного поля также меняются. Колебания наблюдаются в системе, получившей название колебательный контур. Фактически это электрическая цепь, в которой есть индуктивная катушка и установлен один конденсатор.
После запитывания конденсатора и подключения его к катушке можно обнаружить электроток в цепи. Конденсатор во время этого процесса утрачивает заряд. Сила тока первое время повышается, возникает ток самоиндукции, направленный против основного тока. Через время разряжается конденсатор, в катушке сила тока становится максимальной. Потом она начинает падать.
В колебательном контуре совершаются скачки силы электромагнитных волн, меняется сила тока и становится другим электрическое поле. Они проходят, благодаря энергии, поступившей из конденсатора. Извне энергия в это время не поступает.
Как единица измерения частоты перемены магнитных полей используется 1 Гц. В основном этот параметр измеряют в килогерцах и мегагерцах.
Природа электродвижущей силы
Три опыта Фарадея, а затем эксперименты его последователей позволили установить, что при изменение магнитного потока в контуре электропроводника способствует образованию электродвижущей силы. Она равна (по формуле Фарадея) скорости изменения магнитного потока, но с отрицательным знаком.
В приведенной формуле символ минус ставится, исходя из правила Ленца, с учетом которого находится направление перемещения индукционного тока. Оно указывает на то, что электроток, появляющийся в замкнутом контуре, идет с направлением, под влиянием которого формируемый поток индукции пытается возместить вызываемую током перемену магнитной индукции.
Электромагнитная индукция используется при создании электродвигателей. Электроток образуется в конструкциях, в которых магнит перемещается в контуре, проводящем электроток или, наоборот, при размещении контура в статичном магнитном поле. Удобно разобрать принцип работы на примере источника переменной ЭДС.
Рамка вращается, пересекая силовые линии магнитного поля. На ее элементах, размещенных параллельно оси вращения, образуется ЭДС. Те части рамки, которые расположены перпендикулярно оси, не пересекают силовых линий, поэтому не формируют ЭДС.
На противоположных элементах рамки фактически появляются ЭДС направленные в разные стороны. Чтобы узнать направление силы, следует воспользоваться правилом правой руки: нужно разместить внутреннюю сторону руки так, чтобы она указывала на северную часть магнита, а большой палец — разогнуть. Он должен быть направлен к тому элементу рамки, для которого нужно найти направление ЭДС. Она будет направлена в ту сторону, куда смотрят остальные четыре пальца руки.
В результате, на элементах рамки, расположенных параллельно оси вращения, ЭДС всегда складываются. В ходе движения рамки курс ЭДС меняется на противоположный, поскольку рабочие части рамки при каждом вращении перемещаются между разными магнитными полюсами. Когда плоскость рамки располагается параллельно силовым линиям, электродвижущая сила достигает своего максимума, как и скорость перемещения самой рамки.
Из этого можно сделать вывод, что в проводнике, перемещающемся в магнитном поле, образуется ЭДС, которая периодически меняет свое направление и величину.