Магнитное поле. Линии
Магнитные свойства вещества известны людям давно. Магниты получили своё название от античного города Магнесия: в его окрестностях был распространён минерал (названный впоследствии магнитным железняком или магнетитом), куски которого притягивали железные предметы.
Взаимодействие магнитов
На двух сторонах каждого магнита расположены северный полюс и южный полюс. Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными. Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однако взаимодействие магнитов не является электрическим. Об этом свидетельствуют следующие опытные факты.
• Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.
• Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.
• Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).
Таким образом, магниты всегда двухполюсные, они существуют только в виде диполей. Изолированных магнитных полюсов (так называемых магнитных монополей — аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.
• Как и электрически заряженные тела, магниты действуют на электрические заряды. Однако магнит действует только на движущийся заряд; если заряд покоится относительно магнита, то действия магнитной силы на заряд не наблюдается. Напротив, наэлектризованное тело действует на любой заряд ,вне зависимости от того, покоится он или движется.
По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля.А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.
Примером магнита служит магнитная стрелка компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.
Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.
Линии магнитного поля
Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.
Например, можно получить некоторое геометрическое представление о магнитном поле, если разместить в разных точках пространства очень маленькие стрелки компаса. Опыт показывает, что стрелки выстроятся вдоль определённых линий —так называемых линий магнитного поля . Дадим определение этого понятия в виде следующих трёх пунктов.
1. Линии магнитного поля, или магнитные силовые линии — это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии.
2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии.
3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства.
Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.
Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1 ).
Рис. 1. Поле постоянного магнита
Северный полюс магнита обозначается синим цветом и буквой ; южный полюс — красным цветом и буквой . Обратите внимание, что линии поля выходят из северного полюса магнита и входят в южный полюс: ведь именно к южному полюсу магнита будет направлен северный конец стрелки компаса.
Опыт Эрстеда
Несмотря на то, что электрические и магнитные явления были известны людям ещё с античности, никакой взаимосвязи между ними долгое время не наблюдалось. В течение нескольких столетий исследования электричества и магнетизма шли параллельно и независимо друг от друга.
Тот замечательный факт, что электрические и магнитные явления на самом деле связаны друг с другом, был впервые обнаружен в 1820 году — в знаменитом опыте Эрстеда.
Схема опыта Эрстеда показана на рис. 2 (изображение с сайта rt.mipt.ru). Над магнитной стрелкой ( и — северный и южный полюсы стрелки) расположен металлический проводник, подключённый к источнику тока. Если замкнуть цепь, то стрелка поворачивается перпендикулярно проводнику!
Этот простой опыт прямо указал на взаимосвязь электричества и магнетизма. Эксперименты последовавшие за опытом Эрстеда, твёрдо установили следующую закономерность: магнитное поле порождается электрическими токами и действует на токи.
Рис. 2. Опыт Эрстеда
Картина линий магнитного поля, порождённого проводником с током, зависит от формы проводника.
Магнитное поле прямого провода с током
Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями. Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 3 ).
Рис. 3. Поле прямого провода с током
Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.
Правило часовой стрелки . Линии поля идут против часовой стрелки, если смотреть так, чтобы ток тёк на нас.
Правило винта (или правило буравчика, или правило штопора — это уж кому что ближе ;-)). Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока.
Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки — вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).
На рис. 3 появилось и кое-что новое: это вектор , который называется индукцией магнитного поля, или магнитной индукцией. Вектор магнитной индукции является аналогом вектора напряжённости электрического поля: он служит силовой характеристикой магнитного поля, определяя силу, с которой магнитное поле действует на движущиеся заряды.
О силах в магнитном поле мы поговорим позже, а пока отметим лишь, что величина и направление магнитного поля определяется вектором магнитной индукции . В каждой точке пространства вектор направлен туда же,куда и северный конец стрелки компаса, помещённой в данную точку, а именно по касательной к линии поля в направлении этой линии. Измеряется магнитная индукция в теслах (Тл).
Как и в случае электрического поля, для индукции магнитного поля справедлив принцип суперпозиции. Он заключается в том, что индукции магнитных полей , создаваемых в данной точке различными токами, складываются векторно и дают результирующий вектор магнитной индукции: .
Магнитное поле витка с током
Рассмотрим круговой виток, по которому циркулирует постоянный ток . Источник,создающий ток, мы на рисунке не показываем.
Картина линий поля нашего витка будет иметь приблизительно следующий вид (рис. 4 ).
Рис. 4. Поле витка с током
Нам будет важно уметь определять, в какое полупространство (относительно плоскости витка) направлено магнитное поле. Снова имеем два альтернативных правила.
Правило часовой стрелки. Линии поля идут туда, глядя откуда ток кажется циркулирующим против часовой стрелки.
Правило винта. Линии поля идут туда, куда будет перемещаться винт (с обычной правой резьбой), если вращать его в направлении тока.
Как видите, ток и поле меняются ролями — по сравнению с формулировками этих правил для случая прямого тока.
Магнитное поле катушки с током
Катушка получится, если плотно, виток к витку, намотать провод в достаточно длинную спираль (рис. 5 — изображение с сайта en.wikipedia.org). В катушке может быть несколько десятков, сотен или даже тысяч витков. Катушка называется ещё соленоидом.
Рис. 5. Катушка (соленоид)
Магнитное поле одного витка, как мы знаем, выглядит не очень-то просто. Поля? отдельных витков катушки накладываются друг на друга, и, казалось бы, в результате должна получиться совсем уж запутанная картина. Однако это не так: поле длинной катушки имеет неожиданно простую структуру (рис. 6 ).
Рис. 6. поле катушки с током
На этом рисунке ток в катушке идёт против часовой стрелки, если смотреть слева (так будет, если на рис. 5 правый конец катушки подключить к «плюсу» источника тока, а левый конец — к «минусу»). Мы видим, что магнитное поле катушки обладает двумя характерными свойствами.
1. Внутри катушки вдали от её краёв магнитное поле является однородным : в каждой точке вектор магнитной индукции одинаков по величине и направлению. Линии поля — параллельные прямые; они искривляются лишь вблизи краёв катушки, когда выходят наружу.
2. Вне катушки поле близко к нулю. Чем больше витков в катушке — тем слабее поле снаружи неё.
Заметим, что бесконечно длинная катушка вообще не выпускает поле наружу: вне катушки магнитное поле отсутствует. Внутри такой катушки поле всюду является однородным.
Ничего не напоминает? Катушка является «магнитным» аналогом конденсатора. Вы же помните, что конденсатор создаёт внутри себя однородное электрическое поле, линии которого искривляются лишь вблизи краёв пластин, а вне конденсатора поле близко к нулю; конденсатор с бесконечными обкладками вообще не выпускает поле наружу, а всюду внутри него поле однородно.
А теперь — главное наблюдение. Сопоставьте, пожалуйста, картину линий магнитного поля вне катушки (рис. 6 ) с линиями поля магнита на рис. 1 . Одно и то же, не правда ли? И вот мы подходим к вопросу, который, вероятно, у вас уже давно возник: если магнитное поле порождается токами и действует на токи, то какова причина возникновения магнитного поля вблизи постоянного магнита? Ведь этот магнит вроде бы не является проводником с током!
Гипотеза Ампера. Элементарные токи
Поначалу думали, что взаимодействие магнитов объясняется особыми магнитными зарядами, сосредоточенными на полюсах. Но, в отличие от электричества, никто не мог изолировать магнитный заряд; ведь, как мы уже говорили, не удавалось получить по отдельности северный и южный полюс магнита — полюса всегда присутствуют в магните парами.
Сомнения насчёт магнитных зарядов усугубил опыт Эрстеда, когда выяснилось, что магнитное поле порождается электрическим током. Более того, оказалось, что для всякого магнита можно подобрать проводник с током соответствующей конфигурации, такой, что поле этого проводника совпадает с полем магнита.
Ампер выдвинул смелую гипотезу. Нет никаких магнитных зарядов. Действие магнита объясняется замкнутыми электрическими токами внутри него.
Что это за токи? Эти элементарные токи циркулируют внутри атомов и молекул; они связаны с движением электронов по атомным орбитам. Магнитное поле любого тела складывается из магнитных полей этих элементарных токов.
Элементарные токи могут быть беспорядочным образом расположены друг относительно друга. Тогда их поля взаимно погашаются, и тело не проявляет магнитных свойств.
Но если элементарные токи расположены согласованно,то их поля,складываясь,усиливают друг друга. Тело становится магнитом (рис. 7 ; магнитое поле будет направлено на нас; также на нас будет направлен и северный полюс магнита).
Рис. 7. Элементарные токи магнита
Гипотеза Ампера об элементарных токах прояснила свойства магнитов.Нагревание и тряска магнита разрушают порядок расположения его элементарных токов, и магнитные свойства ослабевают. Неразделимость полюсов магнита стала очевидной: в месте разреза магнита мы получаем те же элементарные токи на торцах. Способность тела намагничиваться в магнитном поле объясняется согласованным выстраиванием элементарных токов, «поворачивающихся» должным образом (о повороте кругового тока в магнитном поле читайте в следующем листке).
Гипотеза Ампера оказалась справедливой — это показало дальнейшее развитие физики. Представления об элементарных токах стали неотъемлемой частью теории атома, разработанной уже в ХХ веке — почти через сто лет после гениальной догадки Ампера.
Что такое магнитные полюса, чем отличаются северный и южный магнитный полюс
Магнитный полюс — это полезное понятие из теории магнитного поля, аналогичное понятию электрического заряда. Определения северный и южный по отношению к таким полюсам в рамках этой аналогии соответствуют определениям заряда как положительного и отрицательного.
Точно так же как существует сила отталкивания между двумя электронами и сила притяжения между электроном и протоном, имеется сила отталкивания между двумя северными магнитными полюсами и сила притяжения между северным и южным полюсами.
Магнитные поля можно описывать при помощи линий магнитного потока, или силовых линий. Это понятие связано с гипотетическим поведением единичного северного полюса, движущегося во внешнем магнитном поле.
Если бы существовал такой полюс, то при указанных условиях он стремился бы двигаться в направлении поля в каждой точке пространства и описывал бы траектории, называемые силовыми линиями. Единичный южный полюс движется вдоль силовых линий в направлении, противоположном направлению движения единичного северного полюса.
Движение единичного полюса вдоль силовых линий является следствием действия кулоновской силы, причем влияние одного из двух единичных полюсов заменяется влиянием эквивалентного магнитного поля.
Сила, приложенная к одному полюсу, представляет собой результат взаимодействия его собственного локального поля с полем, существующем в окружающем пространстве.
Хотя напряженность этого внешнего поля чувствуется данным полюсом, расположение источника внешнего поля не обязательно должно быть известным, если рассматривается только сила, действующая на данный полюс.
Внешнее поле просто оказывает влияние на полюс, находящийся в заданной точке пространства. Интенсивность ответной реакции единичного полюса на воздействие внешнего поля определяет количественную меру, по отношению к которой оценивается напряженность этого внешнего поля.
Итак, как электрическое, так и магнитное поле может быть изображено в общем виде при помощи силовых линий. Единичные электрические заряды стремятся двигаться вдоль электрических силовых линий, а единичные магнитные полюса — вдоль магнитных силовых линий. Однако между этими двумя видами силовых линий имеется принципиальное различие.
В частности, существует два типа электрически заряженных частиц — положительные и отрицательные, и частицы каждого типа действуют как источники электрического потока.
Если в пространстве присутствуют частицы обоих типов, то электрические силовые линии начинаются на частицах одного типа и оканчиваются на частицах другого типа. При этих условиях каждая электрическая силовая линия имеет начало, конец и направление.
Если же присутствуют электрически заряженные частицы только одного типа, то электрические силовые линии простираются между этими частицами и бесконечностью. В этом случае каждая силовая линия имеет начало и направление, но не имеет конца.
Магнитная силовая линия в отличие от электрической хотя и имеет направление, но не имеет ни начала, ни конца. Магнитные силовые линии всегда непрерывны. Вследствие этого не может существовать единичный магнитный полюс в виде частицы, аналогичной единичному заряду, который представляется электроном или протоном.
Хотя понятия северного и южного единичных магнитных полюсов полезны для количественного описания магнитных полей, в природе такие частицы существовать не могут. Тем не менее магнитные силовые линии могут выходить из одного конца тела и входить в другой его конец. В этих случаях говорят, что данное тело является магнитно-поляризованным.
Подобным образом тело является электрически поляризованным, если электрические силовые линии выходят из одного его конца и входят в другой конец.
При электрической поляризации электрическая силовая линия начинается в некоторой точке внутри поляризованного тела. Конец силовой линии приписывают некоторому конкретному электрону или конкретному протону. В случае же магнитной поляризации магнитная силовая линия просто проходит через тело, и внутри этого тела нет точек, в которых она начиналась бы или оканчивалась.
В качестве примера рассмотрим магнитное поле, окружающее стержневой магнит. Это поле имеет наибольшую напряженность у двух концов стержня.
На первый взгляд это может означать наличие некоторых источников магнитного поля внутри стержня у его концов — северного полюса у одного конца и южного у другого.
Такое представление складывается, однако, лишь при наблюдении извне, так как на самом деле поле имеет самую большую напряженность в центральной части металлического стержня, а не на его концах. Таким образом, здесь магнитные полюса характеризуют точки входа и выхода силовых линий, а никак не точки их начала или окончания.
Названия северный и южный установились как следствие исторической ассоциации. Магнитное поле земного шара ориентировано так, что его полюсы размещаются физически в непосредственной близости от географических полюсов.
Фактически стрелка компаса во многих точках Земли указывает направление на географический северный полюс. В сознании множества людей эти два совершенно разных понятия (географический и магнитный полюса) слились воедино.
Но даже при использовании принятого соглашения относительно северного и южного полюсов все же остается некоторая неясность в связи с необходимостью различать полюс, ориентирующийся в северном направлении и являющийся истинным северным полюсом магнита, и южный магнитный полюс, который по его свойствам соответствовал бы географическому северному полюсу, если бы действительно физически существовал некий единичный полюс.
Короче говоря, хотя тело может быть поляризовано так, что магнитные силовые линии выходят из одного его конца и входят в другой конец, объектов типа магнитного монополя не существует.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Электромагнитные явления. Часть 1
Китайцы, как и греки, тоже замечали интересное свойство некоторых минералов притягивать к себе железосодержащие предметы. Слово «притягивать» китайцы ассоциируют со словами «прижиматься», «любить» и поэтому назвали такие минералы «чу-ши», что значит «любящий камень». Так как эти минералы создала природа, и человек не мог повлиять на естественное действие камней, их стали называть постоянными магнитами.
Теперь уже известно, что так интересно проявляется природный минерал магнитный железняк (магнетит). Это достаточно хрупкий черного цвета минерал, плотность его примерно 5000 кг/м 3 .
Древние люди приписывали магнитному железняку свойства «живой души». Минерал, по их словам, устремлялся к железу, как собака к куску мяса. Ученые объясняют отношение древних к явлениям природы незнанием физики.
На самом деле, все заключается в особом виде материи – поле.
Магнитное поле и притягивает к постоянному магниту железные предметы, ведь, например, мелкие гвоздики или кнопки устремляются к магниту даже без соприкосновения с ним, а на некотором расстоянии.
Магнетит (природный магнитный железняк) проявляет свойства притягивания не очень сильно. Человеком на его основе созданы искусственные магниты с более мощным магнитным полем. В качестве материала в них используются такие металлы, как кобальт, никель и, конечно же, железо. Такие металлы способны намагничиваться, попадая в магнитное поле, а потом становятся самостоятельными магнитами.
Разные формы искусственных магнитов. Источник
Какую бы форму не имел магнит, у него есть участки, где наиболее сильно проявляются магнитные свойства. Эти участки называют магнитными полюсами. У каждого, даже самого маленького магнита, есть два полюса. Современные технологии позволяют намагничивать металлические предметы так, что у них образуется и 4 и 6 полюсов.
Увидеть, как по-разному притягиваются железные опилки к магниту, можно на простейшем опыте с дугообразным школьным магнитом. Просто поднести к опилкам магнит, опилки тут же «прилипнут» к нему:
Полюсами такого магнита будут края дуги, где больше всего скопилось железных опилок.
У полосового магнита, форма которого прямоугольный параллелепипед, полюса находятся далеко друг от друга. Чем ближе к середине, тем меньше проявляются магнитные свойства.
Указатель юга и севера – компас. Полюсы магнитные
«Указатель юга» — так называли древние китайцы свое изобретение. Это был прибор в форме ложки, изготовленный из природного магнита. Ложка могла вращаться вокруг вертикальной оси.
Древний китайский компас.
Ручка ложки указывала южное направление. Она была северным полюсом ложки-магнита.
Развитие науки не остановилось, и современные компасы уже имеют другой вид:
Разные виды компасов.
Магнитная стрелка, главный элемент компаса, — это постоянный магнит и имеет два полюса. Конец стрелки, указывающий на географический Север, называют северным (N), а противоположный – южным (S) полюсом. Отсюда и название полюсов различных магнитов.
Раскраска магнитов в красный и синий цвета условна, реже используются и другие цвета. Существенным является то, что полюсы магнитов существуют только парами. Если распилить, например, полосовой магнит, получатся два полосовых магнита, и у них будет снова по два полюса: северный и южный.
В школьных лабораторных работах используются маленькие магниты на подставке, которые насаживаются на тонкую иглу и могут свободно вращаться вокруг этой иглы. Такие устройства называются магнитными стрелками, как подобие стрелок компасов.
С помощью стрелок изучается взаимодействие полюсов магнитов. Если приблизить стрелки друг к другу, они начинают поворачиваться и установятся по следующему правилу:
Земной шар является огромным магнитом, у которого есть свои полюсы. Но нельзя путать магнитные полюсы Земли с географическими. Согласно правилу, синий (северный) конец стрелки должен поворачиваться к Южному полюсу земного шара, так как притягиваются разноименные полюсы. Да, действительно, это так. Южный магнитный полюс Земли находится вблизи Северного географического полюса, но не в той же точке, а чуть в стороне, на острове Принца Уэльского. Северный магнитный полюс находится в Антарктиде, где и Южный географический.
Месторасположение магнитных полюсов Земли не остается постоянным. Полюсы смещаются на расстояние нескольких десятков километров в год.
Очень широк список областей, где применяются магниты:
- автомобилестроение;
- приборостроение;
- автоматика;
- телемеханика;
- тормозные системы;
- компасы;
- медицина;
- радиотехника;
- электротехника.
От изучения природных магнитных явлений человек давно шагнул к элетромагнитным явлениям, без чего невозможно развитие знаний об электричестве и электрическом токе.
Графическое изображение полей
Магниты действуют друг на друга и на железосодержащие предметы посредством магнитного поля. Поле не имеет цвета, запаха, его нельзя ощущать. Это особый вид материи, который проявляется по его действию на другое поле или на физические тела.
Условно изображают магнитное поле с помощью силовых линий, так же, как электрическое поле.
Эти линии замкнуты, то есть не имеют ни начала, ни конца. Направление, куда показывают северные полюсы магнитных стрелок, попавших в поле магнита, принято за направление силовых магнитных линий поля. Таковым оказывается направление от северного полюса к южному.
Хотя изображение силовых линий принято за условное, они все же проявляются в простом опыте с железными опилками. Если положить магнит на лист бумаги и посыпать мелкими опилками из железа, то можно увидеть, как они выстроятся вдоль определенных линий, как маленькие магнитные стрелки.
Частота линий вокруг магнита различна. Это подчеркивает более сильное действие магнитного поля около полюсов, где силовые линии плотнее.
Магнитное поле тока прямого проводника
Определить наличие магнитного поля можно, если к магниту поднести магнитную стрелку. Если поле есть, то стрелка повернется и займет положение по правилу взаимодействия полюсов. Северный полюс стрелки повернется к южному полюсу магнита.
Будет ли оказывать действие на стрелку электрический ток?
Проверить это можно с помощью опыта. Стрелка установлена на острие, над нею параллельно ее оси помещен проводник. Если замкнуть цепь, стрелка повернется в другое положение, при выключенной цепи вернется обратно.
Впервые проведя этот опыт в 1820 году, датский ученый Ганс Христиан Эрстед, не имея достаточно знаний о магнетизме, не сумел объяснить поведение стрелки около проводника с током. Это было сделано позднее, а опыт получил название «Опыта Эрстеда».
Получается, что электрический ток может быть источником магнитного поля, которое возникает вокруг движущихся зарядов (вокруг не движущихся зарядов есть только электрическое поле).
Нет ли противоречия в наличии магнитного поля вокруг тока, где направленно движутся частицы, и магнитного поля около постоянных магнитов? Оказывается, в магнитах существуют так называемые молекулярные токи, циркулирующие внутри молекул. Во времена Эрстеда природа таких токов была еще не открыта. Теперь же известно, что в атоме постоянно движутся электроны, поэтому и возникают магнитные свойства некоторых природных веществ, например, железа.
По примеру магнитов для графического изображения поля вокруг тока используют силовые магнитные линии. Направление их указывают северные полюсы магнитных стрелок, помещенных в это поле.
Расположение стрелок показывает, что:
Существует так называемое первое правило правой руки, по которому можно указать направление силовых линий магнитного поля вокруг проводника с током. При изменении направления тока меняется и направление силовых линий поля. Правая рука человека помогает разобраться в этих направлениях.
Конечно, правило применяется не буквально. Не нужно провод брать в руки, надо мысленно представить эту ситуацию с проводником и рукой.
Соленоид и его магнитные свойства. Электромагниты
Короткие провода применяются редко. Тем более, что при небольшом токе вокруг них возникает и небольшое магнитное поле. Для усиления магнитного действия прямой провод сворачивают в виде спирали на непроводящем трубчатом каркасе (дереве, пластмассе, керамике). Такое устройство называется соленоидом (от греч. «солен» — «трубка»). Проще говоря, это катушка с током.
Магнитные поля полосового магнита и катушки-соленоида очень похожи. Силовые линии катушки выходят с северного полюса, в южный полюс входят.
Определить полюсы соленоида можно, поднеся к краю катушки магнит. Если цепь замкнута, и по катушке идет ток, то магнит или притянется к соленоиду, или оттолкнется от него. Например, к катушке приблизили северный полюс магнита, подвешенный на нити.
Магнит оттолкнулся от края катушки. Но ведь отталкиваются одноименные полюсы. Значит, приблизили магнит к северному полюсу соленоида. С другой стороны будет находиться южный полюс.
Магнит будет притягиваться к катушке, значит, рядом с магнитом находится южный полюс катушки, так как притягиваются разноименные полюсы.
Направление линий магнитного поля катушки с током помогает определить второе правило правой руки.
Получается, что соленоид можно использовать как магнит, если подключить такой магнит к источнику тока. Это будет уже не постоянный магнит, а созданный с использованием электрического тока, который срабатывает при включении в электрическую сеть.
При изменении (увеличении или уменьшении) магнитного действия соленоида можно пойти тремя путями:
- регулированием силы тока цепи (можно с помощью реостата);
- увеличением (уменьшением) количества витков катушки;
- использованием внутри катушки сердечника (чаще всего из железа).
Приспособление, состоящее из катушки с током и сердечника внутри нее, называется электромагнитом. Это одна из главных частей большинства электротехнических приборов, систем и устройств:
- телеграфная связь;
- стационарные телефонные аппараты;
- электрические звонки;
- электродвигатели;
- трансформаторы;
- электромагнитные реле;
- домофоны;
- производственные электромагниты.
Домофон с электромагнитом.
Вентилятор с электродвигателем.
Самый первый электромагнит был изготовлен англичанином У. Стердженом в 1825 году. Его магнит массой 200 г сумел удержать тело в 3 кг 600 г. Через шесть лет американец Дж. Генри создал электромагнит, который поднимал уже 1000 кг.
Интересно и просто на основе электромагнита работает электрический звонок.
Цифрами на схеме обозначены основные детали звонка. Это;
- Провода, идущие через замыкающую кнопку к источнику тока.
- Контактная пластинка.
- Контактный винт.
- Якорь – тонкая железная пластинка.
- Обмотка катушки.
- Сердечник.
- Ударный элемент звонка – молоточек.
- Чаша звонка.
При нажатой кнопке звонка происходит замыкание цепи. По обмотке 5 идет ток, и катушка с сердечником 6 превращается в электромагнит. Якорь 4 притягивается электромагнитом к сердечнику 6. В этот момент молоточек 7 ударяет по чаше звонка 8, слышен звонкий удар звонка. Контактный винт в результате движения якоря отходит от контактной пластинки 2, и цепь размыкается. Якорь «отлипает» от сердечника, возвращается в исходное положение, соединяя тем самым контактный винт с контактной пластинкой. Цепь снова замкнута, электромагнит снова срабатывает и т.д. Происходит все очень быстро: цепь то замыкается, то размыкается, магнит то притягивает, то отпускает якорь, молоточек быстро стучит по чаше звонка. Частые удары сливаются в почти сплошной звук.
Электромагниты после отключения от сети быстро размагничиваются и не приносят особых хлопот в применении.
Как определить полюса магнита
С магнитами человечество познакомилось достаточно давно: первые залежи камня магнетита обнаружили еще в античные времена на территории современной Греции, недалеко от города Магнисия. «Камень из Магнисии» моментально заинтриговал жителей населенного пункта, ведь притягивал к себе железные предметы. И если в те далекие времена свойства камней вызывали просто удивление и восторг, то сегодня возможности магнитов используются на полную катушку: в зависимости от вида, они помогают организовать работу разнообразных датчиков, моторов и микрофонов.
Разобраться в тонкостях работы магнитов не так сложно: информации много, но она вполне доступна и понятна даже школьнику, который только начал интересоваться физикой. В первую очередь, советуем изучить виды и способы применения постоянных магнитов, а также уточнить, как определить полюса магнитов и электромагнитов без специального оборудования.
Магниты и их характеристики
Природный магнит или магнитный железняк, как его называют сегодня, — это вещество, вокруг которого всегда присутствует магнитное поле. Любой кусочек железняка обладает достаточно сильной намагниченностью, но молекулы материала двигаются в двух направлениях, а значит даже совсем небольшой магнит будет иметь северный и южный полюс.
Если у вас в руках два кусочка железняка, то ответить на самый частый вопрос «как определить полюса магнита» совсем не сложно, ведь примагничиваются противоположные стороны, а вот одинаковые – отталкиваются.
В современном мире есть несколько видов магнитов, кроме природного магнетита:
· Временные – это металлические изделия, которые намагничиваются только тогда, когда попадают в магнитное поле. Гвозди, скрепки, бруски и другая мелочь начинают притягивать друг друга и подобные предметы;
· Электромагниты, с которыми человечество познакомилось в 1825 году, когда их изобрел инженер из Англии Уильям Стерджен. Конструкция представляет собой железный сердечник, на который намотана проволока. Магнитное поле нужной силы и полярности можно получить, только если подать по ней ток. Электромагниты встречаются нам ежедневно, ведь с их помощью работает практически вся техника, но во времена своего изобретения они не были оценены по достоинству;
· Постоянные, самые многочисленные. Они заряжаются всего единожды и образуют магнитное поле вокруг себя постоянно. С естественным постоянным магнитом мы уже познакомились – это природный железняк, а вот искусственных магнитов несколько видов. Самые популярные – это ферритовые и неодимовые. Последние считаются наиболее сильными и могут служить более 100 лет.
Легче всего приобрести как раз неодимовые магниты: они присутствуют в каждом профильном магазине электротехники. Интересно, как определить полюса неодимового магнита и проверить его работоспособность? Современные магниты не отличаются от природных и ведут себя точно также, а значит отталкиваются, если полюса одинаковые, и притягиваются, если разные.
Определяем полюса магнита: самые простые способы узнать, где Север, а где Юг
Наиболее простой и понятный способ разобраться с полюсами – это использовать специальные приборы. Компас – вот быстрый ответ на вопрос « как определить северный полюс магнита» : стрелка, указывающая на север, обязательно притянется к южному полюсу магнита.
Вполне подойдет и современный электронный тесламетр, ведь если поднести щуп этого прибора к кусочку железняка, но на дисплее появится соответствующая буква – S или N.
Вместо прибора можно воспользоваться и дополнительным маркированным магнитом: одноименные полюса будут отталкиваться, а разные, конечно же, притягиваться.
Если есть только схема прибора, то вас обязательно заинтересует, как определить полюса магнита по рисунку . Для этого можно использовать правило «левой» руки, которое предлагает поместить левую руку таким образом, чтобы силовые магнитные линии входили в ладонь, а четыре пальца совпадали с направлением тока. Большой палец в этом случае покажет направление движения проводника.
Как определить южный полюс магнита, если компаса нет под рукой? Изготовить прибор из подручных материалов: к примеру, с помощью иголки и воды или пластиковой баночки с сахарной пудрой. Иголка намагнитится и будет указывать на север, лежа в воде, а сахарная пудра превратится в заряженную пыль и закрутится вдоль силовых линий над магнитом. Узнать, где север, а где юг, поможет и солнце, но тут понадобится умение ориентироваться на местности и базовые знания географии.