Электрическая лампа
Ла́мпа нака́ливания — осветительный прибор, искусственный источник света. Свет испускается нагретой металлической спиралью при протекании через неё электрического тока.
Содержание
Принцип действия
В лампе накаливания используется эффект нагревания проводника (нити накаливания) при протекании через него электрического тока (тепловое действие тока). Температура вольфрамовой нити накала резко возрастает после включения тока. Нить излучает электромагнитное тепловое излучение в соответствии с законом Планка. Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов, в идеале 5770 K (температура поверхности Солнца). Чем меньше температура, тем меньше доля видимого света и тем более «красным» кажется излучение.
Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводности и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Для повышения КПД лампы и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити — температурой плавления. Идеальная температура в 5770 K недостижима, т. к. при такой температуре любой известный материал плавится, разрушается и перестаёт проводить электрический ток. В современных лампах накаливания применяют материалы с максимальными температурами плавления — вольфрам (3410 °C) и, очень редко, осмий (3045 °C).
При практически достижимых температурах 2300—2900 °C излучается далеко не белый и не дневной свет. По этой причине лампы накаливания испускают свет, который кажется более «жёлто-красным», чем дневной свет. Для характеристики качества света используется т. н. цветовая температура.
В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид. По этой причине вольфрамовая нить защищена стеклянной колбой, заполненной нейтральным газом (обычно аргоном). Первые лампы делались с вакуумированными колбами. Однако в вакууме при высоких температурах вольфрам быстро испаряется, делая нить тоньше (что приводит к быстрому её перегоранию) и затемняя стеклянную колбу при осаждении на ней. Позднее колбы стали заполнять химически нейтральными газами. Вакуумные колбы сейчас используют только для ламп малой мощности.
Конструкция
Лампа накаливания состоит из цоколя, контактных проводников, нити накала, предохранителя и стеклянной колбы, заполненной буферным газом и ограждающей нить накала от окружающей среды.
Колба
Стеклянная колба защищает нить от сгорания в окружающем воздухе. Размеры колбы определяются скоростью осаждения материала нити. Для ламп большей мощности требуются колбы большего размера, для того чтобы осаждаемый материал нити распределялся на большую площадь и не оказывал сильного влияния на прозрачность.
Буферный газ
Колбы первых ламп были вакуумированы. Современные лампы заполняются буферным газом (кроме ламп малой мощности, которые по-прежнему делают вакуумными). Это уменьшает скорость испарения материала нити. Потери тепла, возникающие при этом за счёт теплопроводности, уменьшают путём выбора газа, по возможности, с наиболее тяжёлыми молекулами. Смеси азота с аргоном являются принятым компромиссом в смысле уменьшения себестоимости. Более дорогие лампы содержат криптон или ксенон (молярные массы: азот: 28,0134 г/моль; аргон: 39,948 г/моль; криптон: 83,798 г/моль; ксенон: 131,293 г/моль)
Нить накала
Нить накала в первых лампах делалась из угля (точка сублимации 3559 °C). В современных лампах применяются почти исключительно спирали из осмиево-вольфрамового сплава. Провод часто имеет вид двойной спирали, с целью уменьшения конвекции за счёт уменьшения ленгмюровского слоя.
Лампы изготавливают для различных рабочих напряжений. Сила тока определяется по закону Ома (I=U/R) и мощность по формуле P=U·I , или P=U 2 /R. Т. к. металлы имеют малое удельное сопротивление, для достижения такого сопротивления необходим длинный и тонкий провод. Толщина провода в обычных лампах составляет 40-50 микрон.
Так как при включении нить накала находится при комнатной температуре, её сопротивление на порядок меньше рабочего сопротивления. Поэтому при включении протекает очень большой ток (в десять — четырнадцать раз больше рабочего тока). По мере нагревания нити её сопротивление увеличивается и ток уменьшается. В отличие от современных ламп, ранние лампы накаливания с угольными нитями при включении работали по обратному принципу — при нагревании их сопротивление уменьшалось, и свечение медленно нарастало.
В мигающих лампах последовательно с нитью накала встраивается биметаллический переключатель. За счёт этого такие лампы самостоятельно работают в мигающем режиме.
Цоколь
Форма цоколя с резьбой обычной лампы накаливания была предложена Томасом Альвой Эдисоном. Размеры цоколей стандартизированы. У ламп бытового применения наиболее распространены цоколи Эдисона E14 (миньон), E27 и автомобилях.
Предохранитель
Перегорание лампы происходит во время её работы, то есть в то время, когда одновременно нить накала нагрета и через нить протекает электрический ток. Если в это время происходит разрыв нити, то между разведёнными концами нити обычно загорается электрическая дуга. В быту это можно заметить по яркой синевато-белой вспышке в момент перегорания лампы.
Поскольку нить, как правило, представляет собой относительно тонкий провод, свёрнутый в спираль, то электрическое сопротивление нити может быть бо́льшим, нежели сопротивление ионизированного газа в дуге. Поэтому концы дуги начинают разбегаться от места разрыва нити, а сила тока в цепи возрастает.
При дальнейшем развитии этого процесса дуга может загореться уже между держателями нити, сопротивление которых относительно мало, в результате сила тока в питающей цепи может намного превысить допустимые пределы, что приведёт либо к срабатыванию предохранителей в питающей цепи, либо к перегреву питающих проводов, что, возможно, спровоцирует пожар.
Для того, чтобы разомкнуть цепь при возгорании дуги и не допустить перегрузки питающей цепи, в конструкции лампы предусмотрен плавкий предохранитель. Он представляет собой отрезок тонкой проволоки и расположен в цоколе лампы накаливания. Для бытовых ламп с номинальным напряжением 220 В такие предохранители обычно рассчитаны на ток 7 А.
КПД и долговечность
Почти вся подаваемая в лампу энергия превращается в излучение. Потери за счёт теплопроводности и конвекции малы. Для человеческого глаза, однако, доступен только малый диапазон длин волн этого излучения. Основная часть излучения лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла. Коэффициент полезного действия ламп накаливания достигает при температуре около 3400 K своего максимального значения 15 %. При практически достижимых температурах в 2700 K КПД составляет 5 %.
С возрастанием температуры КПД лампы накаливания возрастает, но при этом существенно снижается её долговечность. При температуре нити 2700 K время жизни лампы составляет примерно 1000 часов, при 3400 K всего лишь несколько часов. Как показано на рисунке справа, при увеличении напряжения на 20 %, яркость возрастает в два раза. Одновременно с этим время жизни уменьшается на 95 %.
Уменьшение напряжения питания хотя и понижает КПД, но зато увеличивает долговечность. Так понижение напряжения в два раза (напр. при последовательном включении) сильно уменьшает КПД, но зато увеличивает время жизни почти в тысячу раз. Этим эффектом часто пользуются, когда необходимо обеспечить надёжное дежурное освещение без особых требований к яркости, например, на лестничных площадках. Часто для этого при питании переменным током лампу подключают последовательно с диодом, благодаря чему ток в лампу идет только в течении половины периода.
Ограниченность времени жизни лампы накаливания обусловлена в меньшей степени испарением материала нити во время работы, и в большей степени возникающими в нити неоднородностями. Неравномерное испарение материала нити приводит к возникновению истончённых участков с повышенным электрическим сопротивлением, что в свою очередь ведёт к ещё большему нагреву и испарению материала в таких местах. Когда одно из этих сужений истончается настолько, что материал нити в этом месте плавится или полностью испаряется, ток прерывается и лампа выходит из строя.
Преимущественная часть износа нити накала происходит при резкой подаче напряжения на лампу, поэтому значительно увеличить срок её службы можно используя разного рода плавные пускатели. Вольфрамовая нить накаливания имеет в холодном состоянии удельное сопротивление, которое всего в 2 раза выше, чем сопротивление алюминия. При перегорании лампы часто бывает, что сгорают медные проводки, соединяющие контакты цоколя с держателями спирали. Так, обычная лампа на 60 Вт в момент включения потребляет свыше 700 Вт, а 100-ваттная — более киловатта. По мере прогрева спирали её сопротивление возрастает, а мощность падает до номинальной.
Для сглаживания пиковой мощности могут использоваться терморезисторы с сильно падающим сопротивлением по мере прогрева, реактивный балласт в виде ёмкости или индуктивности. Напряжение на лампе растет по мере прогрева спирали и может использоваться для шунтирования балласта автоматикой. Без отключения балласта лампа может потерять от 5 до 20 % мощности, что тоже может быть выгодно для увеличения ресурса.
тип | КПД | Светотдача(Люмен/Ватт) |
---|---|---|
40 W Лампа накаливания | 1.9 % | 12.6 [1] |
60 W Лампа накаливания | 2.1 % | 14.5 [1] |
100 W Лампа накаливания | 2.6 % | 17.5 [1] |
Галогенные лампы | 2.3 % | 16 |
Металлогалогенная лампа (с кварцевым стеклом) | 3.5 % | 24 |
Высокотемпературная лампа накаливания | 5.1 % | 35 [2] |
Абсолютно чёрное тело при 4000 K | 7.0 % | 47.5 [3] |
Абсолютно чёрное тело при 7000 K | 14 % | 95 [3] |
Идеально белый источник света | 35.5 % | 242.5 [2] |
Идеальный монохроматический 555 nm (зелёный) источник | 100 % | 683 [4] |
Галогенные лампы
Добавление в буферный газ паров галогенов (брома или йода) повышает время жизни лампы до 2000—4000 часов. При этом рабочая температура спирали составляет примерно 3000 К. Эффективность галогенных ламп достигает 28 лм/Вт.
Иод (совместно с остаточным кислородом) вступает в химическое соединение с испарившимися атомами вольфрама. Этот процесс является обратимым — при высоких температурах соединение распадается на составляющие вещества. Атомы вольфрама высвобождаются таким образом либо на самой спирали, либо вблизи неё.
Добавление галогенов предотвращает осаждение вольфрама на стекле, при условии, что температура стекла выше 250 °C. По причине отсутствия почернения колбы, галогенные лампы можно изготавливать в очень компактном виде. Малый объём колбы позволяет, с одной стороны, использовать большее рабочее давление (что опять же ведёт к уменьшению скорости испарения нити) и, с другой стороны, без существенного увеличения стоимости заполнять колбу тяжёлыми инертными газами, что ведёт к уменьшению потерь энергии за счёт теплопроводности. Всё это удлиняет время жизни галогенных ламп и повышает их эффективность.
Ввиду высокой температуры колбы любые загрязнения поверхности (например, отпечатки пальцев) быстро сгорают в процессе работы, оставляя почернения. Это ведёт к локальным повышениям температуры колбы, которые могут послужить причиной её разрушения. Также из-за высокой температуры, колбы изготавливаются из кварцевого стекла.
Новым направлением развития ламп является т. н. IRC-галогенные лампы (сокращение IRC обозначает «инфракрасное покрытие»). На колбы таких ламп наносится специальное покрытие, которое пропускает видимый свет, но задерживает инфракрасное (тепловое) излучение и отражает его назад, к спирали. За счёт этого уменьшаются потери тепла и, как следствие, увеличивается эффективность лампы. По данным фирмы [1].
Хотя IRC-галогенные лампы не достигают эффективности ламп дневного света, их преимущество состоит в том, что они могут быть использованы как прямая замена обычных галогенных ламп.
Специальные лампы
- Проекционные лампы — для диа- и кинопроекторов. Имеют повышенную яркость (и соответственно, повышенную температуру нити и уменьшенный срок службы); обычно нить размещают так, чтобы светящаяся область образовала прямоугольник.
- Двухнитевые лампы для автомобильных фар. Одна нить для дальнего света, другая для ближнего. Кроме того, такие лампы содержат экран, который в режиме ближнего света отсекает лучи, которые могли бы ослеплять встречных водителей.
История изобретения
- В 1809 году англичанин Деларю строит первую лампу накаливания (с платиновой спиралью)
- В 1838 году бельгиец Жобар изобретает угольную лампу накаливания.
- В 1854 году немец Генрих Гёбель разработал первую «современную» лампу: обугленную бамбуковую нить в вакуумированном сосуде. В последующие 5 лет он разработал то, что многие называют первой практичной лампой. [5][6]1874 года российский инженер Александр Николаевич Лодыгин получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд. изобретатель Джозеф Вильсон Сван получил в 1878 году британский патент на лампу с угольным волокном. В его лампах волокно находилось в разреженной кислородной атмосфере, что позволяло получать очень яркий свет.
- Во второй половине 1870-х годов американский изобретатель Томас Эдисон проводит исследовательскую работу, в которой он пробует в качестве нити различные металлы. В 1879 году он патентует лампу с платиновой нитью. В 1880 году он возвращается к угольному волокну и создаёт лампу с временем жизни 40 часов. Одновременно Эдисон изобрёл патрон, цоколь и выключатель. Несмотря на столь непродолжительное время жизни его лампы вытесняют использовавшееся до тех пор газовое освещение.
- В 1890-х годахЛодыгин изобретает несколько типов ламп с металлическими нитями накала.
- В 1906 году Лодыгин продаёт патент на вольфрамовую нить компании General Electric. Из-за высокой стоимости вольфрама патент находит только ограниченное применение.
- В 1910 году Вильям Дэвид Кулидж изобретает улучшенный метод производства вольфрамовой нити. Впоследствии вольфрамовая нить вытесняет все другие виды нитей.
- Остающаяся проблема с быстрым испарением нити в вакууме была решена американским учёным Ирвингом Ленгмюром, который, работая с 1909 года в фирме «General Electric», придумал наполнять колбы ламп инертным газом, что существенно увеличило время жизни ламп.
Интересные факты
- В США в одном из пожарных отделений города Ливермор (штатКалифорния) есть 4-ваттная лампа ручной работы, известная под именем «Столетняя лампа». Она практически постоянно горит уже более 100 лет, с 1901 года[7] .
- В СССР после претворения в жизнь ленинского плана ГОЭЛРО за лампой накаливания закрепилось прозвище «лампочка Ильича». В наши дни так чаще всего называют простую лампу накаливания, свисающую с потолка на электрическом шнуре без плафона.
- Пока лампа Томаса Эдисона не завоевала популярность, люди спали по 10 часов в сутки [8] .
Яблочков Павел Николаевич (2.09.1847-19.03.1894), русский изобретатель в области электротехники, военный инженер и предприниматель. Основное изобретение — дуговая лампа без регулятора — электрическая свеча (см.: Дуговая свеча. Свеча Яблочкова) — положило начало первой практически применимой системе электрического освещения (1876) подробнее — http://www.hrono.ru/biograf/yabloch.html
См. также
Примечания
- ↑ 123Keefe, T.J.The Nature of Light (2007). Проверено 5 ноября 2007.
- ↑ 12Klipstein, Donald L.The Great Internet Light Bulb Book, Part I (1996). Проверено 16 апреля 2006.
- ↑ 12 Black body visible spectrum
- ↑ See luminosity function.
- ↑Давид Шарле. Король изобретательства Томас Альва Эдисон
- ↑Электротехническая энциклопедия. История изобретения и развития электрического освещения
- ↑Light Bulb Methuselahs (англ.) . www.roadsideamerica.com. Проверено 24 августа 2008.
- ↑ В оригинале эти сведения были опубликованы в статье Дженнифер Харпер под названием «Спать надо ровно семь часов — не меньше и не больше», написанной для The Washington Times в августе 2008 года. Однако сейчас статья перемещена в архив. Ссылки, косвенно подтверждающие это утверждение: 1 (англ.) , 2 (англ.) .
Литература
- A. Zukauskas, M.S. Shur and R. Caska, Introduction to solid-state ligthing, John Willey & Sohn, 2002
- K. Bando, Symp. Proc. Of the 8th Int. Symp. on the Sci. & Tech. of Ligth Sources 1998, 80
Ссылки
• Химические: Химический источник света
• Электрические: Дуговая лампа | Лампа накаливания | Люминесцентная лампа | Свеча Яблочкова
Wikimedia Foundation . 2010 .
Полезное
Смотреть что такое «Электрическая лампа» в других словарях:
ЭЛЕКТРИЧЕСКАЯ ЛАМПА — ЭЛЕКТРИЧЕСКАЯ ЛАМПА, устройство, состоящее из металлической нити, излучающей свет при нагревании электричеством до состояния НАКАЛА (когда она начинает светиться). Появление первой электрической лампы датируется 1860 г., когда Жозеф СВАН создал… … Научно-технический энциклопедический словарь
электрическая лампа — лампа Источник оптического излучения, создаваемого в результате преобразования электрической энергии. [ГОСТ 15049 81] Тематики лампы, светильники, приборы и комплексы световые Синонимы лампа … Справочник технического переводчика
ЭЛЕКТРИЧЕСКАЯ ЛАМПА — искусственный источник света, в котором электрическая энергия преобразуется в энергию оптического излучения. Источником излучения в электрической лампе может быть нагретый до высокой температуры проводник, электрический разряд в газе или парах… … Большой Энциклопедический словарь
электрическая лампа — искусственный источник света, в котором электрическая энергия преобразуется в энергию оптического излучения. Источником излучения в электрической лампе может быть нагретый до высокой температуры проводник, электрический разряд в газе или парах… … Энциклопедический словарь
Электрическая лампа — ОСНОВНЫЕ ПОНЯТИЯ 1. Электрическая лампа Лампа Источник оптического излучения, создаваемого в результате преобразования электрической энергии Источник: ГОСТ 15049 81: Лампы электрические. Термины и определения оригинал документа … Словарь-справочник терминов нормативно-технической документации
электрическая лампа — elektros lempa statusas T sritis fizika atitikmenys: angl. electric lamp vok. elektrische Lampe, f rus. электрическая лампа, f pranc. ampoule, f; lampe électrique, f … Fizikos terminų žodynas
электрическая лампа накаливания — электрическая лампа накаливания; лампа накаливания Проводниковый электровакуумный прибор, используемый в качестве источника излучения (обычно видимого света), возникающего при прохождении электрического тока через тело накала … Политехнический терминологический толковый словарь
Электрическая лампа — источник света (См. Источники света), в котором происходит преобразование электрической энергии в световую. Наиболее распространёнными Э. л. являются лампы накаливания (См. Лампа накаливания) и газоразрядные лампы (см. Газоразрядные… … Большая советская энциклопедия
Электрическая лампа (Лампа) — English: Lamp Источник оптического излучения, создаваемого в результате преобразования электрической энергии (по ГОСТ 15049 81 СТ СЭВ 2737 80) Источник: Термины и определения в электроэнергетике. Справочник … Строительный словарь
лампа накаливания — Электрическая лампа, в которой свет излучается телом, раскаленным в результате прохождения через него электрического тока. [ГОСТ 15049 81] Тематики лампы, светильники, приборы и комплексы световые EN bulbelectric incandescent lampfilament… … Справочник технического переводчика
Электрический ток в лампе: как это работает
Сегодня сложно представить себе жизнь без света в доме, который создает электрический ток в лампе. Давайте посмотрим, как это происходит?
На сегодняшний день есть несколько типов приборов освещения (давайте назовём лампы таким образом). Самая первая группа светильников работала без электричества. Это была либо химическая реакция, либо огонь. Затем люди узнали про электричество и после долгих экспериментов появилась лампа накаливания. Конструктивно лампа состоит из трех обязательных частей: цоколя, колбы и источника свечения. В лампе накаливания в качестве источника света выступает спираль из тугоплавкого металла. Помните, буквально недавно мы говорили закон Джоуля-Ленца, закон Ома и про мощность электрического тока? Так вот, лампочка очень наглядно демонстрирует все эти законы. Сопротивление спирали лампочки накаливания подбирается таким образом, чтобы ток, протекая по спирали, разогревал её настолько, чтобы спираль светилась, но не разрушалась от воздействия высокой температуры. А колба вокруг спирали нужна для того, чтобы кислород при высокой температуре не вступал в реакцию со спиралью, вызывая сильное окисление и разрушение. Колба заполняется либо инертным газом, который никоим образом не может вступить в реакцию с металлом спирали, либо, наоборот, в колбе создаётся вакуум.
В общем, там, где есть высокая температура, там всегда есть большие потери, низкий КПД, малое время работы и куча прочих недостатков, поэтому люди стали искать альтернативу. Со временем появились различные группы осветительных приборов, которые можно объединить в две большие группы: газоразрядные и светодиодные.
В газоразрядных используется возможность электрического тока создавать ионный поток, тлеющий разряд, плазму и т.д. В зависимости от устройства такой лампы, используемого газа и конструкции вызывают тот или иной эффект работы электрического тока. А работа тока в конечном итоге приводит к свечению паров газа.
В светодиодных несколько иной принцип действия. В процессе рекомбинации полупроводникового перехода выделяется энергия. В зависимости от типов комбинации p-n перехода эта энергия может быть в видимом диапазоне. Открою вам небольшой секрет. До сих пор не найдена комбинация, при котором получился бы белый цвет светодиодов, поэтому белый цвет получается либо при помощи ультрафиолетового светодиода с люминофорным покрытием, либо комбинацией красного, синего и зеленого.
Вот так, вкратце работает электрический ток в лампе. Конечно, можно по каждому типу осветительного прибора написать отдельную статью. Это удивительно, как по разному можно заставить ток освещать наши дома и улицы в тёмное время суток.
Измерение мощности работы тока в электрической лампе
Давайте теперь подумаем, как узнать какую мощность развивает электрический ток в лампе и как можно это измерить. Казалось бы, можно использовать много методом, но на самом деле измерить мощность можно только с помощью ваттметров или ампермера с вольтметром. Почему это так? Предположим, что мы измерим сопротивление лампы накаливания и попробуем по закону Ома вычислить мощность, которую она сможет развить. Но без учёта термодинамики мы получим неверные данные. Дело в том, что при разогреве сопротивление нити накала увеличивается. То есть, холодная нить накала и горячая имеют разные сопротивления. И это касается не только ламп накаливания, но и всех остальных типов приборов освещения. Ну а измерить сопротивление газоразрядных или неоновых ламп и вовсе не представляется возможным. Сначала, конечно же, нужно собрать схему. Она очень проста:
Какие методы можно использовать?
- Можно использовать ваттметр. По сути, ваттметр это комбинация амперметра и вольтметра. Обратите внимание, одна обмотка ваттметра включена последовательно (это токовая обмотка), а вторая параллельно (обмотка напряжения). Магнитные потоки этих обмоток взаимодействуют и отклоняют стрелку ваттметра, который сразу покажет мгновенное значение мощности. Это самый простой метод вычисления мощности осветительного прибора.
- Можно использовать амперметр и вольтметр. Метод не сложный, но требует вычислений. Амперметр подключается последовательно. Вольтметр параллельно. На схеме это видно. Теперь, зная значение напряжения и тока достаточно лишь их перемножить. То есть, P=U*I. Однако, для более точных расчётов нужно учитывать, что вольтметр имеет свое собственное сопротивление. Оно хоть и очень большое и почти не влияет на результаты измерения, но, тем не менее, если требуется очень большая точность, это нужно учитывать. Я уже писал, как это делать в статье про параллельное и последовательное соединение сопротивлений.
- Можно использовать счётчик электрической энергии. По сути, это ваттметр, который показывает не мгновенное значение мощности, а накопительное – с учётом времени. Счетчик подключается точно так же, как ваттметр. Он точно так же содержит две обмотки. Но его конструктивная особенность такова, что он показывает ватт*часы. То есть, количество энергии за определенный промежуток времени. Чтобы узнать мощность лампочки с помощью счётчика потребуется еще и секундомер. Собираем схему, включаем ее и одновременно запускаем отсчёт времени. Ждём, пока счётчик сделает нужный нам отсчет потреблённой электроэнергии, останавливаем секундомер и начинаем считать. Допустим, счётчик показал потребление 1 кВт энергии за четыре часа. Значит, за один час расходовалось 250 ватт энергии. Допустим, потребление энергии 1 кВт произошло за 10 минут. Значит, за час такой прибор израсходует 6 кВт электроэнергии. Как видите, здесь расчёт не очень сложный. Единственное условие, что для получения мощности нам нужно, чтобы мощность была в киловаттах, а время в часах. Неудобство же заключается в том, что этот метод мы можем использовать только в сетях 220 или 380 вольт, то есть, имея счётчики с подходящим напряжением, или используя трансформаторы (либо другие устройства) преобразующие напряжение к тому, на которое рассчитан счётчик.
Какое действие тока используется в электрических лампах?
В электрических лампах накаливания используется способность электрического тока вызывать нагрев предметов (в данном случае вольфрамовой нити) до температуры, когда они начинают испускать световые волны.
Молния — это огромная электрическая дуга, разряд электричества..
Могу процитировать свой ответ из вот этого вопроса http://www.bolshoyvopros.ru/questions/2599835-kakoj-put-protekanija-el-toka-pr<wbr />i-popadanii-molnii-v-samolet.html#answer76347, думаю он будет обширный и исчерпывающий:
В канале молнии текут огромные знакопостоянные токи (нет там переменного тока), но это происходит в короткое время..
Переменный ток способен проходить сквозь конденсатор, в отличие от постоянного. Это и позволяет получать напряжение на выходе умножителей, суественно превышающее амплитуду входного.
Фишка таких схем в том, что там последовательно включается несколько конденсаторов. И за счёт специальной схемы включения диодов постонное напряжение на «левой» обкладке (если считать «лево» — это где источник переменного напряжения) ненулевое, а уже какое-то. Тем самым напряжение на правой обкладке оказывается равным левому, некоторому пьедесталу, плюс выпрямленное на этом звене умножителя сетевое. Поэтому чисто увеличением числа конденсаторов, увеличением числа звеньев умножителя можно практически неограниенно увеличивать выходное напряжение. До десятков и сотен киловольт.
Надо только не забывать, что на халяву ничего не даётся, и что с увеличением числа звеньев увеличивается и выходное сопротивление такого выпрямителя, причём сильно: как квадрат числа звеньев. Поэтому при разумных значениях конденсаторов выходные токи получаются незначительными — десятки, редко сотни микроампер. Никто, конечно, не запрещает иметь там хоть амперные токи, но — за это придётся платить использованием конденсаторов огромной ёмкости. Или же недопустимо высокой пульсацией выходного выпрямленного напряжения.
Прежде чем делать стабилизатор на таких низких напряжениях нужно первым делом высчитать нагрузку, и уже после этого приступать к сборке.Чем ниже напряжение тем меньше и выходная мощность.Из физики мы знаем, что мощность(W) равна напряжению(V), умноженному на потребляемый ток(J)Напряжение на нагрузке 2 ампера 5 вольт мощность будет 10 ватт.а при 9 вольт стабилизатор напряжения всего 18 ватт.
Если вам нужны фиксированный выход 5 вольт или 9 вольт то можно использовать микросхему КРЕН 5А(5 вольт) или КРЕН 5В(9 вольт).Обе микросхемы без радитора охлаждения выдерживают 1,5 ампера нагрузки, а если поставить радиатор то до 3 ампер.Следует учитывать что слишком большое поданное напряжение на микросхему будет способствовать её дополнительному нагреву.
на выходе обязательно поставить емкость( конденсатор минимум 500 мкф)
Прибор для измерения силы электрического тока называется амперметр. Прибор предназначен для измерения силы тока в амперах, микроамперах, миллиамперах или в килоамперах. Внастоящее время амперметр как отдельный прибор используется редко, в основном используют авометры.
Правильный ответ на этот вопрос — амперметр
При соприкосновении с токопроводником мышцы сокращаются и человек может быть отброшен в сторону , действие тока прекращается . Известны случаи возвращения к жизни не только сразу после воздействия тока , но и через 1-2 часа после . Иногда возвращение к жизни кажется чудом , так был пациент , которому электрической дугой снесло полчерепа вместе с частью лба , он не только выжил , но после нескольких пластических операций , реабилитаций через два года с него сняли и инвалидность .
Какое действие тока используется в электрических лампах
Вскоре после открытия электричества появились электрические устройства освещения. Очень долгое время среди источников искусственного света доминировали лампы накаливания. В последние годы, в связи с обострением борьбы за энергетическую эффективность, широкое распространение получают новые приборы освещения – энергосберегающие люминисцентные и светодиодные лампы. Действие тока используется в электрических лампочках по-разному, ниже приводятся описания типов и принципов получения света.
Виды источников искусственного света
- Лампочка накаливания – наиболее простой и дешёвый источник искусственного света. Преобразование электрической энергии в световую происходит за счёт сильно разогретой под действием электрического тока металлической нити в виде спирали. Рабочая температура нити около 2500 °С. Нагретое до такой температуры тело начинает генерировать электромагнитное излучение в видимом диапазоне спектра, проще говоря — свет. Спираль изготавливается из тугоплавкого металла, чаще всего вольфрама или рения. Для предотвращения быстрого испарения и разрушения, нить накаливания помещена в герметичную колбу. Воздух из колбы откачивается, либо колба наполняется инертным газом: азотом, аргоном, криптоном.
- Галогеновые лампы являются разновидностью ламп накаливания с улучшенными характеристиками. Внутри колбы такой лампы содержится так называемый «буферный» газ в виде паров галогенов йода или брома. Наличие галогенов препятствует испарению металла спирали и осаждению его на стенках колбы. В результате становится возможным повышение температуры до 3000°С. При этом размер колбы может быть уменьшен, а срок службы лампы увеличен.
- Газоразрядные источники используют явление свечения газов под воздействием электрического тока (газовый разряд). Внутри стеклянной колбы, наполненной газом, смесью газов или парами металлов, между двумя электродами, расположенными на концах трубки, протекает ток, вызывающий свечение газа. В зависимости от состава газовой среды, цвет свечения может быть разным.
- Люминисцентные источники – это частный случай газоразрядных ламп. В лампах дневного света трубка наполнена парами ртути. Электрический разряд в парах ртути создаёт ультрафиолетовое свечение. На поверхность трубки нанесен специальный состав – люминофор. Под воздействием ультрафиолета люминофор генерирует вторичное излучение, близкое к дневному свету, откуда эти приборы и получили своё название. В зависимости от состава люминофора возможны различные оттенки белого света, более тёплые или холодные. Сведения об оттенке обычно содержатся в маркировке ламп и называются цветовой температурой.
- В светодиодных лампах источником света является прибор, излучающий свет при прохождении электрического тока через твердотельный кристалл полупроводник. Цвет свечения зависит от материала полупроводника. Светодиод белого свечения появился относительно недавно. Получение белого света стало возможным с появлением синего светодиода. На самом деле, белый формируется с помощью люминофора, облучаемого синим или фиолетовым излучением от полупроводникового кристалла. Цветовая температура светодиодов белого свечения варьируется в широких пределах. Светодиод — достаточно сложный в производстве прибор, потому светодиодные лампы имеют высокую стоимость.
Цветовая температура
Характеризует оттенок белого света, выражается в градусах Кельвина и находится в диапазоне от 1000 до 10 000°К. Низкие значения ближе к красному — теплый оттенок, высокие, бело-синие – холодный. Дневной свет имеет цветовую температуру около 5200 К. Основная масса осветительных приборов выпускается в диапазоне 2700—6500 К.
Как видно, несмотря на то, получение света является результатом действия электрического тока, используется он в электрических лампах разных типов по своему. Современные источники света достигают очень высокого КПД и в сравнении с лампами накаливания. Светодиоды являются настоящим прорывом в области получения искусственного света.