Измерительные трансформаторы тока – назначение, устройство, виды конструкций
Мощные электротехнические установки могут работать с напряжением несколько сот киловольт, при этом величина тока в них может достигать более десятка килоампер. Естественно, что для измерения величин такого порядка не представляется возможным использовать обычные приборы. Даже если бы таковые удалось создать, они получились бы довольно громоздкими и дорогими.
Помимо этого, при непосредственном подключении к высоковольтной сети переменного тока повышается риск поражения электротоком при обслуживании приборов. Избавиться от перечисленных проблем позволило применение измерительных трансформаторов тока (далее ИТТ), благодаря которым удалось расширить возможности измерительных устройств и обеспечить гальваническую развязку.
Назначение и устройство ИТТ
Функции данного типа трансформаторов заключаются в снижении первичного тока до приемлемого уровня, что делает возможным подключение унифицированных измерительных устройств (например, амперметров или электронных электросчетчиков), защитных систем и т.д. Помимо этого, трансформатор тока обеспечивают гальваническую развязку между высоким и низким напряжением, обеспечивая тем самым безопасность обслуживающего персонала. Это краткое описание позволяет понять, зачем нужны данные устройства. Упрощенная конструкция ИТТ представлена ниже.
Конструкция измерительного трансформатора тока
Обозначения:
- Первичная обмотка с определенным количеством витков (W1).
- Замкнутый сердечник, для изготовления которого используется электротехническая сталь.
- Вторичная обмотка (W2 – число витков).
Как видно из рисунка, катушка 1 с выводами L1 и L2 подключена последовательно в цепь, где производится измерение тока I1. К катушке 2 подключается приборы, позволяющие установить значение тока I2, релейная защита, система автоматики и т.д.
Основная область применения ТТ – учет расхода электроэнергии и организация систем защиты для различных электроустановок.
В измерительном трансформаторе тока обязательно наличие изоляции как между катушками, витками провода в них и магнитопроводом. Помимо этого по нормам ПУЭ и требованиям техники безопасности, необходимо заземлять вторичные цепи, что обеспечивает защиту в случае КЗ между катушками.
Получить более подробную информацию о принципе действия ТТ и их классификации, можно на нашем сайте.
Перечень основных параметров
Технические характеристики трансформатора тока описываются следующими параметрами:
- Номинальным напряжением, как правило, в паспорте к прибору оно указано в киловольтах. Эта величина может быть от 0,66 до 1150 кВ. получит полную информацию о шкале напряжений можно в справочной литературе.
- Номинальным током первичной катушки (I1), также указывается в паспорте. В зависимости от исполнения, данный параметр может быть в диапазоне от 1,0 до 40000,0 А.
- Током на вторичной катушке (I2), его значение может быть 1,0 А (для ИТТ с I1 не более 4000,0 А) или 5,0 А. Под заказ могут изготавливаться устройства с I2 равным 2,0 А или 2,50 А.
- Коэффициентом трансформации (КТ), он показывает отношение тока между первичной и вторичной катушками, что можно представить в виде формулы: КТ = I1/I2. Коэффициент, определяемый по данной формуле, принято называть действительным. Но для расчетов еще используется номинальный КТ, в этом случае формула будет иметь вид: IНОМ1/IНОМ2, то есть в данном случае оперируем не действительными, а номинальными значениями тока на первой и второй катушке.
Ниже, в качестве примера, приведена паспортная таблица модели ТТ-В.
Перечень основных параметров измерительного трансформатора тока ТТ-В
Виды конструкций измерительных трансформаторов
В зависимости от исполнения, данные устройства делятся на следующие виды:
- Катушечные, пример такого ТТ представлен ниже. Катушечный ИТТ
Обозначения:
- A – Клеммная колодка вторичной обмотки.
- В – Защитный корпус.
- С – Контакты первичной обмотки.
- D – Обмотка (петлевая или восьмерочная) .
- Стержневые, их также называют одновитковыми. В зависимости от исполнения они могут быть:
- Встроенными, они устанавливаются на изоляторы вводы силовых трансформаторов, как показано на рисунке 4. Рисунок 4. Пример установки встроенного ТТ
Обозначения:
- А – встроенный ТТ.
- В – изолятор силового ввода трансформатора подстанции.
- С – место установки ТТ (представлен в разрезе) на изоляторе. То есть, в данном случае высоковольтный ввод играет роль первичной обмотки.
- Шинными, это наиболее распространенная конструкция. Ее принцип строения напоминает предыдущий тип, стой лишь разницей, что в данном исполнении в качестве первичной обмотки используется токопроводящая шина или жила, которая заводится в окно ИТТ.
Шинные ТТ производства Schneider Electric
- Разъемными. Особенность данной конструкции заключается в том, что магнитопровод ТТ может разделяться на две части, которые стягиваются между собой специальными шпильками.
Такой вариант конструкции существенно упрощает монтаж/демонтаж.
Расшифровка маркировки
Обозначение отечественных моделей интерпретируется следующим образом:
- Первая литера в названии модели указывает на вид трансформатора, в нашем случае это будет буква «Т», указывая на принадлежность к ТТ.
- Вторая литера указывает на особенность конструктивного исполнения, например, буква «Ш», говорит о том, что данное устройство шинное. Если указана литера «О», то это опорный ТТ.
- Третьей литерой шифруется исполнение изоляции.
- Цифрами указывается класс напряжения (в кВ).
- Литера, для обозначения климатического исполнения согласно ГОСТ 15150 69
- КТ, с указанием номинального тока первичной и вторичной обмотки.
Приведем пример расшифровки маркировки трансформатора тока.
Шильдик на ТТ с указанием его марки
Как видим, на рисунке изображена маркировка ТЛШ 10УЗ 5000/5А, это указывает на то, что перед нами трансформатор тока (первая литера Т) с литой изоляцией (Л) и шинной конструкцией (Ш). Данное устройство может использоваться в сети с напряжением до 10 кВ. Что касается исполнения, то литера «У», говорит о том, что аппарат создан для эксплуатации в умеренной климатической зоне. КТ 1000/5 А, указывает на величину номинального тока на первой и второй обмотке.
Схемы подключения
Обмотки трехфазных ТТ могут быть подключены «треугольником» или «звездой» (см. рис. 8). Первый вариант применяется в тех случаях, когда необходимо получить большую силу тока в цепи второй обмотки или требуется сдвинуть по фазе ток во вторичной катушке, относительно первичной. Второй способ подключения применяется, если необходимо отслеживать силу тока в каждой фазе.
Рисунок 8. Схема подключения трехобмоточного ТТ «звездой» и «треугольником»
При наличии изолированной нейтрали, может использоваться схема для измерения разности токов между двумя фазами (см. А на рис. 9) или подключение «неполной звездой» (B).
Рисунок 9. Схема подключения ТТ на разность двух фаз (А) и неполной звездой (В)
Когда необходимо запитать защиту от КЗ на землю, применяется схема, позволяющая суммировать токи всех фаз (см. А на рис 10.). Если к выходу такой цепи подключить реле тока, то оно не будет реагировать на КЗ между фазами, но обязательно сработает, если происходит пробой на землю.
Рис 10. Подключения: А – для суммы токов всех фаз, В и С – последовательное и параллельное включение двухобмоточных ТТ
В завершении приведем еще два примера соединения вторичных обмоток ТТ для снятия показаний с одной фазы:
Вторичные катушки включаются последовательно (В на рис. 10), благодаря этому возникает возможность измерения суммарной мощности.
Вторичные обмотки соединяются параллельно, что дает возможность понизить КТ, поскольку происходит суммирование тока в этих катушках, в то время как в линии этот показатель остается без изменений.
Выбор
При выборе трансформатора тока в первую очередь необходимо учитывать номинальное напряжение прибора было не ниже, чем в сети, где он будет установлен. Например, для трехфазной сети с напряжением 380 В можно использовать ТТ с классом напряжения 0,66 кВ, соответственно для установок более 1000 В, устанавливать такие устройства нельзя.
Помимо этого IНОМ ТТ должен быть равен или превышать максимальный ток установки, где будет эксплуатироваться прибор.
Кратко изложим и другие правила, позволяющие не ошибиться с выбором ТТ:
- Сечение кабеля, которым будет подключаться ТТ к цепи вторичной нагрузки, не должно приводить к потерям сверх допустимой нормы (например, для класса точности 0,5 потери не должны превышать 0,25%).
- Для систем коммерческого учета должны использоваться устройства с высоким классом точности и низким порогом погрешности.
- Допускается установка токовых трансформаторов с завышенным КТ, при условии, что при максимальной нагрузке ток будет до 40% от номинального.
Посмотреть нормы и правила, по которым рассчитываются измерительные трансформаторы тока (в том числе и высоковольтные) можно в ПУЭ ( п.1.5.1.). Пример расчета показан на картинке ниже.
Пример расчета трансформатора тока
Что касается выбора производителя, то мы рекомендуем использовать брендовую продукцию, достоинства которой подтверждены временем, например ABB, Schneider Electric b и т.д. В этом случае можно быть уверенным, что указанные в паспорте технические данные, а методика испытаний соответствовала нормам.
Обслуживание
Необходимо обратить внимание, что при соблюдении режима и условий эксплуатации, правильно подобранных номиналах и регулярном обслуживании ТТ будет служить 30 лет и более. Для этого необходимо:
Масштабные преобразователи. Нормируемые метрологические характеристики измерительных трансформаторов
В практике электрических измерений часто возникает необходимость в преобразовании электрического сигнала в пропорциональный ему электрический сигнал большего или меньшего значения. Средства измерений, предназначенные для изменения размера физической величины в заданное число раз без изменения рода величины, получили название масштабных преобразователей.
Различают пассивные и активные масштабные преобразователи (МП). Первые строятся на пассивных элементах: резисторах, конденсаторах, катушках индуктивности. Характерным для них является то, что мощность выходного сигнала у них всегда меньше мощности входного сигнала. К этой группе относятся шунты, резистивные, емкостные и индуктивные делители тока и напряжения. Сюда же могут быть отнесены и измерительные трансформаторы, позволяющие наряду с изменением размера величины осуществлять гальваническое разделение цепей.
Активные МП позволяют не только изменить размер величины, но и увеличить мощность выходного сигнала. К ним относятся измерительные усилители и активные преобразователи тока. В этой книге активные МП не рассматриваются.
Конструктивно МП могут быть объединены с измерительным прибором (встроенные) или выполнены самостоятельно. В последнем случае их метрологические характеристики нормируются независимо от характеристик измерительного прибора, соответственно и поверка таких преобразователей представляет собой вполне самостоятельную задачу.
Основной метрологической характеристикой МП является коэффициент преобразования S, равный отношению выходного сигнала Хвых к входному Хвх.
Отличие действительного коэффициента преобразования S от номинального Sном характеризует погрешность преобразователя. Относительная погрешность преобразователя (в процентах) выражается формулой
б =(S – Sном)*100/Sном
Часто для характеристики пассивного МП используют величину, обратную коэффициенту преобразования, — коэффициент деления.
б)
Рис. 1. Структурные схемы определения основной погрешности масштабных преобразователей
Основные способы поверки МП представлены на рис. 1.
Наиболее универсальный из них — способ измерения входного и выходного сигналов (рис. 1, а). Основная погрешность при этом рассчитывается по формулам, приведенным выше. Недостаток способа заключается в том, что он не всегда позволяет определить фазовую погрешность МП переменного тока. Кроме того, существенная разница в значениях ХВХ и ХВЫХ не позволяет
использовать для измерения один прибор.
У некоторых МП возможно прямое измерение коэффициента преобразования или функционально связанной с ним величины (например, сопротивление шунта). В этом случае для поверки достаточно иметь один прибор (рис.1, б).
Применение образцовых МП и устройств, позволяющих сравнивать выходные сигналы преобразователей, позволяет непосредственно измерять значение погрешности преобразователя. В этом случае (рис.1, в) входной сигнал Хвх подается одновременно на вход поверяемого МПП и образцового МПо преобразователей, имеющих одинаковые номинальные коэффициенты преобразования. Устройство сравнения сравнивает выходные сигналы преобразователей и выделяет разностный сигнал, пропорциональный погрешности поверяемого МП. Этот сигнал измеряется прибором, градуированным в значениях погрешности. Данный способ, хотя и требует более сложного оборудования, позволяет значительно повысить производительность поверочных работ.
Конкретные реализации этих принципов и образцовые средства рассмотрены ниже.
Нормируемые метрологические характеристики измерительных трансформаторов.
Измерительные трансформаторы тока и напряжения предназначены для преобразования больших переменных токов и напряжений в меньшие, удобные для измерения, а также для разделения цепей измерительных приборов и цепей высокого напряжения. Во вторичную цепь трансформатора тока включаются амперметры, последовательные обмотки счетчиков, ваттметров, цепи релейной защиты и управления; ко вторичной обмотке трансформаторов напряжения подключаются вольтметры, параллельные цепи ваттметров, счетчиков и других приборов.
Измерительные трансформаторы по своему назначению и исполнению делятся на лабораторные (переносные) и стационарные. Лабораторные трансформаторы тока (ГОСТ 23624—79) предназначены для работы в цепях переменного тока частотой от 25 Гц до 10 кГц с номинальным напряжением от 660 В до 35 кВ. Номинальный первичный ток I1ном трансформаторов тока лежит в пределах от 0,1 А до 60 кА; номинальный вторичный ток I2ном — 1; 2 А при частоте 50 Гц или 5 А — во всем диапазоне частот. Лабораторные трансформаторы напряжения (ГОСТ 23625—79) предназначены для использования в цепях переменного тока промышленной частоты с номинальным первичным напряжением U1ном от 127 В до 35 кВ; номинальные вторичные напряжения могут быть 100/3; 100/; 100 и 150 В. Номинальная мощность Рном нагрузки во вторичной цепи составляет 2,5; 5; 10; 15 В۰А — для трансформаторов тока и 5; 10; 15; 25 В А — для трансформаторов напряжения; коэффициент мощности равен 0,8—1,0 при активном характере нагрузки. Лабораторные трансформаторы часто изготовляются многодиапазонными, имеют несколько значений первичных токов (или напряжений) и одно или несколько значений вторичных величин. Лабораторные трансформаторы могут иметь следующие классы точности: 0,01; 0,02; 0,05; 0,1; 0,2 — для трансформаторов тока; 0,05; 0,1; 0,2; 0,5 — для трансформаторов напряжения. Класс точности определяет пределы допускаемых угловой погрешности и погрешности коэффициента трансформации. Последняя называется погрешностью токовой fi применительно к трансформаторам тока и погрешностью напряжения fuдля трансформаторов напряжения.
Требования к измерительным трансформаторам
Технические требования к трансформаторам тока (ТТ) и напряжения (ТН) определяет ГОСТ 7746-2015 и 1983-2001, соответственно.
Класс точности устройств для установки коммерческих приборов учета электроэнергии не должен превышать 0,5. При этом не допускается нагрузка вторичных обмоток, превышающая номинальные значения. В связи с чем следует проверить выбранные номиналы измерительных обмоток по всем видам нагрузок.
Трансформаторы необходимо устанавливать так, чтобы иметь возможность, не отключая и не демонтируя устройство, видеть данные, указанные на табличках.
Все виды измерительных трансформаторов должны пройти заводскую поверку, а впоследствии подвергаться периодической поверке в соответствии с требованиями, указанными в паспорте устройства.
В целях безопасности обслуживающего персонала, проводящего работы в цепях РЗА и КИПиА, обмотки должны быть заземлены.
Требования к ТТ
Возможно применение устройства с более высоким коэффициентом трансформации при условии, что ток во вторичной обмотке при максимальной и минимальной нагрузке составляет более 40% и менее 5% соответственно.
На отходящих питающих линиях необходимо проектировать трансформатор в трех фазах.
На выводах вторичной обмотки должны быть крышки, чтобы была возможность провести опломбировку.
Токовые обмотки электросчетчиков и вторичные обмотки трансформатора соединяются вне цепей защиты и наряду с измерительными приборами.
Запрещено устанавливать промежуточные ТТ для использования расчетных счетчиков.
Заземление на вторичных обмотках необходимо устраивать на зажимах трансформатора.
Требования к ТН
Если ввод трехфазный, следует использовать одно трехфазное устройство или три однофазных.
Параметры проводов и кабелей для цепей напряжения расчетных счетчиков должны гарантировать потери не более 0,25% от номинального напряжения устройства с классом точности 0,5. Можно от трансформаторов прокладывать отдельные кабели к счетчику.
Решетки и дверцы камер с предохранителями должны быть опломбированы, при невозможности это сделать, нужно поставить пломбы на выводы.
Измерительные трансформаторы тока и напряжения — конструкции, технические характеристики
Измерительные трансформаторы тока и напряжения предназначены для уменьшения первичных токов и напряжений до значений, наиболее удобных для подключения измерительных приборов, реле защиты, устройств автоматики. Применение измерительных трансформаторов обеспечивает безопасность работающих, так как цепи высшего и низшего напряжения разделены, а также позволяет унифицировать конструкцию приборов и реле.
Трансформаторы тока классифицируют:
по конструкции — втулочные, встроенные, проходные, опорные, шинные, разъемные;
роду установки — наружные, для закрытых и комплектных распределительных устройств;
числу ступеней трансформации — одноступенчатые и каскадные;
коэффициентам трансформации — с одним или несколькими значениями;
числу и назначению вторичных обмоток.
Т — трансформатор тока;
Ф — с фарфоровой изоляцией;
Н — наружной установки;
К — каскадный, с конденсаторной изоляцией или катушечный;
О — одновитковый стержневой;
Ш — одновитковый шинный;
В — с воздушной изоляцией, встроенный или с водяным охлаждением;
Л — с литой изоляцией;
М — маслонаполненный, модернизированный или малогабаритный;
Р — для релейной защиты;
Д — для дифференциальной защиты;
З — для защиты от замыканий на землю.
Технические характеристики трансформаторов тока
Номинальный первичный и вторичный ток трансформаторов тока
Трансформаторы тока характеризуются номинальным первичным током Iном1 (стандартная шкала номинальных первичных токов содержит значения от 1 до 40000 А) и номинальным вторичным током Iном2, который принят равным 5 или 1 А. Отношение номинального первичного к номинальному вторичному току представляет собой коэффициент трансформации КТА= Iном1/ Iном2
Токовая погрешность трансформаторов тока
Трансформаторы тока характеризуются токовой погрешностью ∆I=(I2K-I1)*100/I1 (в процентах) и угловой погрешностью (в минутах). В зависимости от токовой погрешности измерительные трансформаторы тока разделены на пять классов точности: 0,2; 0,5; 1; 3; 10. Наименование класса точности соответствует предельной токовой погрешности трансформатора тока при первичном токе, равном 1—1,2 номинального. Для лабораторных измерений предназначены трансформаторы тока класса точности 0,2, для присоединений счетчиков электроэнергии — трансформаторы тока класса 0,5, для присоединения щитовых измерительных приборов -классов 1 и 3.
Нагрузка трансформаторов тока
Нагрузка трансформатора тока — это полное сопротивление внешней цепи Z2, выраженное в омах. Сопротивления r2 и х2 представляют собой сопротивление приборов, проводов и контактов. Нагрузку трансформатора можно также характеризовать кажущейся мощностью S2 В*А. Под номинальной нагрузкой трансформатора тока Z2ном понимают нагрузку, при которой погрешности не выходят за пределы, установленные для трансформаторов данного класса точности. Значение Z2ном дается в каталогах.
Электродинамическая стойкость трансформаторов тока
Электродинамическую стойкость трансформаторов тока характеризуют номинальным током динамической стойкости Iм.дин. или отношением kдин = Термическая стойкость определяется номинальным током термической стойкости Iт или отношением kт= Iт / I1ном и допустимым временем действия тока термической стойкости tт.
Конструкции трансформаторов тока
По конструкции различают трансформаторы тока катушечные, одновитковые (типа ТПОЛ), многовитковые с литой изоляцией (типа ТПЛ и ТЛМ). Трансформатор типа ТЛМ предназначен для КРУ и конструктивно совмещен с одним из штепсельных разъемов первичной цепи ячейки.
Для больших токов применяют трансформаторы типа ТШЛ и ТПШЛ, у которых роль первичной обмотки выполняет шина. Электродинамическая стойкость таких трансформаторов тока определяется стойкостью шины.
Для ОРУ выпускают трансформаторы типа ТФН в фарфоровом корпусе с бумажно-масляной изоляцией и каскадного типа ТРН. Для релейной защиты имеются специальные конструкции. На выводах масляных баковых выключателей и силовых трансформаторов напряжением 35 кВ и выше устанавливаются встроенные трансформаторы тока. Погрешность их при прочих равных условиях больше, чем у отдельно стоящих трансформаторов.
Технические характеристики измерительных трансформаторов напряжения
Номинальные первичное и вторичное напряжение измерительных трансформаторов напряжения
Трансформаторы напряжения характеризуются номинальными значениями первичного напряжения, вторичного напряжения (обычно 100 В), коэффициента трансформации К=U1ном/U2ном. В зависимости от погрешности различают следующие классы точности трансформаторов напряжения: 0,2;0,5; 1:3.
Нагрузка трансформаторов напряжения
Вторичная нагрузка трансформатора напряжения—это мощность внешней вторичной цепи. Под номинальной вторичной нагрузкой понимают наибольшую нагрузку, при которой погрешность не выходит за допустимые пределы, установленные для трансформаторов данного класса точности.
Конструкции трансформаторов напряжения
В установках напряжением до 18 кВ применяются трехфазные и однофазные трансформаторы, при более высоких напряжениях — только однофазные. При напряжениях до 20 кВ имеется большое число типов трансформаторов напряжения: сухие (НОС), масляные (НОМ, ЗНОМ, НТМИ, НТМК), с литой изоляцией (ЗНОЛ). Следует отличать однофазные двухобмоточные трансформаторы НОМ от однофазных трехобмоточных трансформаторов ЗНОМ. Трансформаторы типов ЗНОМ-15, -20 -24 и ЗНОЛ-06 устанавливаются в комплектных токопроводах мощных генераторов. В установках напряжением 110 кВ и выше применяют трансформаторы напряжения каскадного типа НКФ и емкостные делители напряжения НДЕ.
Схемы включения трансформаторов напряжения
В зависимости от назначения могут применяться разные схемы включения трансформаторов напряжения. Два однофазных трансформатора напряжения, соединенные в неполный треугольник, позволяют измерять два линейных напряжения. Целесообразна такая схема для подключения счетчиков и ваттметров. Для измерения линейных и фазных напряжений могут быть использованы три однофазных трансформатора (ЗНОМ, ЗНОЛ), соединенные по схеме «звезда — звезда», или трехфазный типа НТМИ. Так же соединяются в трехфазную группу однофазные трехобмоточные трансформаторы типа ЗНОМ и НКФ.
Присоединение расчетных счетчиков к трехфазным трансформаторам напряжения не рекомендуется, т.к. они имеют, обычно, несимметричную магнитную систему и увеличенную погрешность. Для этой цели желательно устанавливать группу из двух однофазных трансформаторов соединенных в неполный треугольник.
Трансформаторы напряжения выбирают по условиям Uуст ≤U1ном, S2≤ S2ном в намечаемом классе точности. За S2ном принимают мощность всех трех фаз однофазных трансформаторов напряжения, соединенных по схеме звезды, и удвоенную мощность однофазного трансформатора, включенного по, схеме неполного треугольника.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!