Где применяется сила лоренца
Перейти к содержимому

Где применяется сила лоренца

Сила Лоренца

Сила Ампера, воздействующая на часть проводника длиной Δ l с некоторой силой тока I , находящийся в магнитном поле B , F = I · B · Δ l · sin α может выражаться через действующие на конкретные носители заряда силы.

Пускай заряд носителя обозначается как q , а n является значением концентрации носителей свободного заряда в проводнике. В этом случае произведение n · q · υ · S , в котором S представляет собой площадь поперечного сечения проводника, эквивалентно току, протекающему в проводнике, а υ – это модуль скорости упорядоченного движения носителей в проводнике:

Формула силы Ампера может записываться в следующем виде:

F = q · n · S · Δ l · υ · B · sin α .

По причине того, что полное число N носителей свободного заряда в проводнике сечением S и длиной Δ l равняется произведению n · S · Δ l , действующая на одну заряженную частицу сила равняется выражению: F Л = q · υ · B · sin α .

Найденная сила носит название силы Лоренца. Угол α в приведенной формуле эквивалентен углу между вектором магнитной индукции B → и скоростью ν → .

Направление силы Лоренца, которая воздействует частицу с положительным зарядом, таким же образом, как и направление силы Ампера, находится по правилу буравчика или же с помощью правила левой руки. Взаимное расположение векторов ν → , B → и F Л → для частицы, несущей положительный заряд, проиллюстрировано на рис. 1 . 18 . 1 .

Рисунок 1 . 18 . 1 . Взаимное расположение векторов ν → , B → и F Л → . Модуль силы Лоренца F Л → численно эквивалентен произведению площади параллелограмма, построенного на векторах ν → и B → и заряда q .

Сила Лоренца направлена нормально, то есть перпендикулярно, векторам ν → и B → .

Сила Лоренца не совершает работы при движении несущей заряд частицы в магнитном поле. Данный факт приводит к тому, что модуль вектора скорости в условиях движения частицы так же не меняет своего значения.

Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость ν → лежит в плоскости, которая направлена нормально по отношению к вектору B → , то частица будет совершать движение по окружности некоторого радиуса, рассчитывающегося с помощью следующей формулы:

Сила Лоренца в данном случае применяется в качестве центростремительной силы (рис. 1 . 18 . 2 ).

Рисунок 1 . 18 . 2 . Круговое движение заряженной частицы в однородном магнитном поле.

Для периода обращения частицы в однородном магнитном поле будет справедливо следующее выражение:

T = 2 π R υ = 2 π m q B .

Данная формула наглядно демонстрирует отсутствие зависимости заряженных частиц заданной массы m от скорости υ и радиуса траектории R .

Применение силы Лоренца

Приведенное снизу соотношение представляет собой формулу угловой скорости движения заряженной частицы, происходящего по круговой траектории:

ω = υ R = υ q B m υ = q B m .

Оно носит название циклотронной частоты. Данная физическая величина не имеет зависимости от скорости частицы, из чего можно сделать вывод, что и от ее кинетической энергии она не зависит.

Данное обстоятельство находит свое применение в циклотронах, а именно в ускорителях тяжелых частиц (протонов, ионов).

На рисунке 1 . 18 . 3 приводится принципиальная схема циклотрона.

Рисунок 1 . 18 . 3 . Движение заряженных частиц в вакуумной камере циклотрона.

Дуант – это полый металлический полуцилиндр, помещенный в вакуумную камеру между полюсами электромагнита в качестве одного из двух ускоряющих D -образного электрода в циклотроне.

К дуантам приложено переменное электрическое напряжение, чья частота эквивалентна циклотронной частоте. Частицы, несущие некоторый заряд, инжектируются в центре вакуумной камеры. В промежутке между дуантами они испытывают ускорение, вызываемое электрическим полем. Частицы, находящиеся внутри дуантов, в процессе движения по полуокружностям испытывают на себе действие силы Лоренца. Радиус полуокружностей возрастает с увеличением энергии частиц. Как и во всех других ускорителях, в циклотронах ускорение заряженной частицы достигается путем применения электрического поля, а ее удержание на траектории с помощью магнитного поля. Циклотроны дают возможность ускорять протоны до энергии, приближенной к 20 М э В .

Однородные магнитные поля используются во многих устройствах самых разных типов назначений. В частности, они нашли свое применение так называемых масс-спектрометрах.

Масс-спектрометры – это такие устройства, использование которых позволяет нам измерять массы заряженных частиц, то есть ионов или ядер различных атомов.

Данные приборы используются для разделения изотопов (ядер атомов с одинаковым зарядом, но разными массами, к примеру, Ne 20 и Ne 22 ). На рис. 1 . 18 . 4 изображен простейшая версия масс-спектрометра. Вылетающие из источника S ионы проходят через несколько малых отверстий, которые в совокупности формируют узкий пучок. После этого они попадают в селектор скоростей, где частицы движутся в скрещенных однородных электрическом, создающимся между пластинами плоского конденсатора, и магнитном, возникающим в зазоре между полюсами электромагнита, полях. Начальная скорость υ → заряженных частиц направлена перпендикулярно векторам E → и B → .

Частица, которая движется в скрещенных магнитном и электрическом полях, испытывает на себе воздействия электрической силы q E → и магнитной силы Лоренца. В условиях, когда выполняется E = υ B , данные силы полностью компенсируют воздействие друг друга. В таком случае частица будет двигаться равномерно и прямолинейно и, пролетев через конденсатор, пройдет через отверстие в экране. При заданных значениях электрического и магнитного полей селектор выделит частицы, которые движутся со скоростью υ = E B .

После данных процессов частицы с одинаковыми значениями скорости попадают в однородное магнитное поле B → камеры масс-спектрометра. Частицы под действием силы Лоренца движутся в камере перпендикулярной магнитному полю плоскости. Их траектории представляют собой окружности с радиусами R = m υ q B ‘ . В процессе измерения радиусов траекторий при известных значениях υ и B ‘ , мы имеем возможность определить отношение q m . В случае изотопов, то есть при условии q 1 = q 2 , масс-спектрометр может разделить частицы с разными массами.

С помощью современных масс-спектрометров мы имеем возможность измерять массы заряженных частиц с точностью, превышающей 10 – 4 .

Рисунок 1 . 18 . 4 . Селектор скоростей и масс-спектрометр.

Магнитное поле

В случае, когда скорость частицы υ → имеет составляющую υ ∥ → вдоль направления магнитного поля, подобная частица в однородном магнитном поле будет совершать спиралевидное движение. Радиус такой спирали R зависит от модуля перпендикулярной магнитному полю составляющей υ ┴ вектор υ → , а шаг спирали p – от модуля продольной составляющей υ ∥ (рис. 1 . 18 . 5 ).

Рисунок 1 . 18 . 5 . Движение заряженной частицы по спирали в однородном магнитном поле.

Исходя из этого, можно сказать, что траектория заряженной частицы в каком-то смысле «навивается» на линии магнитной индукции. Данное явление используется в технике для магнитной термоизоляции высокотемпературной плазмы — полностью ионизированного газа при температуре порядка 10 6 K . При изучении управляемых термоядерных реакций вещество в подобном состоянии получают в установках типа «Токамак». Плазма не должна касаться стенок камеры. Термоизоляция достигается путем создания магнитного поля специальной конфигурации. На рисунке 1 . 18 . 6 в качестве примера проиллюстрирована траектория движения несущей заряд частицы в магнитной «бутылке» (или ловушке).

Рисунок 1 . 18 . 6 . Магнитная «бутылка». Заряженные частицы не выходят за ее пределы. Необходимое магнитное поле может быть создано с помощью двух круглых катушек с током.

Такое же явление происходит в магнитном поле Земли, которое защищает все живое от потока несущих заряд частиц из космического пространства.

Быстрые заряженные частицы из космоса, по большей степени от Солнца, «перехватываются» магнитным полем Земли, вследствие чего образуются радиационные пояса (рис. 1 . 18 . 7 ), в которых частицы, будто в магнитных ловушках, перемещаются туда и обратно по спиралеобразным траекториям между северным и южным магнитными полюсами за доли секунды.

Исключением являются полярные области, в которых часть частиц прорывается в верхние слои атмосферы, что может приводить к возникновению таких явлений, как «полярные сияния». Радиационные пояса Земли простираются от расстояний около 500 к м до десятков радиусов нашей планеты. Стоит вспомнить, что южный магнитный полюс Земли находится поблизости с северным географическим полюсом на северо-западе Гренландии. Природа земного магнетизма до сих пор не изучена.

Рисунок 1 . 18 . 7 . Радиационные пояса Земли. Быстрые заряженные частицы от Солнца, в основном электроны и протоны, попадают в магнитные ловушки радиационных поясов.

Возможно их вторжение в верхние слои атмосферы, служащее причиной возникновения «северных сияний».

Сила Лоренца — основные понятия, формулы и определение с примерами

Центростремительное (нормальное) ускорение появляется при криволинейном движении тела и характеризует скорость изменения направления скорости с течением времени. Оно вычисляется по формуле Сила Лоренца - основные понятия, формулы и определение с примерами

Согласно закону Ампера на проводник с током в магнитном поле действует сила, которую можно рассматривать как результат действия магнитного поля на все движущиеся в проводнике заряды. Отсюда можно сделать вывод, что магнитное поле оказывает силовое действие на каждый движущийся заряд.

По закону Ампера на проводник длиной Сила Лоренца - основные понятия, формулы и определение с примерами

Поскольку электрический ток — направленное движение заряженных частиц, то силу тока можно представить в виде
Сила Лоренца - основные понятия, формулы и определение с примерами
где q — величина заряда одной частицы, n — концентрация заряженных частиц (число частиц в единице объема проводника), Сила Лоренца - основные понятия, формулы и определение с примерами— средняя скорость упорядоченного движения заряженных частиц, S — площадь поперечного сечения проводника.

Тогда
Сила Лоренца - основные понятия, формулы и определение с примерами
где Сила Лоренца - основные понятия, формулы и определение с примерами— число заряженных частиц, упорядоченно движущихся во всем объеме проводника длиной Сила Лоренца - основные понятия, формулы и определение с примерами

Разделив модуль силы F на число частиц N, получим модуль силы, действующей на один движущийся заряд со стороны магнитного поля:
Сила Лоренца - основные понятия, формулы и определение с примерами

где v — модуль скорости движущегося заряда.

Выражение для силы, с которой магнитное поле действует на движущийся заряд, в 1895 г. впервые получил голландский физик Хендрик Антон Лоренц. В его честь эта сила называется силой Лоренца:
Сила Лоренца - основные понятия, формулы и определение с примерами

Сила Лоренца - основные понятия, формулы и определение с примерами

Как определить направление силы Лоренца

Направление силы Лоренца определяется по правилу левой руки (рис. 153):
если левую руку расположить так, чтобы перпендикулярная к скорости Сила Лоренца - основные понятия, формулы и определение с примерамисоставляющая вектора индукции Сила Лоренца - основные понятия, формулы и определение с примерамимагнитного поля входила в ладонь, а четыре вытянутых пальца указывали направление движения положительно заряженной частицы, то отогнутый на 90° большой палец укажет направление силы Лоренца Сила Лоренца - основные понятия, формулы и определение с примерамидействующей на частицу со стороны магнитного поля. Для отрицательно заряженной частицы (например, для электрона) направление силы будет противоположным.

Поскольку сила Лоренца перпендикулярна вектору скорости, то она не может изменить модуль скорости, а изменяет только ее направление и, следовательно, работы не совершает.

Таким образом, если поле однородно, то при движении частицы перпендикулярно к магнитной индукции поля ее траекторией будет окружность (рис. 154, а), плоскость которой перпендикулярна к магнитному полю.

Ускорение частицы Сила Лоренца - основные понятия, формулы и определение с примерами(R — радиус окружности) направлено к центру окружности. Используя второй закон Ньютона, можем найти период обращения частицы по окружности
Сила Лоренца - основные понятия, формулы и определение с примерами

и радиус окружности

Сила Лоренца - основные понятия, формулы и определение с примерами
описываемой частицей в магнитном поле.

Сила Лоренца - основные понятия, формулы и определение с примерами

Если скорость направлена под углом к индукции магнитного поля, движение заряда можно представить в виде двух независимых движений (рис. 154, б):

  • равномерного вдоль поля со скоростью Сила Лоренца - основные понятия, формулы и определение с примерами( Сила Лоренца - основные понятия, формулы и определение с примерами— составляющая вектора скорости, параллельная вектору индукции Сила Лоренца - основные понятия, формулы и определение с примерамимагнитного поля);
  • по окружности радиусом R в плоскости, перпендикулярной к вектору Сила Лоренца - основные понятия, формулы и определение с примерами, с постоянной по модулю скоростью Сила Лоренца - основные понятия, формулы и определение с примерами( Сила Лоренца - основные понятия, формулы и определение с примерами— составляющая вектора скорости, перпендикулярная вектору индукции Сила Лоренца - основные понятия, формулы и определение с примерамимагнитного ноля).

В результате сложения обоих движений возникает движение по винтовой линии, ось которой параллельна магнитному полю (см. рис. 154, б). Период этого движения определяется по формуле
Сила Лоренца - основные понятия, формулы и определение с примерами

Действие силы Лоренца широко применяется в различных электротехнических устройствах:

  1. электронно-лучевых трубках телевизоров и дисплеев;
  2. ускорителях заряженных частиц (циклотронах);
  3. масс-спектрометрах — приборах, определяющих отношение зарядов частиц к их массе по радиусу окружности, описываемой ими в магнитном поле;
  4. магнитогидродинамических генераторах ЭДС (МГД-генератор — устройство для генерации электрических токов, использующее проводящие жидкости, движущиеся в магнитном поле).

Что такое сила Лоренца

Силой Лоренца FЛ называют силу, действующую на электрически заряженную частицу, двигающуюся в электромагнитном поле, определяя действия на нес электрической» и магнитного полей одновременно. Это выражается формулой:

Сила Лоренца - основные понятия, формулы и определение с примерами

где Сила Лоренца - основные понятия, формулы и определение с примерами— электрическая составляющая силы Лоренца, описывающая взаимодействие движущейся частицы и равная Сила Лоренца - основные понятия, формулы и определение с примерами Сила Лоренца - основные понятия, формулы и определение с примерами— магнитная составляющая силы Лоренца, определяющая взаимодействие заряженной частицы с магнитным полем.

Сила Лоренца действует на движущуюся электрически заряженную частицу в электромагнитном поле.

Для упрощения рассмотрим случай, когда Сила Лоренца - основные понятия, формулы и определение с примерами, а сила Лоренца равна магнитной составляющей.

Выясним, как можно рассчитать силу, действующую на движущуюся заряженную частицу в магнитном поле. Как известно, электрический ток в проводнике — это упорядоченное движение заряженных частиц. Согласно электронной теории сила тока рассчитывается по формуле:

Сила Лоренца - основные понятия, формулы и определение с примерами

где I — сила тока; е — заряд частицы; Сила Лоренца - основные понятия, формулы и определение с примерами— концентрация частиц в проводнике; V — объем; Сила Лоренца - основные понятия, формулы и определение с примерами— скорость движения частиц; S площадь поперечного сечения проводники.

Действие магнитного поля на проводник с током является действием магнитного поля на все движущиеся заряженные частицы. Поэтому формулу силы Ампера можно записать с учетом выражения силы тока в электронной теории:

Сила Лоренца - основные понятия, формулы и определение с примерами

Сила Лоренца - основные понятия, формулы и определение с примерами

Если учесть, то Сила Лоренца - основные понятия, формулы и определение с примерами

Если сила Ампера является равнодействующей всех сил, действующих на N частиц, то на одну частицу будет действовать сила в N раз меньше:

Сила Лоренца - основные понятия, формулы и определение с примерами

Это и есть формула для расчета магнитной составляющей силы Лоренца:
Сила Лоренца - основные понятия, формулы и определение с примерами

Магнитная составляющая силы Лоренца
Сила Лоренца - основные понятия, формулы и определение с примерами

Анализ этой формулы позволяет сделать выводы, что:

  1. магнитная составляющая силы Лоренца действует только на движущуюся частицу (Сила Лоренца - основные понятия, формулы и определение с примерами≠ 0);
  2. магнитная составляющая не действует на движущуюся частицу, которая движется вдоль линии магнитной индукции (а = 0).

Направление магнитной составляющей силы Лоренца, как и силы Ампера, определяется по правилу левой руки. При этом необходимо учитывать, что это справедливо для положительно заряженных частиц. Если определять направление силы Лоренца, действующей на электрон или другую отрицательно заряженную частицу, то, применяя правило левой руки, нужно мысленно изменять направление движения на противоположное.

Сила Лоренца направлена всегда под некоторым углом к скорости частицы, поэтому она придает ей центростремительное ускорение (рис. 2.15).

Для случая, если
Сила Лоренца - основные понятия, формулы и определение с примерами

Сила Лоренца - основные понятия, формулы и определение с примерами

Сила Лоренца - основные понятия, формулы и определение с примерами
Рис. 2.15. Сила Лоренца придает частице центростремительное ускорение

Таким образом, заряженная частица, попадая в магнитной поле, начинает двигаться по дуге окружности. При иных значениях α ≠ О траектория движения частицы в магнитном поле приобретает форму спирали.

Наблюдать действие силы Лоренца можно с помощью электронно-лучевой трубки, которая есть во многих осциллографах (рис. 2.16), Если включить питание осциллографа, то на его экране можно увидеть светлое пятно, появившееся в месте падения электронов на экран. Если теперь сбоку поднести к трубке постоянный магнит, то пятно сместится, что подтверждает действие магнитного поля на движущиеся электроны.

Сила Лоренца - основные понятия, формулы и определение с примерами
Рис. 2.16. Магнитное поле смещает электронный пучок в трубке осциллографа

Действие силы Лоренца применяется во многих приборах и технических установках. Так, смещение электронного луча, который «рисует» изображение на экране вакуумного кинескопа телевизора или дисплея компьютера, совершается магнитным полем специальных катушек, в которых проходит электрический ток, изменяющийся во времени по определенному закону,
В научных исследованиях применяют так называемые циклические ускорители заряженных частиц, в них магнитное поле мощных электромагнитов удерживает заряженные частицы на круговых орбитах.

Весьма перспективными для развития электроэнергетики являются магнито-гидродипамические генераторы (МГД-генераторы) (рис. 2.17). Поток высокотемпературного газа (плазмы), который образуется при сгорании органического топлива и имеет высокую концентрацию ионов обоих знаков, пропускается через магнитное ноле.

Сила Лоренца - основные понятия, формулы и определение с примерами
Puc. 2.17. Схема, объясняющая действие МГД-генератора

Вследствие действия силы Лоренца ионы отклоняются от прежнего направления движения и оседают на специальных электродах, сообщая им определенный заряд. Полученную при этом разность потенциалов можно использовать для получения электрического тока. Такие установки в будущем могут существенно повысить КПД тепловых «электростанций за счет выработки дополнительной электроэнергии при прохождении газов, которые после выхода из топки имеют довольно высокую температуру и высокую ионизацию, через MГД-генераторы.

Пример решения задачи

Электрон влетает в однородное магнитное поле с индукцией 10 -4 Тл перпендикулярно к линиям магнитной индукции. Его скорость 1.6 . 10 6 м/с. Найти радиус окружности, по которой движется электрон.

Дано:
В = 10 -4 Тл,
Сила Лоренца - основные понятия, формулы и определение с примерами= 1,6 ∙ 10 -6 м/с,
е = 1,6 • 10 -19 Кт,
Сила Лоренца - основные понятия, формулы и определение с примерами= 90°.
Peшение
Сила Лоренца в данном случае действует
под прямым углом к скорости движения
электрона, не изменяя его скорости.
Поэтому она придает электрону центростремительное ускорение.
Таким образом, можно записать:
Сила Лоренца - основные понятия, формулы и определение с примерами
R-?

Отсюда
Сила Лоренца - основные понятия, формулы и определение с примерами

Подставим значения физических величин:

Сила Лоренца - основные понятия, формулы и определение с примерами

Ответ: электрон будет двигаться по круговой орбите, радиус которой 9,1 ∙ 10 -2 м.

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Сила Лоренца и правило левой руки. Движение заряженных частиц в магнитном поле

Помещенный в магнитное поле проводник, через который пропущен электрический ток, испытывает воздействие силы Ампера F_A, а её величина может быть подсчитана по следующей формуле:

F_A=B\cdot I\cdot l\cdot sin\alpha (1)

где Iи l– сила тока и длина проводника, B– индукция магнитного поля, \alpha– угол между направлениями силы тока и магнитной индукции. Почему же это происходит?

Сила Лоренца. Движение заряженной частицы в магнитном поле.

Что такое сила Лоренца — определение, когда возникает, получение формулы

Известно, что электрический ток – это упорядоченное перемещение заряженных частиц. Установлено также, что во время движения в магнитном поле каждая из этих частиц подвергается действию силы. Для возникновении силы требуется, чтобы частица находилась в движении.

Сила Лоренца – это сила, которая действует на электрически заряженную частицу при её движении в магнитном поле. Её направление ортогонально плоскости, в которой лежат векторы скорости частицы и напряженности магнитного поля. Равнодействующая сил Лоренца и есть сила Ампера. Зная ее, можно вывести формулу для силы Лоренца.

Время, требуемое для прохождения частицей отрезка проводника, t = \frac {l}{v}, где l– длина отрезка, v– скорость частицы. Суммарный заряд, перенесенный за это время через поперечное сечение проводника, Q = I\cdot t. Подставив сюда значение времени из предыдущего равенства, имеем

Q = \frac {I\cdot l}{v}(2)

В то же время F_A=F_L\cdot N, где N– количество частиц, находящееся в рассматриваемом проводнике. При этом N = \frac {Q}{q}, где q– заряд одной частицы. Подставив в формулу значение Qиз (2), можно получить:

N = \frac {I\cdot l}{v\cdot q}

F_A=F_L\cdot \frac {I\cdot l}{v\cdot q}

Используя (1), предыдущее выражение можно записать как

B\cdot I\cdot l\cdot sin\alpha = F_L\cdot \frac {I\cdot l}{v\cdot q}

После сокращений и переносов появляется формула для вычисления силы Лоренца

F_L = q\cdot v\cdot B\cdot sin\alpha

С учетом того, что формула записана для модуля силы, ее необходимо записать так:

F_L = |q|\cdot v\cdot B\cdot sin\alpha(3)

Поскольку sin\alpha = sin(180^{\circ} - \alpha), то для вычисления модуля силы Лоренца неважно, куда направлена скорость, – по направлению силы тока или против, – и можно сказать, что \alpha– это угол, образуемый векторами скорости частицы и магнитной индукции.

Запись формулы в векторном виде будет выглядеть следующим образом:

\vec{F_L} = q\cdot [\vec{v}\times \vec{B}]

[\vec{v}\times \vec{B}]– это векторное произведение, результатом которого является вектор с модулем, равным v\cdot B\cdot sin\alpha.

Исходя из формулы (3), можно сделать вывод о том, что сила Лоренца является максимальной в случае перпендикулярности направлений электрического тока и магнитного поля, то есть при \alpha = 90^{\circ}, и исчезать при их параллельности (\alpha = 0^{\circ}).

Необходимо помнить, что для получения правильного количественного ответа – например, при решении задач, – следует пользоваться единицами системы СИ, в которой магнитная индукция измеряется в теслах (1 Тл = 1 кг·с −2 ·А −1 ), сила – в ньютонах (1 Н = 1 кг·м/с 2 ), сила тока – в амперах, заряд в кулонах (1 Кл = 1 А·с), длина – в метрах, скорость – в м/с.

Определение направления силы Лоренца с помощью правила левой руки

Поскольку в мире макрообъектов сила Лоренца проявляется как сила Ампера, для определения ее направления можно пользоваться правилом левой руки.

Определение направления действия силы Лоренца по правилу левой руки.

Нужно поставить левую руку так, чтобы раскрытая ладонь находилась перпендикулярно и навстречу линиям магнитного поля, четыре пальца следует вытянуть в направлении силы тока, тогда сила Лоренца будет направлена туда, куда указывает большой палец, который должен быть отогнут.

Движение заряженной частицы в магнитном поле

В простейшем случае, то есть при ортогональности векторов магнитной индукции и скорости частицы сила Лоренца, будучи перпендикулярной к вектору скорости, может менять только её направление. Величина скорости, следовательно, и энергия будут оставаться неизменными. Значит, сила Лоренца действует по аналогии с центростремительной силой в механике, и частица перемещается по окружности.

В соответствии со II законом Ньютона (F = m\cdot a) можно определить радиус вращения частицы:

N = \frac {m\cdot v}{q\cdot B}.

Необходимо обратить внимание, что с изменением удельного заряда частицы (\frac {q}{m}) меняется и радиус.

При этом период вращения T = \frac {2\cdot \pi\cdot r}{v}= \frac {2\cdot \pi\cdot m}{q\cdot B}. Он не зависит от скорости, значит, взаимное положение частиц с различными скоростями будет неизменным.

Движение заряженной частицы в однородном магнитном поле.

В более сложном случае, когда угол между скоростью частицы и напряженностью магнитного поля является произвольным, она будет перемещаться по винтовой траектории – поступательно за счет составляющей скорости, направленной параллельно полю, и по окружности под влиянием ее перпендикулярной составляющей.

Применение силы Лоренца в технике

Кинескоп

Кинескоп, стоявший до недавнего времени, когда на смену ему пришел LCD-экран (плоский), в каждом телевизоре, не смог бы работать, не будь силы Лоренца. Для формирования на экране телевизионного растра из узкого потока электронов служат отклоняющие катушки, в которых создается линейно изменяющееся магнитное поле. Строчные катушки перемещают электронный луч слева направо и возвращают обратно, кадровые отвечают за вертикальное перемещение, двигая бегающий по горизонтали луч сверху вниз. Такой же принцип используется в осциллографах – приборах, служащих для изучения переменного электрического напряжения.

Масс-спектрограф

Масс-спектрограф – прибор, использующий зависимость радиуса вращения заряженной частицы от ее удельного заряда. Принцип его работы следующий:

Источник заряженных частиц, которые набирают скорость с помощью созданного искусственно электрического поля, с целью исключения влияния молекул воздуха помещается в вакуумную камеру. Частицы вылетают из источника и, пройдя по дуге окружности, ударяются в фотопластинку, оставляя на ней следы. В зависимости от удельного заряда меняется радиус траектории и, значит, точка удара. Этот радиус легко измерить, а зная его, можно вычислить массу частицы. С помощью масс-спектрографа, например, изучался состав лунного грунта.

Циклотрон

Независимость периода, а значит, и частоты вращения заряженной частицы от её скорости в присутствии магнитного поля используется в приборе, называемом циклотроном и предназначенном для разгона частиц до высоких скоростей. Циклотрон – это два полых металлических полуцилиндров – дуанта (по форме каждый из них напоминает латинскую букву D), помещенных прямыми сторонами навстречу друг другу на небольшом расстоянии.

Циклотрон - применение силы Лоренца.

Дуанты помещаются в постоянное однородное магнитное поле, а между ними создается переменное электрическое поле, частота которого равна частоте вращения частицы, определяемой напряженностью магнитного поля и удельным зарядом. Попадая дважды за период вращения (при переходе из одного дуанта в другой) под воздействие электрического поля, частица каждый раз ускоряется, увеличивая при этом радиус траектории, и в определенный момент, набрав нужную скорость, вылетает из прибора через отверстие. Таким способом можно разогнать протон до энергии в 20 МэВ (мегаэлектронвольт).

Магнетрон

Устройство, называемое магнетроном, который установлен в каждой микроволновой печи, – еще один представитель приборов, использующих силу Лоренца. Магнетрон служит для создания мощного СВЧ-поля, которое разогревает внутренний объем печи, куда помещается пища. Магниты, входящие в его состав, корректируют траекторию движения электронов внутри прибора.

Магнитное поле Земли

А в природе сила Лоренца играет крайне важную для человечества роль. Её наличие позволяет магнитному полю Земли защитить людей от смертоносного ионизирующего излучения космоса. Поле не дает возможности заряженным частицам бомбардировать поверхность планеты, заставляя их менять направление движения.

Сила Лоренца и правило левой руки. Движение заряженных частиц в магнитном поле

Закон Кулона, определение и формула — электрические точечные заряды и их взаимодействие

Сила Лоренца и правило левой руки. Движение заряженных частиц в магнитном поле

Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки

Сила Лоренца

Сила Лоренца — сила, с которой, в рамках классической физики, электромагнитное поле действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью \mathbf<v>» width=»» height=»» /> заряд <img decoding=лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще [1] , иначе говоря, со стороны электрического \mathbf<E>» width=»» height=»» /> и магнитного <img decoding=» width=»» height=»» /> полей. Выражается в СИ как:

\mathbf<F>=q\left(\mathbf<E>+[\mathbf<v>\times\mathbf<B>]\right)» width=»» height=»» /></p> <p>Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено Хевисайдом [2] .</p> <p>Макроскопическим проявлением силы Лоренца является сила Ампера.</p> <h3>Содержание</h3> <h3>Уравнение (единицы СИ)</h3> <h4>Заряженная частица</h4> <p><img decoding=

Сила F действующая на частицу с электрическим зарядом q, движущуюся с постоянной скоростью v, во внешнем электрическом E и магнитном B полях, такова:

\mathbf<F>= q(\mathbf <E>+ \mathbf <v>\times \mathbf<B>)» width=»» height=»» /></p> <p>где <big>×</big> векторное произведение. Все величины выделенные жирным являются векторами. Более явно:</p> <p><img decoding=(\mathbf,t,q) = q[\mathbf(\mathbf,t) + \mathbf<\dot> \times \mathbf(\mathbf,t)]» width=»» height=»» />

где r — радиус-вектор заряженной частицы, t — время, точкой обозначена производная по времени.

Непрерывное распределение заряда

Для непрерывного распределения заряда, сила Лоренца принимает вид:

d\mathbf<F>= dq\left(\mathbf <E>+ \mathbf <v>\times \mathbf<B>\right)\,\!» width=»» height=»» /></p> <p>где <i>d</i><b>F</b> — сила, действующая на маленький элемент <i>dq</i>.</p> <h3>Ковариантная запись</h3> <p>4-сила выражается через вектор 4-скорости частицы по формуле</p> <p><img decoding=^\mu = qF^ <\nu \mu>u_\nu» width=»» height=»» />, где \mathcal<F>^\mu» width=»» height=»» /> — 4-сила, q — заряд частицы, <img decoding=» width=»» height=»» /> — тензор электромагнитного поля, u_\nu — 4-скорость.

Частные случаи

r

В однородном магнитном поле, направленном перпендикулярно вектору скорости, под действием силы Лоренца заряженная частица будет равномерно двигаться по окружности постоянного радиуса (называемого также гирорадиусом). Сила Лоренца в этом случае является центростремительной силой:

СГС СИ
<mv^2\over r>= <|q|\over c>vB\Rightarrow r = <cm\over |q|>\cdot<v\over B>» width=»» height=»» /></td> <td> <img decoding== |q|vB\Rightarrow r = \cdot» width=»» height=»» />

Работа силы Лоренца будет равна нулю, поскольку векторы силы и скорости всегда ортогональны. При скорости v\ , намного меньшей скорости света, круговая частота \omega\ не зависит от v\ :

СГС СИ
\omega =<|q|B\over mc>» width=»» height=»» /></td> <td><img decoding=» width=»» height=»» />

Если заряженная частица движется в магнитном поле так, что вектор скорости v\ составляет с вектором магнитной индукции \mathbf<B>» width=»» height=»» /> угол <img decoding=, то траекторией движения частицы является винтовая линия с радиусом r\ и шагом винта h\ :

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *