В какой среде верхней или нижней больше абсолютный показатель преломления
Перейти к содержимому

В какой среде верхней или нижней больше абсолютный показатель преломления

Самостоятельная работа Преломление света 9 класс

Самостоятельная работа Преломление света 9 класс с ответами. Самостоятельная работа представлена в двух вариантах , в каждом варианте по 3 задания.

Вариант 1

Луч света переходит из одной прозрачной среды в другую. Ход луча показан на рисунке.

Ход луча 1 вариант

1. В какой среде (верхней или нижней) больше абсолютный показатель преломления?

2. В какой среде (верхней или нижней) свет распространяется с большей скоростью?

3. Как изменяется длина волны света при переходе из верхней среды в нижнюю?

Вариант 2

Луч света переходит из одной прозрачной среды в другую. Ход луча показан на рисунке.

Ход луча 2 вариант

1. В какой среде (верхней или нижней) больше абсолютный показатель преломления?

2. В какой среде (верхней или нижней) свет распространяется с большей скоростью?

3. Как изменяется длина волны света при переходе из верхней среды в нижнюю?

Ответы на самостоятельную работу Преломление света 9 класс
Вариант 1
1. В нижней
2. В верхней
3. Уменьшается
Вариант 2
1. В верхней
2. В нижней
3. Увеличивается

Показатель преломления: что это такое, формулы, таблица

Показатель преломления – это безразмерная физическая величина, характеризующая отличие фазовых скоростей света в двух средах.

Более подробно о показателе преломления и о том, как его рассчитать, вы узнаете из данной статьи.

Простое объяснение.

Наблюдайте за ходом светового луча из одной среды, например воздуха, в другую среду, например воду. Это можно сделать, например, глядя снизу на поверхность воды над собой при нырянии в бассейне. Если вы это сделаете, то увидите изменение направления луча при переходе из одной среды в другую. Это изменение направления также называется преломлением света. Вы всегда можете наблюдать это в средах с различными показателями преломления.

Показатель преломления – это свойство оптического материала. Это отношение длины волны света в вакууме c0 к длине волны света в среде cM, то есть n = c0 / cM .

Показатель преломления является безразмерным числом и зависит от частоты света. Поскольку показатель преломления зависит от частоты волны (света), мы также говорим о дисперсии. Если две среды имеют разные показатели преломления, вы наблюдаете преломление и отражение света на их границах. Среда с более высоким показателем преломления имеет более высокую оптическую плотность.

Показатель преломления света

Рис. 1. Преломление света на границе раздела двух сред с разными показателями преломления

Другими терминами для обозначения показателя преломления являются также индекс преломления или оптическая плотность.

Закон преломления Снеллиуса

Закон преломления Снеллиуса гласит, что луч света преломляется, когда попадает в среду с другой оптической плотностью. Причиной преломления является изменение зависящей от материала фазовой скорости, которая входит в закон преломления как показатель преломления. Закон преломления – это зависимость между углом падения θ1 и углом отражения θ2 преломленного света.

n1 * sin θ1 = n2 * sin θ2

В этой формуле n1 и n2 означают показатели преломления двух сред.

Закон преломления

Рис. 2. Преломление или отражение в соответствии с законом преломления на границе раздела двух сред, отличающихся показателями преломления

Вещества с показателем преломления

Оптическая плотность вакуума определяется как 1. В видимом спектре показатели преломления прозрачных или слабо поглощающих материалов больше 1. Для электропроводящих и сильно поглощающих сред преобладают другие физические свойства. Хотя их показатели преломления находятся между 0 и 1, эти значения следует интерпретировать по-разному. В этих средах в комплексном показателе преломления преобладает мнимая часть.

Кроме того, каждое вещество имеет диапазон длин волн, в котором действительная часть показателя преломления меньше 1, но все еще положительна. Здесь оптическая плотность для малых длин волн всегда меньше 1 и приближается к 1 снизу по мере уменьшения длины волны.

Показатель преломления воздуха

Значение показателя преломления воздуха можно найти в таблице 1 ниже. Он зависит от плотности и температуры, а также от состава воздуха. В частности, влажность воздуха оказывает большое влияние на его коэффициент преломления. Согласно формуле барометрической высоты, давление воздуха экспоненциально уменьшается на больших высотах. На высоте 8 километров коэффициент преломления воздуха составляет всего 1,00011.

Показатель преломления воды

Для показателя преломления воды действуют те же принципы, что и для воздуха. На больших глубинах давление и температура выше, что влияет на преломление света. Но вы также можете легко убедиться в этом, наполнив стакан холодной воды горячей. Вы увидите, что горячая вода менее прозрачна, чем холодная. Поэтому оптическая плотность выше при использовании более горячей воды.

Таблица показателей преломления

В следующей таблице представлен обзор некоторых наиболее важных показателей преломления.

Среда Показатель преломления
Воздух 1,000292
Вода (жидкость, 20°C) 1,3330
Стекло 1.45 – 2.14
Этанол 1,3614

Таблица 1. Показатели преломления для некоторых сред

Комплексный показатель преломления

Если вы посмотрите на электромагнитную волну и рассмотрите ее поглощение в среде, то обнаружите, что можно также объединить классический показатель преломления и затухание волны в комплексный показатель преломления. Для этого существуют различные, эквивалентные представления:

  • Сумма действительной части с мнимой частью комплексного числа: n = nr + i * ni , где i – мнимая единица
  • Разница между действительной и мнимой частями комплексного числа: n = nr – i*k
  • Произведение действительного показателя преломления на комплексное число: n = n * ( 1 – i * k).

Знак минус, используемый в некоторых представлениях, гарантирует, что мнимая часть получит положительный знак в случае поглощающих сред. Эта мнимая часть называется коэффициентом молярной экстинкции. Переменная κ называется показателем поглощения. Это мнимая часть, деленная на показатель преломления n.

Как действительная, так и мнимая части оптической плотности зависят от частоты.

Диэлектрическая проницаемость и проницаемость

Комплексный показатель преломления связан с проницаемостью εr (способность к поляризации) и проницаемостью μr (способность к намагничиванию): n = εr * μr .

Все величины являются комплекснозначными и зависят от частоты. В случае немагнитных сред, μr ≈ 1. Таким образом, вы формируете комплексный показатель преломления непосредственно из действительной и мнимой частей ( ε1, ε2 ) проницаемости.

Сравнение с комплексным показателем преломления представления суммы и разности позволяет вычислить n и k, соответственно.

Формулы показатель преломления

Атомы с показателем преломления

Показатель преломления кристаллических веществ напрямую зависит от их атомной структуры. Кристаллическая решетка твердого тела влияет на его полосовую структуру и, следовательно, на его преломляющее поведение.

Частично кристаллические материалы также демонстрируют корреляцию между плотностью и оптической плотностью. Однако эта зависимость, как правило, не является линейной.

Применение показателя преломления

Показатель преломления является наиболее важным параметром для оптических линз. Оптический расчет, используемый для проектирования оптических приборов, основан на сочетании различных преломляющих линз с подходящими стеклами.

В химии и фармации различные вещества характеризуются оптической плотностью при определенных температурах. Кроме того, определяя коэффициент преломления, вы узнаете содержание определенного вещества в растворе.

Что нужно знать о показателе преломления

Пожалуйста, расскажите о вашей задаче. Запросить цены или информацию Позвонить специалисту Запросить информацию Запросить цены

Что такое показатель преломления?

Показатель преломления вещества — это отношение скоростей света (электромагнитных волн) в вакууме и в данной среде. Показатель преломления — безразмерная величина, которая зависит от температуры и длины волны света. Показатель преломления характеризует скорость распространения света в среде и рассчитывается по формуле:

n = c / v,

n — показатель преломления;
c — скорость света в вакууме (или воздухе);
v — скорость света в среде (например, воде, оливковом масле и т. п.).

На этой странице приведена необходимая информация о методах измерения показателя преломления.

Узнайте больше о показателе преломления, его применении, способах измерения, а также о законе преломления света и многом другом.

Перейдите в один из следующих разделов, чтобы узнать больше о показателе преломления:

  • Преломление света: практический пример
  • Закон преломления света (закон Снеллиуса)
  • Полное внутреннее отражение и критический угол
  • Закон преломления света и устройство рефрактометра
  • Измерение показателя преломления: что измеряет рефрактометр?
  • Факторы, влияющие на величину показателя преломления
  • Показатель преломления: применение на практике
  • Абсолютный и относительный показатель преломления
  • Рекомендации по измерению показателя преломления
  • Совершенствуйте методику измерения показателя преломления
  • Приблизительные значения показателя преломления стандартных и эталонных веществ
  • Часто задаваемые вопросы

Преломление света: практический пример

Прежде чем углубиться в теоретическое обоснование показателя преломления, рассмотрим наглядный пример распространения света в различных средах.

На иллюстрации изображены три стакана с опущенными в них стеклянными палочками. Стаканы заполнены разными жидкостями:

Жидкость в стакане
1 Вода.
2 Вода и кедровое масло.
3 Кедровое масло.

Что мы видим в этих стаканах?

Показатель преломления воды (n = 1,333) ниже, чем стекла (n = 1,517). По этой причине стеклянную палочку видно в стакане 1 и отчасти — в стакане 2.

Зато у стеклянной палочки (n = 1,517) и кедрового масла (n = 1,516) показатели преломления почти одинаковые, поэтому кажется, что палочка при погружении в кедровое масло исчезает (частично в стакане 2 и полностью в стакане 3).

Закон преломления света (закон Снеллиуса)

Закон преломления света (закон Снеллиуса)

Закон преломления света, известный также как закон Снеллиуса, описывает взаимосвязь углов падения и преломления с показателями преломления граничащих сред. Как показано на иллюстрации, согласно этому закону отношение синуса угла падения α к синусу угла преломления β (и показателей преломления n1 и n2) — это величина, постоянная для двух данных сред:

На иллюстрации показано, как отклоняется световой луч (1, синяя стрелка), проходящий под определенным углом из оптически менее плотной (n1) в оптически более плотную среду (n2), например из воздуха в воду.

Но когда луч проходит из одной среды в другую перпендикулярно границе раздела, никакого преломления не происходит (зеленая стрелка).

Согласно закону преломления света, отношение показателей преломления граничащих сред пропорционально отношению угла падения и угла преломления светового луча. То есть:

Полное внутреннее отражение и критический угол

Полное внутреннее отражение и критический угол

Полное внутреннее отражение возникает, когда весь свет, направленный из оптически более плотной среды в оптически менее плотную, отражается обратно в оптически более плотную среду. Для понимания этого явления рассмотрим иллюстрацию слева.

Синяя стрелка: луч света преломляется, проходя из оптически более плотной среды (n2) в оптически менее плотную (n1).

Угол падения α увеличивается (зеленая стрелка): когда угол падения α возрастает (1), он может достигнуть критической величины, после которой свет не проходит в оптически менее плотную среду (n1), а отражается вдоль раздела двух сред. Такой угол падения называют критическим углом полного внутреннего отражения. Заметим, что при этом угол отражения β = 90°.

Угол падения больше критической величины: если угол падения превышает критическую величину, свет полностью отражается обратно в оптически более плотную среду (n2). Это явление называют полным внутренним отражением (2).

Показатель преломления n1 рассчитывается по величине критического угла α, когда
β = 90° —> sin β = 1.

Внимание! Луч в случае 1 (зеленая стрелка) падает под критическим углом, а полное внутренне отражение происходит в случае 2 (голубая стрелка).

Закон преломления света и устройство рефрактометра

На основе описанного выше закона преломления света созданы рефрактометры — приборы для измерения показателя преломления жидкостей и высоковязких веществ.

На иллюстрации схематически показано устройство измерительной ячейки цифрового рефрактометра, в котором использован закон преломления света. Процедура измерения связана с полным внутренним отражением и критической величиной угла падения света. Принцип действия:

Источник света (1) — светодиод (LED). Луч света от светодиода проходит через поляризационный фильтр (2), интерференционный фильтр (3) и фокусирующие линзы (4), а затем через сапфировую призму (5) на образец.

Когда угол падения превышает критическую величину, отраженный свет попадает через линзу (6) на оптический датчик с зарядовой связью (7), который фиксирует критический угол. Кроме того, современные цифровые рефрактометры автоматически контролируют температуру на поверхности раздела призма/образец для повышения точности измерения.

Измерение показателя преломления: что измеряет рефрактометр?

Цифровой рефрактометр предназначен для измерения показателя преломления и связанных с ним характеристик жидкостей по методу полного внутреннего отражения. Процедура измерения автоматизирована, благодаря чему точность результатов не зависит от оператора. Измерение выполняется в течение нескольких секунд с высокой точностью на небольших образцах (объемом от 0,5 до 1 мл).

Также для измерения показателя преломления используются ручные рефрактометры, например оптический настольный рефрактометр Аббе или обычный переносной рефрактометр. Подробнее об их достоинствах и недостатках.

Факторы, влияющие на величину показателя преломления

Влияние температуры на измерение показателя преломления

Как зависит величина показателя преломления от температуры?

Сначала узнаем, как влияет температура на жидкости. С ростом температуры увеличивается пространство, которое занимают атомы, связанные между собой в одной молекуле. При нагревании усиливаются колебания атомов, атомы отодвигаются друг от друга раздвигаются, что приводит к снижению оптической плотности среды.

Как сказано выше, показатель преломления связан со скоростью распространения света в среде. Когда температура растет, оптическая плотность среды снижается, а скорость света в ней увеличивается, что приводит к небольшому изменению угла преломления. Другими словами, чем выше температура, тем меньше показатель преломления, как показано на графике ниже на примере воды.

Из графика видно, что температура образца существенно влияет на измеряемую величину. Это означает, что температуру следует точно измерять и по возможности регулировать.

Приборы старой конструкции, например рефрактометры Аббе, приходится помещать в жидкостный термостат. В большинстве современных цифровых рефрактометров температура оптической системы регулируется с помощью элемента Пельтье. Такая конструкция обеспечивает быстрое и точное измерение показателя преломления.

Влияние температуры на измерение показателя преломления

Влияние длины волны на измерение показателя преломления

Вследствие различной дисперсии света (дисперсионного соотношения) в разных веществах показатели преломления также почти всегда различаются в зависимости от длины волны света, используемого для измерения. Дисперсионное соотношение можно рассчитать следующим образом.

Мы знаем, что скорость распространения света в среде равна:

где:
n — показатель преломления;
c — скорость света в вакууме (или воздухе);
v — скорость света в данной среде.

Длина волны в этой же среде:

где: λ0 — длина световой волны в вакууме (или воздухе).

Следовательно, величина показателя преломления (n) обратно пропорциональна как длине волны, так и скорости распространения света в среде. Это означает, что при большей длине волны показатель преломления уменьшается. Такое соотношение можно представить в виде уравнения:

В то же время для контроля качества в промышленности необходимо иметь определенную точную длину волны, чтобы сравнивать значения показателя преломления различных образцов, измеренные в одинаковых условиях.

Чаще всего в рефрактометрах используется желтая линия спектра натрия с длиной волны 589,3 нм. Желтая линия натрия уже давно используется для измерения показателя преломления. Это широко доступный, надежный и стабильный стандарт оптического излучения.

n = показатель преломления.

t = температура (°C).

D = желтая линия натрия.

Значение показателя преломления, измеренное по желтой линии натрия, обозначается символом nD.

Показатель преломления: применение на практике

Любой материал, который взаимодействует со светом, можно характеризовать показателем преломления. Во многих отраслях промышленности измерение показателя преломления используется для проверки чистоты и концентрации жидких, высоковязких и твердых образцов. Показатель преломления жидких и высоковязких материалов измеряется с высокой точностью (погрешность от ± 0,00002).

Кроме того, показатель преломления можно сопоставлять с широким диапазоном концентраций. Эту зависимость используют для анализа многих материалов в разных отраслях, например:

  • Производство пищевых продуктов и напитков: плотность (содержание сахара) по шкале Брикса для безалкогольных напитков или плотность виноградного сусла по шкале Эксле.
  • Химическая промышленность: температура замерзания (°C или °F), концентрация кислоты/щелочи, содержание органических растворителей или неорганических солей в объемных или весовых процентах.
  • Производство и клинические исследования лекарств: содержание перекиси или метилового спирта, концентрация различных веществ в моче.

В некоторых случаях измерение показателя преломления сочетают с измерением плотности, получая простой и эффективный метод контроля. Такой анализ можно полностью автоматизировать.

Требуется более подробная информация о показателях Брикса, Плато, Баллинга и Боме?

Наряду с плотностью по шкале Брикса, существуют другие сопоставимые единицы для измерения содержания сахарозы, например градусы Плато, Боме, Эксле и Баллинга. Узнайте больше об их различиях, применении, способах измерения и расчета.

Показатель преломления

Показа́тель преломле́ния вещества — величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и в данной среде n =\frac<c><v>» width=»» height=»» />. Также о показателе преломления говорят для любых других волн, например, звуковых [1] .</p> <h3>Содержание</h3> <h3>Описание</h3> <p>Показатель преломления зависит от свойств вещества и длины волны излучения, для некоторых веществ показатель преломления достаточно сильно меняется при изменении частоты электромагнитных волн от низких частот до оптических и далее, а также может ещё более резко меняться в определённых областях частотной шкалы. По умолчанию обычно имеется в виду оптический диапазон или диапазон, определяемый контекстом.</p> <p>Существуют оптически анизотропные вещества, в которых показатель преломления зависит от направления и поляризации света. Такие вещества достаточно распространены, в частности, это все кристаллы с достаточно низкой симметрией кристаллической решётки, а также вещества, подвергнутые механической деформации.</p> <p>Показатель преломления можно выразить как корень из произведения магнитной и диэлектрических проницаемостей среды</p> <p><img decoding=к показателю преломления второй n_2называют относительным показателем преломления n_<12>» width=»» height=»» /> первой среды по отношению к второй. Для <img decoding=и v_2— фазовые скорости света в первой и второй средах соответственно. Очевидно, что относительным показателем преломления n_<21>» width=»» height=»» /> второй среды по отношению к первой является величина, равная <img decoding=

Тип среды Среда Температура, °С Значение Кристаллы [2] LiF 20 1,3920 NaCl 20 1,5442 KCl 20 1,4870 KBr 20 1,5552 Оптические стёкла [3] ЛК3 (Лёгкий крон) 20 1,4874 К8 (Крон) 20 1,5163 ТК4 (Тяжёлый крон) 20 1,6111 СТК9 (Сверхтяжёлый крон) 20 1,7424 Ф1 (Флинт) 20 1,6128 ТФ10 (Тяжёлый флинт) 20 1,8060 СТФ3 (Сверхтяжёлый флинт) 20 2,1862 [4] Драгоценные камни [2] Алмаз белый — 2,417 Берилл — 1,571 — 1,599 Изумруд — 1,588 — 1,595 Сапфир белый — 1,768 — 1,771 Сапфир зелёный — 1,770 — 1,779 Жидкости [2] Вода дистиллированная 20 1,3330 Бензол 20-25 1,5014 Глицерин 20-25 1,4370 Кислота серная 20-25 1,4290 Кислота соляная 20-25 1,2540 Масло анисовое 20-25 1,560 Масло подсолнечное 20-25 1,470 Масло оливковое 20-25 1,467 Спирт этиловый 20-25 1,3612

Материалы с отрицательным коэффициентом преломления

В 1967 году Виктор Георгиевич Веселаго высказал гипотезу о существовании веществ с отрицательным значением показателя преломления [5] . Существование подобных веществ было практически доказано в 2000 г. Дэвидом Смитом (англ.  David R. Smith ) из Калифорнийского университета в Сан-Диего и Джоном Пендри (англ.  John B. Pendry ) из Имперского колледжа в Лондоне [6] . Подобные метаматериалы обладают рядом интересных свойств [7] :

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *