Как паять микросхемы
Перейти к содержимому

Как паять микросхемы

Пайка для начинающих

Мои отношения с радио- и микроэлектроникой можно описать прекрасным анекдотом про Льва Толстого, который любил играть на балалайке, но не умел. Порой пишет очередную главу Войны и Мира, а сам думает «тренди-бренди тренди-бренди. ». После курсов электротехники и микроэлектроники в любимом МАИ, плюс бесконечные объяснения брата, которые я забываю практически сразу, в принципе, удается собирать несложные схемы и даже придумывать свои, благо сейчас, если неохота возиться с аналоговыми сигналами, усилениями, наводками и т.д. можно подыскать готовую микро-сборку и остаться в более-менее понятном мире цифровой микроэлектроники.

К делу. Сегодня речь пойдет о пайке. Знаю, что многих новичков, желающих поиграться с микроконтроллерами, это отпугивает. Но, во-первых, можно воспользоваться макетными платами, где просто втыкаешь детали в панель, без даже намека на пайку, как в конструкторе.

Так можно собрать весьма кучерявое устройство.

Но иногда хочется таки сделать законченное устройство. Опять-таки, не обязательно «травить» плату. Если деталей немного, то можно использовать монтажную плату без дорожек (я использовал такую для загрузчика GMC-4).

Но вот паять таки придется. Вопрос как? Особенно, если вы этого никогда раньше не делали. Я, возможно, открою Америку, но буквально несколько дней назад я сам для себя открыл волшебный мир пайки без особого геморроя.

До сего времени мое понимание сути процесса ручной пайки было следующим. Берется паяльник (желательно с жалом не в форме шила, а с небольшим уплощением, типа лопаточки), припой и канифоль. Для запайки пятачка, ты берешь капельку припоя на паяльник, макаешь паяльник в канифоль, происходит «пшшшшш», и пока он идет, ты быстро-быстро касаешься паяльником места пайки (деталь, конечно, должна быть уже вставлена), и после нескольких мгновений разогрева припой должен каким-то волшебным образом переходить на место пайки.

Увы, у меня такой метод работал очень плохо, практически не работал. Детали нагревались, но припой никуда с паяльника не переходил. Очевидно, что проблема была в катализаторе, то есть канифоли. Того «пшшшшш», что я делал, опуская конец паяльник в канифоль, явно не хватало, чтобы «запустить» процесс пайки. Пока ты тащишь паяльник к месту пайки, вся почти канифоль успевает сгореть. Именно поэтому, кстати, мне была совершенно непонятна природа припоя, внутри которого уже содержится флюс (какой-то вид катализатора, типа канифоли). Все равно, в момент набирания припоя на паяльник весь флюс успевает сгореть.

  • Лудить места пайки заранее. Реально, при пайке деликатных вещей, типа
    микросхем это крайне непрактично. Тем более, обычно, их ножки уже
    луженые.
  • Крошить канифоль прямо на место пайки. Аккуратно кладешь кристаллик канифоли прямо на место пайки, и тогда «пшшшшш» происходит прямо там, что позволяет припою нормально переходить с паяльника. Увы, после такой пайки плата вся обгажена черными заплесами горелой канифоли. Хотя она и изолятор, но порой не видно дефектов пайки.Поэтому плату надо мыть, а это отдельный геморрой. Да и само выкрашивание делает пайку крайне медленной. Так я паял Maximite.
  • Использовать жидкой флюс. По аналогии с выкрашиваем канифоли, можно аккуратно палочкой класть капельку жидкого флюса (обычно, он гораздо «сильнее» канифоли), и тогда будет активный «пшшшшш», и пайка произойдет. Увы, тут тоже есть проблемы. Не все жидкие флюсы являются изоляторами, и плату тоже надо мыть, например, ацетоном. А те, что являются изоляторами все равно остаются на плате, растекаются и могут мешать последующей внешней «прозвонке». Выход — мыть.

и припой c флюсом внутри:

  • Деталь вставляется в плату и должна быть закреплена (у вас не будет второй руки, чтобы держать).
  • В одну руку берется паяльник, в другую — проволочка припоя (удобно, если он в специальном диспенсере, как на картинке).
  • Припой на паяльник брать НЕ НАДО.
  • Касаетесь кончиком паяльника места пайки и греете его. Обычно, это секунды 3-4.
  • Затем, не убирая паяльника, второй рукой касаетесь кончиком проволочки припоя с флюсом места пайки. В реальности, в этом месте соприкасаются сразу все три части: элемент пайки и его отверстие на плате, паяльник и припой. Через секунду происходит «пшшшшш», кончик проволочки припоя плавится (и из него вытекает немного флюса) и необходимое его количество переходит на место пайки. После секунды можно убирать паяльник с припоем и подуть.

Ясное дело, что время ожидания на каждой фазе требует хотя бы минимальной практики, но не более того. Уверен, что любой новичок по такой методике сам запаяет Maximite за час.

  • Много припоя еще не значит качественного контакта. Капелька припоя на месте контакта должна закрывать его со всех сторон, не имея рытвин, но не быть чрезмерно огромной бульбой.
  • По цвету пайка должна быть ближе к блестящей, а не к матовой.
  • Если плата двухсторонняя, и отверстия неметаллизированные, надо пропаять по указанной технологии с обоих сторон.

Планарные элементы (конечно, не самые маленькие) даже проще для пайки в некотором роде, хотя для самодельных устройств уже придется травить плату, так как на макетной плате особого удобства от использования планарных элементов не будет.

Итак, небольшой, почти теоретический бонус про пайку планарных элементов. Это могут быть микросхемы, транзисторы, резисторы, емкости и т.д. Повторюсь, в домашних условиях есть объективные ограничения на размер элементов, которых можно запаять обычным паяльником. Ниже я приведу список того, что лично я паял обычным паяльником-шилом на 220В.

Для пайки планарного элемента уже не получится использовать припой на ходу, так как его может «сойти» слишком много, «залив» сразу несколько ножек. Поэтому надо предварительно в некотором роде залудить пятачки, куда планируется поставить компонент. Тут, увы, уже не обойтись без жидкого флюса (по крайне мене у меня не получилось).

Капаете немного жидкого флюса на пятачек (или пятачки), берете на паяльник совсем немного припоя (можно без флюса). Для планарных элементов припоя вообще надо очень мало. Затем легонько касаетесь концом паяльника каждого пятачка. На него должно сойти немного припоя. Больше чем надо, каждый пятачек «не возьмет».

Берете элемент пинцетом. Во-первых, так удобнее, во-вторых пинцет будет отводить тепло, что очень важно для планарных элементов. Пристраиваете элемент на место пайки, держа его пинцетом. Если это микросхема, то надо держать за ту ножку, которую паяете. Для микросхем теплоотвод особенно важен, поэтому можно использовать два пинцета. Одним держишь деталь, а второй прикрепляешь к паяемой ножке (есть такие пинцеты с зажимом, которые не надо держать руками). Второй рукой снова наносишь каплю жидкого флюса на место пайки (возможно немного попадет на микросхему), этой же рукой берешь паяльник и на секунду касаешься места пайки. Так как припой и флюс там уже есть, то паяемая ножка «погрузится» в припой, нанесенный на стадии лужения. Далее процедура повторяется для всех ног. Если надо, можно подкапывать жидкого флюса.

Когда будете покупать жидкий флюс, купите и жидкость для мытья плат. Увы, при жидком флюсе лучше плату помыть после пайки.

Сразу скажу, я ни разу не профессионал, и даже не продвинутый любитель в пайке. Все это я проделывал обычным паяльником. Профи имеют свои методы и оборудование.

Конечно, пайка планарного элемента требует куда большей сноровки. Но все равно вполне реально в домашних условиях. А если не паять микросхемы, а только простейшие элементы, то все еще упрощается. Микросхемы можно покупать уже впаянные в колодки или в виде готовых сборок.

Вот картинки того, что я лично успешно паял после небольшой тренировки.

Это самый простой вид корпусов. Такие можно ставить в колодки, которые по сложности пайки такие же. Эти элементарно паяются по первой инструкции.

Следующие два уже сложнее. Тут уже надо паять по второй инструкции с аккуратным теплоотводом и жидким флюсом.

Элементарные планарные компоненты, типа резисторов ниже, весьма просто паяются:

Но есть, конечно, предел. Вот это добро уже за пределами моих способностей.



    Отсос. Изобретателю этого устройства стоит поставить памятник. Налепили много припоя или запаяли не туда? Сам припой, увы, обратно на паяльник не запрыгнет. А вот отсосом убирается элементарно. Одной рукой разогреваете паяльником место «отпайки». Второй держите рядом взведенный отсос. Как «оттает», нажимаете на кнопку, и припой прекрасным образом спрыгивает в отсос.

Чем и как паять микросхемы

Современные радиоэлектронные устройства невозможно представить без микросхем – сложных деталей, в которые, по сути, интегрированы десятки, а то и сотни простых, элементарных компонентов.

Микросхемы позволяют сделать устройства легкими и компактными. Рассчитываться за это приходится удобством и простотой монтажа и достаточно высокой ценой деталей. Цена микросхемы не играет важной роли в формировании общей цены изделия, в котором она применяется. Если же испортить такую деталь при монтаже, при замене на новую стоимость может существенно увеличиться. Несложно припаять толстый провод, большой резистор или конденсатор, для этого достаточно владения начальными навыками в пайке. Микросхему же надо припаивать совсем иным способом.

Чтобы не произошло досадных недоразумений, при пайке микросхем необходимо пользоваться определенными инструментами и соблюдать некоторые правила, основанные на многочисленном опыте и знаниях.

Оборудование для пайки

Для пайки микросхем можно использовать различное паяльное оборудование, начиная от простейшего – паяльника, и заканчивая сложными устройствами и паяльными станциями с использованием инфракрасного излучения.

Паяльник для пайки микросхем должен быть маломощным, желательно рассчитанным на напряжение питания 12 В. Жало такого паяльника должно быть остро заточено под конус и хорошо облужено.

Для выпаивания микросхем может быть применен вакуумный оловоотсос – инструмент, позволяющий поочередно очищать ножки на плате от припоя. Этот инструмент представляет собой подобие шприца, в котором поршень подпружинен вверх. Перед началом работ он вдавливается в корпус и фиксируется, а когда необходимо, освобождается нажатием кнопки и под действием пружины поднимается, собирая припой с контакта.

Более совершенным оборудованием считается термовоздушная станция, которая позволяет осуществлять и демонтаж микросхем и пайку горячим воздухом. Такая станция имеет в своем арсенале фен с регулируемой температурой потока воздуха.

Очень востребован при пайке микросхем такой элемент оборудования, как термостол. Он подогревает плату снизу, в то время, как сверху производятся действия по монтажу или демонтажу. Опционально термостол может быть оснащен и верхним подогревом.

В промышленных масштабах пайка микросхем осуществляется специальными автоматами, использующими ИК-излучение. При этом производится предварительный разогрев схемы, непосредственно пайка и плавное ступенчатое охлаждение контактов ножек.

В домашних условиях

Пайка микросхем в домашних условиях может потребоваться для ремонта сложной бытовой техники, материнских плат компьютеров.

Как правило, чтобы припаять ножки микросхемы, используют паяльник или паяльный фен.

Работа паяльником осуществляется с помощью обычного припоя или паяльной пасты.

В последнее время стал чаще применяться бессвинцовый припой для пайки с более высокой температурой плавления. Это необходимо для уменьшения вредного действия свинца на организм.

Какие приспособления потребуются

Для пайки микросхем, кроме самого паяльного оборудования, потребуются еще некоторые приспособления.

Если микросхема новая и выполнена в BGA-корпусе, то припой уже нанесен на ножки в виде маленьких шариков. Отсюда и название – Ball Grid Array, что означает массив шариков. Такие корпуса предназначены для поверхностного монтажа. Это означает, что деталь устанавливается на плату, и каждая ножка быстрым точным действием припаивается к контактным пятачкам.

Если же микросхема уже использовалась в другом устройстве и используется как запчасти, бывшие в употреблении, необходимо выполнить реболлинг. Реболлингом называется процесс восстановления шариков припоя на ножках. Иногда он применяется и в случае отвала – потери контакта ножек с контактными пятачками.

Для осуществления реболлинга понадобится трафарет – пластина из тугоплавкого материала с отверстиями, расположенными в соответствии с расположением выводов микросхемы. Существуют готовые универсальные трафареты под несколько самых распространенных типов микросхем.

Паяльная паста и флюс

Для правильной пайки микросхем необходимо соблюдать определенные условия. Если работа осуществляется паяльником, то жало его должно быть хорошо облужено.

Для этого используется флюс – вещество, растворяющее оксидную пленку и защищающее жало от окисления до покрытия припоем во время пайки микросхемы.

Наиболее распространенный флюс – сосновая канифоль в твердом, кристаллическом виде. Но, чтобы припаять микросхему, такой флюс не годится. Ножки ее и контактные пятачки обрабатывают жидким флюсом. Его можно сделать самостоятельно, растворив канифоль в спирте или кислоте, а можно купить готовый.

Припой в этом случае удобнее использовать в виде присадочной проволоки. Иногда он может содержать внутри флюс из порошковой канифоли. Можно приобрести готовый паяльный набор для пайки микросхем, включающий в свой состав канифоль, жидкий флюс с кисточкой, несколько видов припоя.

При осуществлении реболлинга используется паяльная паста, представляющая собой основу из вязкого материала, в которой содержатся мельчайшие шарики припоя и флюса. Такая паста наносится тонким слоем на ножки микросхемы с обратной стороны трафарета. После этого паста разогревается феном или инфракрасным паяльником до расплавления припоя и канифоли. После застывания, они образуют шарики на ножках микросхемы.

Порядок проведения работ

Перед началом работ необходимо подготовить все инструменты, материалы и приспособления, чтобы они были под рукой.

При монтаже или демонтаже плату можно расположить на термостоле. Если для демонтажа используется паяльный фен, то для исключения его воздействия на другие компоненты, нужно их изолировать. Сделать это можно установкой пластин из тугоплавкого материала, например, полосок, нарезанных из старых плат, пришедших в негодность.

При использовании для демонтажа оловоотсоса процесс происходит аккуратнее, но дольше. Оловоотсос «заряжается» при очистке каждой ножки. По мере заполнения кусками застывшего припоя, его нужно очищать.

Есть несколько правил пайки, которые следует обязательно исполнять:

  • паять микросхемы на плате надо быстро, чтобы не перегреть чувствительную деталь;
  • можно каждую ножку во время пайки придерживать пинцетом, чтобы обеспечить дополнительный теплоотвод от корпуса;
  • при монтаже с помощью фена или инфракрасного паяльника, необходимо следить за температурой детали, чтобы она не поднималась выше 240-280 °C.

Радиоэлектронные детали очень чувствительны к статическому электричеству. Поэтому при сборке лучше использовать антистатический коврик, который подкладывается под плату.

Зачем сушить чипы

Чипами называют микросхемы, заключенные в BGA-корпусах. Название, видимо, пошло еще от аббревиатуры, означавшей «Числовой Интегральный Процессор».

По опыту использования у профессионалов существует устойчивое мнение, что при хранении, транспортировке, пересылке, чипы впитывают в себя влагу и во время пайки она, увеличиваясь в объеме, разрушает деталь.

Действие влаги на чип можно увидеть, если нагреть последний. На поверхности его будут образовываться вздутия и пузыри еще задолго до того, как температура поднимется до значения, достаточного для расплавления припоя. Можно только представить, что же происходит внутри детали.

Чтобы избежать нежелательных последствий наличия влаги в корпусе чипа, при монтаже плат осуществляется сушка чипов перед пайкой. Эта процедура помогает удалить влагу из корпуса.

Правила сушки

Сушку чипов необходимо производить, соблюдая температурный режим и продолжительность. Новые чипы, которые были приобретены в магазине, со склада, присланы по почте, рекомендуется сушить не менее 24 часов при температуре 125 °C. Для этого можно использовать специальные сушильные печи. Можно высушить чип, расположив его на термостоле.

Температуру сушки необходимо контролировать, чтобы не допустить перегрева и выхода детали из строя.

Если чипы были высушены и хранились до монтажа в обычных комнатных условиях, достаточно просушить их в течение 8-10 часов.

Учитывая стоимость деталей, очевидно, лучше провести сушку, чтобы с уверенностью приступать к монтажу, чем пытаться паять непросушенный чип. Неприятности могут обернуться не только денежными тратами, а еще и потерянным временем.

Все о пайке микросхем

Довольно часто электронные устройства бытового назначения выходят из строя по причине того, что перегорела какая-либо микросхема, называемая чипом. Исправить поломку можно, обратившись к услугам сервисной мастерской, но нужно быть готовыми к тому, что ремонт там обойдется недешево. Если у вас имеются хотя бы минимальные навыки работы с паяльником, заменить электронный чип можно своими силами. Справиться с такой задачей поможет электрический паяльник, предназначенный для паяния мелких деталей. Вооружившись этим устройством, вы сможете выпаять старый сгоревший микрочип и выполнить пайку нового чипа к печатной плате.

Какой паяльник выбрать?

Маленький электрический паяльник является важным инструментом, предназначенным для работ с микросхемами. Модификации такого микропаяльника могут обладать различными свойствами и характеристиками.

Хороший профессиональный паяльник, выполненный в формате мини, обладает регулятором температуры нагрева.

С его помощью можно нанести тончайший слой компонентов расплавленного припоя, а также нагреть контактные выводы у радиодетали для монтажа или демонтажа микросхемы из печатной платы. Некоторые виды электрических миниатюрных паяльников обладают особенностями, которые могут быть пригодны только для выполнения одного типа работ.

Разновидности

Электрические профессиональные паяльники позволяют ремонтировать даже лазерный тип устройств. В соответствии с тем, какой тип нагрева предусмотрен у этого инструмента, паяльники разделяют на следующие виды.

Нихромовый

Нагревательным элементом паяльника является проволока из нихрома, не только хорошо проводящая электрический ток, но и быстро нагревающаяся. Конструкция электроинструмента имеет спираль из нихрома, расположенную в специальных изоляторах, позволяющих сохранять тепловую энергию. Приспособление является бытовым, простым в использовании и ударопрочным. Недостатком станет быстрое перегорание спирали, которую придется заменять.

Импульсный

Обладает способностью быстро нагреваться и стоек к механическим воздействиям. Конструкция содержит образователь частот со встроенным трансформатором.

При нагреве частота повышается, а затем снижается до необходимых рабочих параметров.

Жало паяльника входит в состав электроцепи путем подключения к токосъемникам, расположенным на вторичной обмотке. Модель оснащена кнопкой включения, которая при нажатии мгновенно разогревает паяльник, а при ее отпускании инструмент остывает.

Керамический

Дорогая, но хрупкая модель, быстро разогревающаяся для работы. Конструкция содержит керамические стержни, подсоединенные к контактам напряжения, благодаря которым происходит разогрев паяльника. Паяльник служит долго, но у него высок риск механического повреждения: если жало выйдет из строя, заменить его не получится.

Индукционный

Конструкция содержит катушку индуктора и специальное ферромагнитное напыление на жале, обеспечивающее создание магнитного поля. При разогреве электропаяльника до определенной температуры дальнейшее нагревание прекращается. После падения температуры нагрев возобновляется, что и обеспечивается покрытием из ферромагнитного состава. Автоматический подогрев экономит электроэнергию, но чтобы выбрать рабочий диапазон температур, приходится менять съемные наконечники.

Специалисты в области радиоэлектроники рекомендуют обратить внимание на специальные паяльные станции, где нагрев происходит за счет индукторной катушки.

Электропаяльнику в этом случае не требуется автоматический терморегулятор, но выбор температурного режима придется подбирать путем смены жал, входящих в комплект такой паяльной станции.

Паяльная станция – дорогой инструмент, предназначенный для выполнения объемных и множественных работ. Паяльная станция оснащена автоматическим термостатом и контроллером, к которым при необходимости через специальные гнезда можно подключить не только паяльник, но и другие электроинструменты для паяния.

Характеристики

У паяльника с тонким жалом, используемого для паяния микрочипа, имеются следующие характеристики.

  • Рабочая мощность. Оптимальным вариантом будут модели будет параметр в 20-35 Вт, так как более высокая мощность электроинструмента спровоцирует перегрев или прожог микросхемы.
  • Контроллер (термостат). Удобный в применении инструмент должен иметь приспособление, которое удерживает нагрев жала до параметров, не превышающих 300°C.
  • Вид жала. Удобно, если у электрического паяльника имеется набор сменных насадок в виде срезанного жала под углом 45°, а также комплект тонких конусных вариантов. Поверхность жала у хорошего паяльника покрыта защитным слоем, который препятствует образованию нагара. Такой вариант предпочтительнее медного жала, которое требуется постоянно зачищать.
  • Конструкция. Кабель паяльника должен обладать удвоенной изоляцией, сечение провода выбирают от 2,5 мм. Шнур должен быть пластичным и не перекручиваться. Ручка инструмента не может быть тяжелой и выскальзывать из пальцев.
  • Размеры и вес. Устройство выбирают легкое и небольшое по размеру, так как в процессе работы его принято держать так же, как и карандаш. Большие паяльники с рукояткой из дерева будут неудобными из-за веса, их не получится правильно захватить пальцами.

Чтобы успешно осуществить пайку микросхем, необходимо выбирать маломощные устройства: чем ниже данный показатель, тем больше будет возможностей не испортить дорогостоящие радиоэлементы во время паяния.

Популярные модели

Теперь дадим краткий обзор популярных моделей, применяемых для паяния радиодеталей.

Название и марка паяльника

Некоторые важные свойства модели

Работает от электросети и оснащена температурным встроенным регулятором. Жало разогревается в диапазоне от 200 до 450°C. Оно выполнено из меди с защитным покрытием от нагара. Элемент нагрева – керамический.

Мини-модель, к которой нужно дополнительно приобретать блок питания. Применяется как в домашних условиях, так и в автомобиле, подключаясь к прикуривателю через переходник. Элемент нагревания – керамический. Диапазон температур – от 360 до 400°C.

Паяльник разогревается за 15 секунд. Имеет встроенную подсветку и аккумулятор для автономного режима работы в течение 1 часа. Модель укомплектована проволочным припоем и снабжена защитой в виде колпачка.

В комплекте имеется паяльная станция и подставка. Рабочая область температур – от 200 до 400°C. Имеется возможность смены насадок и настройки степени нагрева. В паяльнике применен нагреватель керамического типа.

Аккумуляторная модель с возможной температурой нагрева до 450°C. Модель укомплектована проволочным припоем и снабжена защитой в виде колпачка. Также имеется подсветка.

Другие приспособления и материалы

Процесс паяния микрочипов и радиодеталей подразумевает наличие не только паяльника, но и дополнительного оборудования.

Можно также приобрести:

  • флюс для защиты поверхности металла от образования окислительной пленки;
  • проволоку припоя для выполнения процесса паяния, толщина которой – 0,5-1 мм;
  • набор сменных насадок (жал) различных форм и размеров;
  • увеличительное стекло с держателем или очки-лупу, увеличивающие в 10-20 крат;
  • бинокулярный стереоскопический микроскоп с длинным фокусом и подсветкой рабочей области;
  • держатель-подставку, куда можно положить разогретый в процессе работы паяльник;
  • специальный антистатический коврик и браслет для защиты микросхем от действия статического электричества;
  • влажную ткань или специальное приспособление для очистки жала паяльника от нагара;
  • металлическую плетенку для удаления лишнего количества припоя;
  • шприц для удаления остатков припоя, оставшихся от демонтажа старого микрочипа и для переноса припоя во время работы в область паяния;
  • пинцет для удерживания миниатюрных микросхем;
  • органический растворитель либо этиловый спирт для удаления заводского защитного лака на микросхеме, а также для удаления остатков флюса после выполнения работы;
  • небольшую кисточку для нанесения жидких составов.

Для удобства выполнения паяльных работ перечисленные инструменты необходимо приготовить заранее и расположить на столе в удобном порядке.

Технологии пайки

Для начинающих радиолюбителей научиться правильно паять в домашних условиях помогут пошаговые инструкции. Перед работой важно изучить подготовку деталей к работе, температуру плавления олова, правила нанесения флюса. Работу с микросхемами можно осваивать поэтапно. Например, для начала выпаять из платы старую деталь. Потренироваться выпаивать можно на каких-либо старых бытовых приборах, вышедших из строя.

После того как будет освоено выпаивание, можно переходить к процессу паяния и попробовать спаять дорожку в радиодетали.

Микросхемы производятся двух типов. DIP-чипы имеют штырьковые выводы, которые запаивают в отверстия с обратной стороны платы. SOIC-чипы имеют планарные выводы, которые паяют с лицевой стороны микросхемы к ее площадкам.

Последовательность паяльных работ зависит от вида детали. Есть следующие виды паяния.

Радиоэлементов

Чтобы отпаять SOIC-чип, нужно смыть растворителем защитный лак с выводов микросхемы, а затем очистить от лака и саму плату, используя этиловый спирт. Затем на выводы при помощи кисточки наносят флюс. Далее потребуется взять припой и запаять все выводы чипа с каждой стороны, замкнув их. Для этого жалом проходят по всем точкам выводов, распределяя по ним припой. Припоя рекомендуется брать много, чтобы после того, как вы уберете паяльник, он оставался в расплавленном состоянии. Только в этом случае у вас получится взять чип пинцетом и удалить его. Если микросхема приклеена в области платы, потребуется обрабатывать припоем каждый вывод поочередно, а затем поднимать его с помощью пинцета вверх, над платой. После завершения отпаивания вводов потребуется взять нож и удалить чип, стараясь не повредить при этом плату.

Припаять SOIC-чип можно, применяя метод «волны припоя», суть которого сводится к эффекту капилляра, когда расплавленный состав припоя протекает между площадкой платы и выводом микрочипа, образуя там каплю.

Последовательность действий в этом случае начинается с того, что на контакты вывода наносят жидкий флюс, чтобы облудить их. Затем микросхему помещают на плату и располагают точки ввода с соответствующими местами крепления. Далее нужно припаять по диагонали каждый вывод, чтобы не было перекоса и смещения чипа. После этого флюс вновь наносят на припаянные точки вывода и при помощи жала с припоем распределяют припой по выводам равномерно. Если между двумя выводами образуется мостик из припоя, его удаляют металлической плетенкой, помещая ее поверх образовавшейся перемычки.

Чипов

Чтобы отпаять DIP-чип, нужно смыть лаковое покрытие в области паяния при помощи ацетона, следы которого затем убирают этиловым спиртом. Разогретой насадкой-жалом прикасаются к ножке чипа, расположенной с оборотной стороны платы. Жало удерживают в этом месте до тех пор, пока имеющийся припой не расплавится. Затем припой собирают шприцем, втягивая внутрь. Подобное действие выполняют со всеми выводами чипа, после чего их можно будет вынуть из отверстий платы.

При выполнении процесса припаивания потребуется следить за тем, чтобы чип не перегревался, поэтому прикасаться жалом к ножке чипа можно только 2-3 секунды, а затем, чтобы выполнить повторные касания, потребуется охлаждать рабочую область пайки.

Перед выполнением процесса паяния выводы чипа необходимо облудить. Для этого на выводы чипа наносят флюс, не касаясь самой микросхемы, и обрабатывают насадкой с набранным на нее припоем. После лужения выводы чипа имеют гладкую и серебристую поверхность. Далее микрочип закрепляют на плате, используя для этого припой и фиксируя деталь на отведенном участке платы.

Рекомендации

Для правильного выполнения паяльных работ рекомендуется использовать мощность паяльника, не превышающую 10 Вт. Большинство электроинструментов работает от напряжения сети в 220 В, но в некоторых моделях предусмотрен блок питания, понижающий напряжение до показателей 36 или 12 В. Паяльники, способные понижать электрическое напряжение, считаются лучшим вариантом для работы с микросхемами.

Что касается толщины жала электропаяльника, то этот параметр колеблется от 1 до 2 мм. В большинстве случаев для работы удобно пользоваться конусовидными насадками. Выбирая модель электрического паяльника, целесообразно отдать предпочтение варианту с автоматическим терморегулятором, который поддерживает заданную температуру и позволяет добиться отличных результатов в процессе паяльных работ.

Как правильно паять в домашних условиях?

При сборке различных электротехнических и радиотехнических устройств популярна пайка. Она обеспечивает электропроводное соединение медных проводов и иных медных изделий друг с другом, с компонентами электрических схем и прочими металлическим деталями из чистой меди и медных сплавов, а также производить пайку алюминия. Пайка проста, очень гибка, позволяет получить низкое переходное сопротивление соединяемых компонентов.

Суть технологии пайки заключается в нагреве зоны контакта с последующей ее заливкой жидким металлическим легкоплавким припоем. После остывания расплав обеспечивает электрический контакт. Перед тем как припаять провода, обычно необходима дополнительная обработка соединяемых поверхностей (чаще всего т.н. лужение проводов), что гарантирует долговременную стабильность.

При отсутствии вибраций и ударных нагрузок для мелких деталей достигается неплохая прочность соединения. Во всех прочих случаях паяют с дополнительной фиксацией.

Что может понадобиться для пайки?

Для пайки требуется источник тепла. Можно паять с использованием открытого пламени, электрической спирали, а также луча лазера. Последний позволяет паять даже чистым металлом. Дома пользуются преимущественно электрическим паяльником. Он предназначен для:

  • монтажа и ремонта различных электронных схем;
  • конструирования и ремонта электротехнического оборудования;
  • лужения слоем припоя различных металлических изделий.

Паяльник

Паяют ручным паяльником, который используют для:

  • прогрева соединяемых компонентов;
  • нагрева припоя до перехода его в жидкое состояние;
  • нанесения жидкого припоя на соединяемые элементы.

Паяльник, который изображен на рисунке 1, содержит:

  • изолированный слюдяной пленкой или стеклотканью спиральный нагреватель из нихромовой проволоки;
  • медное жало, которое расположено внутри спирали;
  • пластиковую или деревянную рукоятку;
  • корпус для размещения жала паяльника и спирали.

Подключение к электрической сети производят кабелем длиной примерно 1 м, который через ограничитель радиуса изгиба выходит из задней части рукоятки.

Деревянная или пластиковая рукоятка имеет форму простой ручки. Электронные схемы паяют изделиями небольшой мощности, оборудованных пистолетными рукоятками с кнопкой-курком для быстрого разогрева жала. Один из вариантов такого инструмента показан на рисунке 2.

Радиомонтажный паяльник пистолетного типа

Рисунок 2. Радиомонтажный паяльник пистолетного типа

Бытовые паяльники предназначены для подключения к сети напряжением 12 и 220 В.

220 – вольтовые паяльники из соображений обеспечения электробезопасности должны комплектоваться 3-контактной вилкой, обеспечивающей надежное заземление. Для 12-вольтовой техники достаточно простой 2-контактной плоской вилки.

Припой

Паяют припоем – сплавом олова со свинцом, возможны добавки иных металлов. Припой имеет форму трубки или проволоки различного диаметра. Трубчатый припой заполнен внутри канифолью, паять с его помощью более удобно.

Свинец вводят в сплав для уменьшения стоимости. Его удельное содержание различно, что прямо отражается в марке. Например, ПОС-61 (очень популярный третник) означает:

  • П – припой;
  • ОС – оловянно-свинцовый;
  • 61 – с 61-процентным содержанием олова.

В быту паяют сплавами с уменьшенным содержанием олова, лужение посуды целесообразно выполнять составом ПОС-90.

Кроме того, паяют мягкими и твердыми припоями. Мягкие составы имеют температуру плавления менее 450, остальные относят к твердым. Температура плавления припоя ПОС-61 составляет 190 – 192 °С. Из-за сложностей разогрева высокотемпературную пайку с привлечением твердых припоев электрическим инструментом не выполняют.

Составами с добавлением легкоплавких металлов: алюминия и кадмия – паяют алюминий. Из-за повышенной токсичности паять с их помощью можно только при отсутствии альтернативы.

Паяют обязательно под флюсом – вспомогательным компонентом, обеспечивающим:

  • растворение окисных пленок на поверхности соединяемых деталей;
  • хорошее сцепления с ними паяльного сплава;
  • улучшение условий растекания сплава по поверхности тончайшим слоем.

Обычно в этом качестве используют канифоль, а также составы на основе ее смеси со спиртом, глицерином и цинком. Канифоль имеет температуру размягчения чуть выше 50°С, при 200°С кипит. Химически канифоль довольно агрессивна по отношению к металлам и гигроскопична, при насыщении влагой быстро увеличивает проводимость. В зависимости от добавок и их концентрации демонстрирует свойства нейтральных или активных флюсов.

Канифоль и припой

Канифоль и припой

Канифольный флюс продается в виде порошка, кусками или раствора канифоли.

Серебро, нержавеющую сталь и некоторые другие металлы можно паять только с помощью специальных флюсов (известны как кислотные флюсы или паяльные кислоты).

Некоторые монтажники, которые паяют провода, для улучшения качества облуживания выполняют предварительный нагрев на таблетке аспирина, пары которого выполняют функции флюса.

Паяльные пасты

Паяльная паста это композиция из припоя и флюса. Ею паяют в труднодоступных местах, а также при установке безвыводных электронных элементов. Состав наносят на компонент, который затем просто прогревают жалом.

Пасту можно изготовить самостоятельно. Для этого оловянные опилки смешивают с жидким флюсом до гелеобразной консистенции. Хранят пасту в герметичной упаковке, срок годности из-за окисления олова не превышает шести месяцев.

Подставка для паяльника

Паяют жалом, нагретым до высокой температуры, поэтому в перерыве инструмент оставляют на подставке. Для мощных паяльников ее выполняют с двумя опорами: задняя для рукоятки, передняя – для корпуса. Опоры монтируют на фанерном основании, которое используют служит для:

  • установки коробки с канифолью;
  • хранения проволоки припоя (пример приведен на рисунке 3);
  • чистки жала.

Рисунок 3 показывает, что подставка не требует дефицитных материалов, может быть изготовлена своими руками.

Самодельная подставка для мощного паяльника

Рисунок 3. Самодельная подставка для мощного паяльника

Для устройств малой мощности часто применяют конусообразный держатель (обычный или спиральный, что показано также на рисунке 3), в которую инструмент вставляют жалом.

Старшие модели подставок снабжают регулятором рабочей температуры, ЖК дисплеем для индикации температуры жала, рисунок 4. Подобный паяльный инструмент часто называют паяльной станцией.

Пример паяльной станции с индикатором

Рис. 4. Пример паяльной станции с индикатором

Оплетка для удаления припоя

С оплеткой паяют в тех случаях, когда необходимо удаление припоя с печатной платы при демонтаже деталей. Представляет собой плотную сетку из покрытых флюсом тонких медных проволок.

Принцип действия основан на поверхностном эффекте: сетка «впитывает» припой, расплавленный на печатной плате, за счет капиллярных сил.

Обычно ширина оплетки составляет около 5 мм, поставка рулонная в корпусе диаметром примерно 5 см.

Функции удаления припоя может выполнять внешняя оплетка старого гибкого коаксиального кабеля.

Меры безопасности

Соблюдение техники безопасности:

  • способствует защите от термических ожогов;
  • предотвращает возникновение пожара;
  • защищает от поражения электрическим током.

Прежде чем начинать паять, следует убедиться в исправности кабеля питания. Жало не должно касаться поводов, а также прочих предметов. Паяльник необходимо всегда класть на подставку. Запрещается касаться его корпуса, брать инструмент можно только за ручку.

Подготовка

Рабочего места

Паяют всегда при нормальном общем освещении (не хуже 500 люкс), при необходимости создания более комфортных условий применяют источник местного освещения.

Следует позаботиться о хорошей вентиляции. Наилучшие результаты дает вытяжка, при ее отсутствии паяют с перерывами для проветривания помещение от паров канифоли (каждый час при интенсивной работе).

Выбор паяльника по мощности

Паяют паяльниками различной мощности. Обычно исходят из того, что:

  • маломощные паяльники (20 – 50 Вт) удобны для работы с электроникой, позволяют паять тонкие провода;
  • 100-ваттным инструментом паяют слои меди толщиной не свыше 1 мм;
  • 200 Вт и более позволяет паять такие массивные детали, которые изначально требуют применения мощных паяльников.

О мощности прибора легко судить визуально: 50-ваттный паяльник оказывается чуть крупнее авторучки, тогда как 200-ваттный – имеет общую длину примерно 35-40 см.

Паяльника к работе

Перед первым включением следует удалить с корпуса остатки заводской смазки. Их выгорание приводит к появлению дыма и неприятного запаха. Поэтому паяльник включают через удлинитель, выставляя его на улицу через форточку на четверть часа.

Затем молотком проковывают жало паяльника: уплотнение меди увеличивает срок службы. Кончику жала придают форму:

  • под углом или на срез – для точечной работы (пример показан на рисунке 5);
  • ножевидную – таким жалом одновременно паяют нескольких контактов (характерно для микросхем);
  • специальную – ими паяют некоторые разновидности радиодеталей.

Перед тем как начать паять, следует очистить жало от оксидной пленки. Эту процедуру выполняют мелкозернистой наждачной бумагой или бархатным напильником, а также химическим способом: погружением в канифоль. Очищенное жало облуживают припоем.

При необходимости паять в точке можно мощным паяльником. Для этого на его жало накручивают медную проволоку диаметром 0,5 – 1 мм, используя ее свободный конец для нагрева припоя.

Деталей к пайке

Паяют всегда в несколько этапов. Сначала готовят поверхность металлического проводника:

  • удалением окисной пленки с последующим обезжириванием;
  • облуживанием (нанесение слоя олова на входящие в контакт поверхности).

Затем можно соединять детали.

Обязательно зачищают провода, бывшие в употреблении.

Окисную пленку снимают напильником, наждачной бумагой, лезвием ножа. В случае гибких проводов обрабатывают каждую проволоку.

Изоляцию эмалированного провода удаляют протаскиванием по поверхности ПВХ-трубки, к которой его прижимают нагретым жалом.

Признак готовности – равномерно блестящая поверхность без остатков оксидной пленки.

Паяют всегда с обезжириванием, т.е. протирают поверхность безворсовой тканью или салфеткой, смоченной ацетоном или уайт-спиритом.

У новых проводов окисная пленка отсутствует. Их облуживают сразу после удаления изоляции.

Залудить медный проводник необходимо под флюсом, после прогрева припой должен покрыть поверхность металла тонким слоем. При наличии наплывов паять не рекомендуется, провод располагают вертикально, проводя паяльником сверху вниз. Излишек расплавленного припая при этом перетекает на жало.

Если же необходимо паять алюминий, то процедуру зачистки и облуживания совмещают. Для этого помещают провод, покрытый канифолью, в наждачную бумагу, греют его с одновременным вращением.

Качество флюса некоторых видов падает при длительном хранении, а также под воздействием влаги воздуха. Поэтому такими флюсами паяют с дополнительным контролем срока годности.

Пошаговая техника пайки проводов

Пайку проводов выполняют в такой последовательности:

  1. Снимают изоляцию на длине 3-5 см (на проводах большего диаметра длина удаляемого участка больше).
  2. При необходимости зачищают и обезжиривают соединяемые жилы.
  3. Формируют плотную скрутку проводов.
  4. Обрабатывают полученный сросток флюсом.
  5. Набирают на жало припой и паяют скрутку, прогрев продолжают до полного растекания; при необходимости повторяют несколько раз. Припой должен заполнить все полости сростка так, как это показано на рисунке 6.
  6. Полученный сросток изолируют.

Пайка алюминиевых проводов друг с другом, а также с медными не имеет принципиальных отличий за исключением более сложной процедуры облуживания.

Пошаговая методика пайки радиодеталей на плату

Обычно радиодетали и заводские печатные платы имеют выводы и токоведущие дорожки, которые покрыты оловом. Их можно паять без предварительного облуживания. Платы лудят только при их самостоятельном изготовлении.

Процедура пайки включает такие шаги как:

  1. Пинцетом отгибают выводы под требуемым углом, затем их вставляют в отверстия платы.
  2. Фиксируют деталь пинцетом.
  3. Набирают припой на жало, погружают его в канифоль, приставляют к точке соединения вывода с платой так, как это показано на рисунке 7. После нагрева поверхностей припой перетекает на дорожки платы, вывод элемента, контакты микросхем, равномерно распределяясь по ним под действием сил поверхностного натяжения.
  4. Деталь удерживают в нужном положении пинцетом до застывания припоя.
  5. После завершения пайки следует обязательно промыть плату спиртом и/или ацетоном.
  6. Дополнительно контролируют отсутствие короткого замыкания компонентов платы, вызываемых каплями припоя.

Губки пинцета для лучшей фиксации целесообразно заточить или использовать специальный инструмент по типу показанного на рисунке 8.

Избыток выводов удаляют бокорезами.

Вариант исполнения паечного пинцета

Рис. 8. Вариант исполнения паечного пинцета

На повторно используемых платах установочные отверстия очищают от остатков припоя деревянной зубочисткой.

При работе целесообразно соблюдать следующие правила:

  • жало ориентируют параллельно плоскости платы;
  • из-за опасности перегрева радиодеталей, а также отслаивания токоведущих дорожек из-за перегрева платы паяют не более 2 секунд;
  • перед набором припоя жало следует очистить от окислов.

Возможные проблемы при пайке

При наличии определенного быстро нарабатываемого навыка пайка обеспечивает хороший контакт. Немногочисленные проблемы легко выявляют визуально. К таковым относятся:

  • слабый прогрев соединяемых компонентов или т.н. холодная пайка – припой приобретает характерный тусклый цвет, механическая прочность контакта падает, он быстро разрушается;
  • перегрев компонентов – припой вообще не покрывает поверхности, т.е. соединение фактически отсутствует;
  • перемещение соединяемых компонентов до полного затвердевания припоя – видимый резкий разрыв в пленке затвердевшего припоя, соединение отсутствует.

Устранение этих дефектов осуществляют повторной пайкой.

Заключение

Соединение пайкой обеспечивает высокое качество в сочетании с технологичностью. Процедура проста в реализации (научиться паять можно за пару часов), но необходимо аккуратно выполнять нескольких последовательных операций, тщательно соблюдая технологию работы.

Правильно паять можно только при наличии исправного инструмента.

Возможные проблемы при пайке Паяют всегда со строгим соблюдением правил техники безопасности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *