Каков удельный вес аэс в нашей стране
Перейти к содержимому

Каков удельный вес аэс в нашей стране

Cколько АЭС в России на 2022 год?

Сколько АЭС в России на 2022 год? Россия обладает технологией атомной энергетики полного цикла: от добычи урановых руд до выработки электроэнергии; обладает значительными разведанными запасами руд, а также запасами в оружейном виде.

На апрель 2017 года в России, на 10 действующих АЭС, эксплуатировалось 35 энергоблоков общей мощностью 27 914,30 МВт, из них 19 реакторов с водой под давлением — 12 ВВЭР-1000 (11 блоков 1000 МВт и 1 блок 1100 МВт), 1 ВВЭР-1200 (1200 МВт), 5 ВВЭР-440 (4 блока 440 МВт и 1 блок 417 МВт); 15 канальных кипящих реакторов — 11 РБМК-1000 (1000 МВт каждый) и 4 ЭГП-6 (12 МВт каждый); 2 реактора на быстрых нейтронах — БН-600 (600 МВт) и БН-800 (880 МВт).

Где в России находятся атомные станции

Карта атомных электростанций РФ

Карта АЭС России

Сколько действующих АЭС в России в 2022 году и где они находятся

Балаковская АЭС

Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Балаковская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт. Ежегодно она вырабатывает более 30 миллиардов кВт·ч электроэнергии [9] . В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х, станция могла бы сравняться с самой мощной в Европе Запорожской АЭС.

Балаковская АЭС работает в базовой части графика нагрузки Объединённой энергосистемы Средней Волги.

Белоярская АЭС

Расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах. В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно. БН-600 сдан в эксплуатацию в апреле 1980 — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах. БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Первые два энергоблока с водографитовыми канальными реакторами АМБ-100 и АМБ-200 функционировали в 1964—1981 и 1967—1989 годах и были остановлены в связи с выработкой ресурса. Топливо из реакторов выгружено и находится на длительном хранении в специальных бассейнах выдержки, расположенных в одном здании с реакторами. Все технологические системы, работа которых не требуется по условиям безопасности, остановлены. В работе находятся только вентиляционные системы для поддержания температурного режима в помещениях и система радиационного контроля, работа которых обеспечивается круглосуточно квалифицированным персоналом.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Калининская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт. Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.

4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году [10] .

Кольская АЭС

Расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра. Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.

Мощность станции — 1760 МВт.

Курская АЭС

Курская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт. Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм. Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции — 4000 МВт.

Ленинградская АЭС

Ленинградская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт. Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива. Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Мощность станции — 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт·ч [11] .

Нововоронежская АЭС

Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.

На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.

Мощность станции (без учёта Нововоронежской АЭС-2) — 1440 МВт.

Ростовская АЭС

Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.

В 2001—2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС [12] .

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах. В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

Где в россии законсервировали АЭС?

Балтийская АЭС

АЭС в составе двух энергоблоков общей мощностью 2,3 ГВт строилась с 2010 года в Калининградской области, энергетическую безопасность которой она и была призвана обеспечить. Первый объект Росатома, на который планировалось допустить иностранных инвесторов — энергокомпании, заинтересованные в покупке излишков энергии, вырабатываемой АЭС. Стоимость проекта с инфраструктурой оценивалась в 225 млрд рублей. Строительство было заморожено в 2014 году в связи с возможными сложностями со сбытом электроэнергии за границу после обострения внешнеполитической ситуации.

В перспективе возможна достройка АЭС, в том числе с менее мощными реакторами.

Недостроенные АЭС, строительство которых возобновлять не планируется

Все эти АЭС были законсервированы в 1980-х — 1990-х гг. в связи с аварией на Чернобыльской АЭС, экономическим кризисом, последующим развалом СССР и тем, что они оказались на территории вновь образованных государств, которым такое строительство оказалось не по карману. Часть из стройплощадок этих станций на территории России может быть задействовано в строительстве новых АЭС после 2022 года. К таким АЭС относятся:

  • Башкирская АЭС
  • Крымская АЭС
  • Татарская АЭС
  • Чигиринская АЭС (ГРЭС) (осталась на Украине)

Также в то же время по соображениям безопасности под давлением общественного мнения было отменено строительство находившихся в высокой степени готовности атомных станций теплоснабжения и атомных теплоэлектроцентралей, предназначенных для подачи горячей воды в крупные города:

  • Воронежская АСТ
  • Горьковская АСТ
  • Минская АТЭЦ (осталась в Белоруссии, достроена как обычная ТЭЦ — Минская ТЭЦ-5)
  • Одесская АТЭЦ (осталась на Украине).
  • Харьковская АТЭЦ (осталась на Украине)

За пределами бывшего СССР по разным причинам не были достроены ещё несколько АЭС отечественных проектов:

  • АЭС Белене (Болгария) — строительство остановлено 1990 г. вероятнее всего по экономическим и политическим причинам, включая влияние общественного мнения после аварии Чернобыльской АЭС.
  • АЭС Жарновец (Польша) — строительство остановлено 1990 г. вероятнее всего по экономическим и политическим причинам, включая влияние общественного мнения после аварии Чернобыльской АЭС.
  • АЭС Синпхо (КНДР).
  • АЭС Хурагуа (Куба) — строительство прекращено в очень высокой степени готовности в 1992 году в связи с экономическими сложностями после прекращения помощи СССР.
  • АЭС Штендаль (ГДР, позднее Германия) — строительство отменено в высокой степени готовности с перепрофилированием в целлюлозно-бумажную фабрику в связи с отказом страны от строительства АЭС вообще.

Производство урана

Россия обладает разведанными запасами урановых руд, на 2006 год оцениваемыми в 615 тыс. тонн урана.

Основная уранодобывающая компания Приаргунское производственное горно-химическое объединение, добывает 93 % российского урана, обеспечивая 1/3 потребности в сырьё.

В 2009 году прирост производства урана составил 25 % в сравнении с 2008 годом [13] .

Строительство реакторов

Динамика по количеству энергоблоков (шт)

Динамика по суммарной мощности (ГВт)

В России существует большая национальная программа по развитию атомной энергетики, включающей строительство 28 ядерных реакторов в ближайшие годы [14] . Так, ввод первого и второго энергоблоков Нововоронежской АЭС-2 должен был состояться в 2013—2015 годах [15] , однако перенесён минимум на лето 2016 года.

По данным на март 2016 года, в России строится 7 атомных энергоблоков, а также плавучая АЭС [16] .

1 августа 2016 года было утверждено строительство 8 новых АЭС до 2030 года [17] .

Строящиеся АЭС

Балтийская АЭС

Балтийская АЭС строится вблизи города Неман, в Калининградской области. Станция будет состоять из двух энергоблоков ВВЭР-1200. Строительство первого блока планировалось завершить в 2017 году, второго блока — в 2019 году.

В середине 2013 года было принято решение о заморозке строительства [18] .

В апреле 2014 года строительство станции было приостановлено [19] [20] .

Ленинградская АЭС-2

Является замещающей для Ленинградской АЭС. На начало 2016 года 2 блока находятся в стадии строительства. Первый в высокой степени готовности, его планируется запустить в 2018 году, второй в 2019. Строительство ещё двух блоков теоретически возможно после 2021 года.

Нововоронежская АЭС-2

Является замещающей для Нововоронежской АЭС. В настоящий момент ведётся сооружение 2-х энергоблоков общей мощностью 2400 МВт, в дальнейшем планируется построить ещё 2. Энергетический пуск первого блока Нововоронежской АЭС-2 был осуществлен 5 августа 2016 года [21] . Запуск второго запланирован на 2017 год.

Ростовская АЭС

Ведётся строительство 4-го энергоблока. Пуск запланирован на 2017 год.

Плавучая АЭС «Академик Ломоносов»

Федеральным агентством по атомной энергии России ведётся проект по созданию плавучих атомных электростанций малой мощности.

Строящаяся АЭС «Академик Ломоносов» будет первой в мире плавучей атомной электростанцией. Ввод станции в эксплуатацию планируется в 2018 году [22] .

Прочие

Также прорабатываются планы постройки:

Возможно возобновление строительства на заложенных ещё в 1980-х годах площадках, но по обновлённым проектам:

Международные проекты России в атомной энергетике

На начало 2010 года за Россией было 16 % на рынке услуг по строительству и эксплуатации

АЭС в мире, эта доля может увеличиться до 25 % [8] .

23 сентября 2013 года Россия передала Ирану в эксплуатацию АЭС «Бушер».

По данным на март 2013 года, российская компания Атомстройэкспорт строит за рубежом 3 атомных энергоблока: два блока АЭС «Куданкулам» в Индии и один блок АЭС «Тяньвань» в Китае. Достройка двух блоков АЭС «Белене» в Болгарии отменена в 2012 году [23] .

В настоящее время Росатому принадлежит 40 % мирового рынка услуг по обогащению урана и 17 % рынка по поставке ядерного топлива для АЭС [8] [16] . Россия имеет крупные комплексные контракты в области атомной энергетики с Индией [14] , Бангладеш [24] , Китаем [25] , Вьетнамом [26] , Ираном [27] , Турцией [28] ,Финляндией [29] , ЮАР [30] и с рядом стран Восточной Европы [31] [32] [33] . Вероятны комплексные контракты в проектировании, строительстве атомных энергоблоков, а также в поставках топлива с Аргентиной [34] , Белоруссией [33] , Нигерией [33] , Казахстаном [33] , Украиной [35] . Ведутся переговоры о совместных проектах по разработке урановых месторождений с Монголией [36] .

Безопасность

Объекты использования атомной энергии (в том числе ядерные установки, пункты хранения ядерных материалов и радиоактивных веществ, пункты хранения радиоактивных отходов) в соответствии со статьёй 48.1 ГрК РФ относятся к особо опасным объектам [37] .

Надзор за безопасностью российских АЭС осуществляет Ростехнадзор.

Охрана труда регламентируется следующими документами:

    . СТО 1.1.1.02.001.0673-2006

Ядерная безопасность регламентируется следующими документами:

    . НП-001-15 . ПБЯ РУ АС-89 (ПНАЭ Г — 1 — 024 — 90)

Радиационная безопасность регламентируется следующими документами:

  1. Санитарные правила проектирования и эксплуатации атомных станций (СП АС-03)
  2. Основные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010)
  3. Правила радиационной безопасности при эксплуатации атомных станций (ПРБ АС-99)
  4. Нормы радиационной безопасности (НРБ-99/2009)
  5. Федеральный закон «О санитарно-эпидемиологическом благополучии населения».

История

На конец 1991 года в Российской Федерации функционировало 28 энергоблоков общей номинальной мощностью 20 242 МВт, без учёта Обнинской и Сибирской АЭС.

С 1991 года по 2015 год к сети было подключено 7 новых энергоблоков общей номинальной мощностью 6 964 МВт: 4-й блок на Балаковской АЭС (1993), 3-й и 4-й блоки на Калининской АЭС (2004 и 2011), 1-, 2- и 3-й блоки на Ростовской АЭС (2001, 2010 и 2014), 4-й блок Белоярской АЭС (2015).

В 2002 году была выведена из эксплуатации первая в мире АЭС — Обнинская. Был заглушен её единственный реактор мощностью 6 МВт.

В 2008 году была закрыта Сибирская АЭС.

На конец 2015 года в стадии строительства находятся 6 энергоблоков, не считая двух блоков Плавучей атомной электростанции малой мощности.

В 2007 году федеральные власти инициировали создание единого государственного холдинга «Атомэнергопром» объединяющего компании Росэнергоатом, ТВЭЛ, Техснабэкспорт и Атомстройэкспорт. 100 % акций ОАО «Атомэнергопром» передавалось одновременно созданной Государственной корпорации по атомной энергии «Росатом».

Выработка электроэнергии

Выработка электроэнергии на российских АЭС в 1970—2014 годах, млрд кВт*ч

За 2007 год российскими АЭС было выработано 158,3 млрд кВт·ч, что составило 15,9 % от общей выработки в Единой энергосистеме России. Объём отпущенной электроэнергии составил 147,7 млрд кВт·ч.

В 2008 году на АЭС было выработано 162,3 млрд кВт•ч электроэнергии. Объём отпущенной электроэнергии составил 151,57 млрд кВт•ч [2] .

В 2009 году на АЭС было выработано 163,3 млрд кВт•ч электроэнергии [3] ., что составило 16 % от общей выработки в Единой энергосистеме России. Объём отпущенной электроэнергии составил 152,8 млрд кВт·ч.

В 2010 году АЭС России выработали 170,1 млрд кВт•ч электроэнергии, что составило 16,6 % от общей выработки в Единой энергосистеме России. Объём отпущенной электроэнергии составил 159,4 млрд кВт·ч. [4]

В 2011 году российские атомные станции выработали 172,7 млрд кВт•ч [5] , что составило 16,6 % от общей выработки в Единой энергосистеме России. Объём отпущенной электроэнергии составил 161,6 млрд кВт·ч.

В 2012 году российские атомные станции выработали 177,3 млрд кВт•ч, что составило 17,1 % от общей выработки в Единой энергосистеме России. Объём отпущенной электроэнергии составил 165,727 млрд кВт·ч. [6]

В 2018 году выработка на АЭС России составила 196,4 млрд кВт•ч, что составило 18,7% от общей выработки в Единой энергосистеме России. [7]

Доля атомной генерации в общем энергобалансе России около 18 %. Высокое значение атомная энергетика имеет в европейской части России и особенно на северо-западе, где выработка на АЭС достигает 42 %.

После запуска второго энергоблока Волгодонской АЭС в 2010 году, председатель правительства России В. В. Путин озвучил планы доведения атомной генерации в общем энергобалансе России с 16 % до 20-30 % [8] .

В разработках проекта Энергетической стратегии России на период до 2030 г. предусмотрено увеличение производства электроэнергии на атомных электростанциях в 4 раза.

Сколько АЭС у ЕС: сможет ли мирный атом заменить Европе энергию из РФ

Европейский союз все громче заявляет о своем стремлении избавиться от российского газа, нефти и угля. Для выполнения этой задачи хотя бы в области производства электроэнергии потребуется наращивание альтернативных мощностей. Однако, как показал 2021 год, возобновляемые источники энергии в роли ведущих недостаточно надежны, а кроме того, при кратном увеличении мощностей потребуют гораздо больше сырья (металлов, композитов, пластика, а значит, и того же газа). Таким образом, остается, как говорят американцы, «ядерная опция» (nuclear option), и на этот раз это образное выражение нужно понимать буквально. Атомные электростанции действительно могут являться выходом из ситуации, пусть и долгосрочным, но сейчас во многих странах ЕС направление движения скорее обратное — за закрытие АЭС.

По итогам 2021 года доля атомных станций в общем производстве электроэнергии в Европе составляла около 25%, находясь на втором месте после ископаемого топлива. По этому показателю атомная энергетика все еще заметно опережает возобновляемые источники за вычетом гидроэнергетики (около 18%). В абсолютных цифрах атомная электрогенерация в Европе составила 683 тыс. гигаватт-часов, из которых более половины (350 тыс.) приходится всего на одну страну — Францию (отметим, не потребляющую и 15% всей энергии в Европейском союзе). На первый взгляд цифры общего производства довольно солидные, однако все познается в сравнении. В 2005 году страны Евросоюза производили без малого миллион гигаватт-часов электроэнергии, в полтора раза больше, чем сейчас. Это при том, что за последние 17 лет и потребности Европы в электричестве выросли на несколько процентов.

В конце XX века картина была принципиально иной. Триггером для развития атомной энергетики на континенте стал нефтяной кризис 1973 года. Если до него все страны континента на немногочисленных АЭС производили всего около 50 тыс. гигаватт-часов, то к 1980 году это число достигло 200 тыс. гигаватт-часов, а к 1985 году — 800 тыс. Рост в геометрической прогрессии закончился в 1990-е годы, не в последнюю очередь под влиянием Чернобыльской катастрофы. Однако после этого было достигнуто «плато», с которого европейские атомщики начали сползать во второй половине 2000-х годов.

ЧАЭС

Блок 4-го ядерного реактора на Чернобыльской АЭС, где в 1986 году произошла авария, Украина

А дальше начался обвал: атомофобия, резко возросшая активность «зеленых» и, наконец, авария на японской АЭС «Фукусима» подорвали доверие европейцев к атомной энергетике. Настроения населения подогревались в том числе и лоббистами конкурирующих энергоотраслей: от углеводородной до быстрорастущей возобновляемой. В итоге падение объемов генерации на 30% чуть более чем за десятилетие. Большая часть этих потерь так и не была компенсирована за счет внутренних источников, в результате чего зависимость ЕС от внешних поставок (как газа, нефти и угля, так и металлов и солнечных батарей) существенно увеличилась.

Новый шанс у атомщиков появился в последние годы. Сначала проблему изменения климата и увеличения выбросов CO2 стало сложно игнорировать, как минимум из-за повышенного общественного внимания. Выступления активистов и всеобщая заряженность на борьбу с этим явлением в конце 2010-х начали приносить плоды, и европейские страны стали принимать программы строительства электростанций с минимумом выбросов. После долгих дебатов к этой категории отнесли и атомную энергетику, хотя это понравилось не всем странам союза. Затем началась спецоперация России на Украине, которая вызвала к жизни воинственную риторику о необходимости отказа ЕС от российских нефти и газа, заменить которые аналогами из США и Ближнего Востока в обозримом будущем практически невозможно. По сути, как и в 1973 году, создался необходимый для атомного ренессанса общественно-политический ландшафт.

На самом деле вероятность реализации этих шансов спустя полвека выглядит небольшой. Мало того что атомные станции требуют колоссальных инвестиций и долгое время работают в убыток (зато после окупаемости капитальных вложений через 1520 лет атомная энергия становится самой дешевой), так еще и по-прежнему идет процесс закрытия работающих станций. Впрочем, в разных странах складывается разная ситуация.

Германия

Пожалуй, наиболее яркий пример атомного кризиса в Евросоюзе. В ФРГ «зеленые», как представленные отдельной партией, так и представители других политических организаций, набрали в последние десятилетия огромную силу и влияние. В первую очередь их давлением можно объяснить быстрое эмоциональное решение о сворачивании в Германии мирного атома после аварии на Фукусиме.

АЭС Неккарвестхайм

АЭС Неккарвестхайм, Германия

На данный момент в стране осталось всего три станции общей мощностью 4,3 гигаватта. Объем их производства не превышает 30 тыс. гигаватт-часов в год. Это около 5% потребностей страны в электроэнергии. Еще недавно эти объемы были намного больше, но в декабре прошлого года были остановлены еще три реактора. С оставшимися тоже есть проблемы: запаса урановых стержней для продолжения работы в следующем году там просто нет, а выпуск новых может занять больше года. При этом Россия является основным поставщиком ядерного топлива в Германию.

Компании, управляющие станциями, объясняют, что для значительной пролонгации их работы требуются дополнительные технические решения, а также подробная документация, включающая оценку всех рисков и издержек. Фирмы готовы пойти на все это при условии стопроцентных гарантий возрождения германской программы мирного атома, защиты их от любых претензий со стороны экологов — одним словом, полным пересмотром всей политики в этой сфере, которая проводилась в последнее десятилетие или полтора.

Следует учитывать, что «зеленые» в ФРГ сейчас представлены в правительстве, и не просто в правительстве, а в министерстве экономики (министр Роберт Хабек), которое является для отрасли профильным. Невозможно представить, что эта партия, находившаяся многие декады в авангарде борьбы против АЭС, вдруг признает свою неправоту (политически это будет самоубийство). Поэтому другие политические силы могут сколько угодно заявлять канцлеру Олафу Шольцу о том, что сохранение АЭС в рабочем состоянии помогло бы снизить зависимость от российского газа на треть, как это сделал представитель «Альтернативы для Германии» Марк Бернхард на прошлой неделе, ситуацию это не поменяет никак.

Италия

Итальянская атомная энергетика встала на ноги одной из первых в Западной Европе. В конце 1980-х годов четыре АЭС страны имели довольно высокий уровень выработки, но они были практически в один момент закрыты в 1990 году под влиянием трагедии в Чернобыле. Решение было принято на национальном референдуме в 1987-м. С тех пор определенные попытки возродить сектор предпринимались, особенно в нулевые, однако авария на Фукусиме поставила на этих планах крест.

АЭС Гарильяно

АЭС Гарильяно, Италия

Что интересно, Италия могла бы быть одной из самых заинтересованных в развитии отрасли страной. Никаких горючих полезных ископаемых у этого государства нет, возобновляемые источники развиваются очень слабо в сравнении с североевропейскими странами, потенциал гидроэнергетики также весьма ограничен. Но пока все выглядит так, что смерть итальянского мирного атома окончательна.

Франция

К настоящему моменту удельный вес атомной энергетики в общем производстве электроэнергии в стране составляет около 70%, и это значительно больше, чем где бы то ни было в мире. Реакция Франции на события в Фукусиме была полностью обратной германской. Тогдашний президент Николя Саркози лишь постановил усилить меры безопасности, что привело к некоторому подорожанию электроэнергии с АЭС. Новый глава государства Франсуа Олланд, впрочем, распорядился снизить эту долю до 50% к 2025 году, а Национальная ассамблея вотировала этот законопроект в 2014 году. Однако уже в 2018-м Эммануэль Макрон заявил о переносе этих сроков до 2035 года, а крупнейшая энергокомпания страны EDF заявила о разворачивании масштабной инвестиционной программы. В 2020 году Макрон уточнил задачу, объявив о расширении строительства малых атомных реакторов. Впрочем, единственной компанией, которая имеет подобные работающие образцы, на данный момент является «Росатом». EDF же придется провести еще несколько лет подготовительной работы.

АЭС Фессенхайм

АЭС Фессенхайм, Франция

В феврале на фоне стремительного роста цен на нефть и газ стало известно о планах Франции построить еще 14 больших ядерных реакторов, а срок эксплуатации ныне действующих продлить до 50 лет при условии, что экспертиза сочтет их безопасными. Тема снижения доли атома в энергобалансе, кажется, закрыта на долгие годы. Сейчас Франция занимает второе место по дешевизне электроэнергии для промышленных потребителей во всей Европе.

Малые страны ЕС

В Бельгии долгое время вели политику, схожую с немецкой. Планировалось закрыть все АЭС (сейчас осталось две — Тианж и Дул) до 2025 года. Ситуация изменилась в феврале, когда в кратчайшие сроки было принято решение пересмотреть все планы на остановку реакторов. Сейчас срок их работы установлен как неопределенный. Впрочем, разговоров о строительстве дополнительных мощностей не ведется.

В Венгрии в дополнение к существующим четырем ядерным реакторам на станции Пакс планируется построить еще два, причем работа будет проводиться «Росатомом». Новые водо-водяные реакторы по мощности примерно в 2,5 раза превзойдут старые. Это позволит нарастить суммарную мощность АЭС до 4 мегаватт и закрыть большую часть потребностей страны в электроэнергии (сейчас она достигает 50%).

АЭС Ханхикиви-1

Строительство АЭС Ханхикиви-1 в Финляндии

Программа АЭС развивается и в Финляндии, которая благодаря возведению новых реакторов собирается полностью отказаться от импорта российской электроэнергии в 2030-е годы. Успехи достигаются благодаря общественному мнению: 48% финнов позитивно оценивают атомную энергетику и лишь 17% — негативно. Такое соотношение является совсем нечастым для Европы.

Во многих других государствах настрой скорее антиатомный. Скажем, Австрию и Люксембург возмутило стремление ЕС внести АЭС в список производителей «зеленой» энергии. Изменится ли их позиция в связи с совершенно другой геополитической ситуацией, пока не ясно, но, как и во многих других случаях, вряд ли стоит ждать поворота на 180 градусов.

В целом говорить о серьезном пересмотре позиций по атомной энергетике в Европе не приходится. В континентальном масштабе значимое увеличение генерации произойдет только во Франции. При этом крайне сомнительно, что она сможет полностью обеспечить электроэнергией даже ближайших соседей: хотя в целом республика является энергоизбыточной, но в определенные периоды она, наоборот, закупает электричество у сопредельных государств.

Развитие атомной энергетики в России с 2014 по 2020 год

В России в промышленной эксплуатации находятся 37 энергоблоков на 11 атомных электростанциях. Восемь из них были введены в эксплуатацию с 2014 по 2020 год.

©Видео с youtube.com/ https://www.youtube.com/embed/Yv9COSv6isQ

В 2016 году начал промышленную эксплуатацию энергоблок № 4 с реактором БН-800 Белоярской АЭС. Уникальный реактор на быстрых нейтронах БН-800 необходим для отработки технологий, которые позволят расширить топливную базу атомной энергетики.

В 2017 году был введён в промышленную эксплуатацию энергоблок № 6 Нововоронежской АЭС — первый в Мире энергоблок поколения «3+» (полностью соответствуют постфукусимским требованиям МАГАТЭ).

В 2018 году, с вводом четвёртого энергоблока, было полностью завершено строительство Ростовской АЭС.

Динамика количества введёных в эксплуатацию энергоблоков АЭСн Динамика количества введёных в эксплуатацию энергоблоков АЭСн © Фото из открытых источников

С 2014 года началось поэтапное замещение действующих мощностей. Навсегда остановились для последующего вывода из эксплуатации 4 энергоблока.

В 2017 году энергоблок № 6 Нововоронежской АЭС заместил остановившийся энергоблок № 3.

В 2018 году историческим событием стало введение в промышленную эксплуатация первого энергоблока Ленинградской АЭС-2, который заместил головной энергоблок в серии РБМК-1000.

В 2020 году в промышленную эксплуатацию ввели первую в мире плавучую атомную теплоэлектростанцию «Академик Ломоносов» с двумя реакторами КЛТ-40С, она стала одиннадцатой промышленно эксплуатируемой атомной электростанцией в России. В ближайшем будущем ПАТЭС «Академик Ломоносов» должна заменить Билибинскую АЭС, первый энергоблок которой был остановлен в 2016 году. А, остановленный в этом году второй энергоблок Ленинградской АЭС будет замещён в 2021 году энергоблоком № 2 Ленинградской АЭС-2 (ВВЭР-1200), энергетический пуск которого состоялся в конце октября 2020 года.

Динамика мощности выведенных из эксплуатации энергоблоков АЭС (МВт) Динамика мощности выведенных из эксплуатации энергоблоков АЭС (МВт) © Фото из открытых источников

Кроме того, в России ведётся строительство ещё двух энергоблоков на Курской АЭС (ВВЭР-ТОИ). Они призваны заместить энергоблоки серии РБМК-1000.

Мощность энергоблоков, введённых с 2014 по 2020 год, составила 6515 МВт. С учётом выведенных энергоблоков, это позволило увеличить суммарную установленную мощность всех энергоблоков с 25242 МВт до 29316 МВт, а долю АЭС в установленной мощности электростанций ЕЭС России с 11,3% до 11,88%.

Динамика мощности атомных электростанций в России (ГВт) Динамика мощности атомных электростанций в России (ГВт) © Фото из открытых источников

Обзор всех АЭС России

Всего 11 АЭС России по итогам 2020 года впервые выработали более 20% всей электроэнергии страны. Я решил сделать обзор всех атомных станций России. Это будет популярный обзор станций глазами реакторщика (как минимум по образованию), так что я постараюсь показать в чем технические и исторические особенности каждой из них, какие реакторы на них работают или работали раньше, какие важные для отрасли технологии там осваивались. На многих из этих АЭС я был, поэтому иногда буду добавлять и личные впечатления. Помимо действующих АЭС, я упомяну и те станции, которые уже остановлены, и те, что планировались, но так и не были реализованы, и те, которые могут появиться в ближайшие годы.

Ну и традиционно, я сделал видеоверсию этой статьи (подписывайтесь на канал!), она получилась даже более наглядной, т.к. в ней почти на порядок больше фото и визуальных материалов, чем вошло в статью. Так что оба формата вполне самостоятельные и по-своему интересные.

01. Обнинская АЭС. Первая АЭС

Начнем с самой первой АЭС в мире. Она заработала в июне 1954 г в Обнинске, недалеко от Москвы. Ее мощность была всего 5 МВт, что по современным меркам даже не мини, а микро-АЭС. Это в 200-250 раз меньше, чем мощность современного энергоблока АЭС. Тем не менее, это была первая полноценная атомная станция, которая выдавала электроэнергию в сеть. В США за несколько лет до этого уже получали электроэнергию от экспериментального реактора, но в еще меньшем количестве и она шла на собственные нужды этой установки, а не в общую сеть. Подробнее я про это писал в отдельной статье. Так что для желающих померяться кто был первым в тех или иных достижениях, вопрос атомного электричества дает почву для дискуссий, но мы не из их числа. Все же первая крупная АЭС, выдающая электричество в сеть, была построена именно в Обнинске.

Пульт управления Первой АЭС. Фото автора.

Пульт управления Первой АЭС. Фото автора.

Сам реактор Первой АЭС был спроектирован на основе промышленных реакторов для наработки оружейного плутония — начинки для ядерного оружия. Это тоже канальный водо-графитовый реактор. Т.е. его активная зона состоит из графитовой кладки, в которой сооружены каналы, в эти каналы установлено топливо и по ним же прокачивается вода для отвода тепла. Графит выступает как замедлитель нейтронов, что необходимо для протекания цепной реакции деления, а вода как теплоноситель.

Схема первой АЭС

Схема первой АЭС

Энергетический реактор для АЭС и промышленный реактор для наработки плутония на самом деле серьезно отличаются. Во-первых, важное отличие в тепловой схеме – в энергетическом реакторе вода в каналах должна нагреваться до более высокой температуры, чтобы в итоге создавать пар высокого давления, который сможет крутить турбину. Первая АЭС работала по двухконтурной схеме, т.е. вода первого контура нагревалась, передавала тепло воде второго контура, которая уже кипела и этот пар шел на турбину. При этом все таки турбину на первую АЭС поставили не очень мощную, а КПД станции был менее 20%, что примерно в полтора-два раза ниже, чем у современных АЭС.

Второе важное отличие энергетического реактора от промышленного – топливо. В реакторе для наработки плутония топливо находится в активной зоне всего несколько недель, чтобы образовалось нужное соотношение новых изотопов плутония. По сути через реактор прогоняется огромное количество топлива, выступающего как сырье. В энергетическом же реакторе топливо должно работать как можно дольше – в современных реакторах оно находится в активной зоне реактора по 4-5 лет. И в нем должно делиться как можно больше атомов, чтобы вырабатывать как можно больше энергии, т.е. у него должна быть большая глубина выгорания.

Все это нужно для улучшения экономических показателей электростанции. При этом топливо не должно разрушаться. Так что создание топлива именно для АЭС отличается от топлива промышленных реакторов — это отдельная сложная задача, которую приходилось решать для Первой АЭС.

Интересно, что внешне Обнинская АЭС совершенно не похожа на современные АЭС. С виду это простое трехэтажное административное здание, ну разве что труба на заднем фоне выдает его промышленное назначение. Здание, в котором располагается реактор и турбина вообще расположены через дорогу друг от друга. С одной стороны, это было сделано из соображений секретности, хотя объект в итоге стал статусным и его потом посещали многие делегации, в том числе иностранные. С другой стороны, конечно, современные АЭС строятся совсем по другим правилам и требованиям, и там гораздо больше мощных защитных сооружений, призванных защитить как саму АЭС от внешних воздействий, так и окружающую среду от последствий возможных аварий.

Первая АЭС проработала почти 48 лет, дала много новых знаний и позволила обучить огромное количество специалистов. Она была остановлена в 2002 году. Ядерного топлива и радиоактивных материалов на ней уже нет. Сейчас она признана объектом культурного наследия России, на ее базе создан музей. Я был в этом музее и рекомендую его посетить всем, кто интересуется историей науки и техники, особенно атомной. Она находится на территории Физико-энергетического института и там можно узнать не только про первую АЭС, но и про другие работы ФЭИ.

02. Сибирская АЭС. Даже две

Сибирская АЭС

Сибирская АЭС

Следующая АЭС на территории России, которая уже тоже не работает – это малоизвестная широкой публике Сибирская АЭС. Сейчас практически все АЭС в Росси находятся в Европейской части, но был период в 60-е, когда основное атомное электричество в СССР вырабатывалось в Сибири. Сибирская АЭС находилась на площадке Сибирского химического комбината (СХК) в г. Северск Томской области. Это был закрытый комбинат по наработке оружейного плутония, он и сейчас работает, но занимается уже другими задачами. Несмотря на секретность, фильм о Сибирской АЭС показали в 1958 году на Женевской конференции по мирному использованию атомной энергии.

Заголовок в New York Times в 1958 году о показе в Женеве фильма о Сибирской АЭС

Заголовок в New York Times в 1958 году о показе в Женеве фильма о Сибирской АЭС

На тот момент она была одной из мощнейших АЭС мира – первый энергоблок имел мощность 100 МВт. В дальнейшем на ней работали 4 реактора, а суммарная мощность выросла до 600 МВт.

Промышленные реакторы СХК были двойного и даже тройного назначения. Т.е. они нарабатывали плутоний, но их спроектировали уже так, что они позволяли вырабатывать электроэнергию и давать тепло для отопления Северска и Томска. С окончанием программы наработки плутония был остановлен и последний реактор станции, в 2008 году.

Один из реакторов СХК. Фото: Страна Росатом

Один из реакторов СХК. Фото: Страна Росатом

На другом сибирском комбинате по наработке оружейного плутония, Горно-химическом комбинате, в Железногорске, с 1964 по 2010 год тоже работал двухцелевой реактор АДЭ-2. Хотя, как таковой отдельной АЭС его не называли. Но по сути это была третья атомная станция тепло- и электроснабжения в СССР, причем единственная – подземная, т.к. сам комбинат ГХК размещался в горной выработке под землей. Подробнее про отечественные промышленные реакторы я писал отдельную статью.

Кстати, АЭС двойного назначения – это не чисто советская выдумка. Первая такая «двойная» АЭС заработала в Великобритании на два года раньше Сибирской АЭС. Это АЭС Колдер Холл — первая АЭС в Великобритании и на Западе вообще, работавшая на атомном комбинате Селлафилд, где производили оружейный плутоний. В далеком 1956 году ее открывала молодая Елизавета II.

Елизавета II на открытии первой АЭС Великобритании - Колдер Холл (двойного назначения)

Елизавета II на открытии первой АЭС Великобритании — Колдер Холл (двойного назначения)

1. Белоярская АЭС. Дважды первопроходец

Итак, теперь давайте перейдем к действующим АЭС. Первая из них – это Белоярская АЭС, в 20 км от которой я живу. Это моя любимая АЭС, на которой я бывал уже много раз. После Обнинской, это была первая крупная гражданская АЭС, т.е. не двойного назначения и не на территории ядерного комбината. Она построена именно для выработки электроэнергии и тепла и не применялась для наработки плутония. Ее топливо даже не перерабатывали, о чем у меня, как ни странно, тоже есть отдельная статья.

АЭС заработала в 1964 году. Суммарная мощность двух реакторов первой очереди станции составила 300 МВт. Эти реакторы назывались АМБ, что расшифровывается как «Атом Мирный Большой», что и отражает их назначение. Это тоже канальные уран-графитовые реакторы, но уже улучшенной конструкции. На них пытались повысить КПД за счет дополнительного перегрева пара. Те. кроме каналов с топливом и водой, которая отводила тепло от активной зоны, по некоторым каналам через реактор дополнительно заново пропускали пар перед его отправкой на турбину для повышения его давления, чтобы улучшить КПД всей установки. Первый энергоблок мощностью 100 МВт работал по двухконтурной схеме. Второй энергоблок работал уже по упрощенной одноконтурной схеме, где пар вырабатывался прямо в первом контуре реактора, затем еще раз подогревался в реакторе и затем шел на турбину, его мощность была уже 200 МВт. В дальнейшем такая одноконтурная схема, пусть и без перегрева пара, ляжет в основу мощных реакторов РБМК. КПД первой очереди Белоярской АЭС достигал 37%, и это на несколько процентов больше, чем у многих современных АЭС.

Реакторы первой очереди выработали свой ресурс и были остановлены к 1989 году. Сейчас на АЭС работают два новых реактора с совершенно иной конструкцией – это реакторы на быстрых нейтронах.

Энергоблоки Белоярской АЭС. Инфографика автора

Энергоблоки Белоярской АЭС. Инфографика автора

С 1980 года на Белоярской АЭС работает реактор БН-600, а с 2015 года – БН-800. 600 и 800 – это проектная электрическая мощность этих реакторов, хотя по факту она увеличена почти на 10%. Это единственные в мире на текущий момент энергетические реакторы АЭС на быстрых нейтронах. Благодаря им, хотя были и другие меньшей мощности, у нашей страны накоплен самый большой опыт эксплуатации быстрых реакторов, которые могут составить основу или существенную долю атомной энергетики в будущем. Им, конечно, надо посвятить отдельные статьи и видео.

Скажу лишь о главной особенности. Это реакторы, в которых основное деление тяжелых ядер идет быстрыми нейтронами, частично о том что это такое я рассказывал в прошлой статье про реакторы со спектральным регулированием. Быстрые реакторы позволяют вовлекать в топливный цикл не только уран-235, которого в природном уране всего 0,7%, но и основной изотоп уран-238, которого там более 99%. Они же позволяют замыкать топливный цикл, используя в качестве топлива то, что выгружается из других реакторов. БН-800 уже переводится на полную загрузку МОКС-топливом, не требующем добычи природного урана. Оно изготавливается из плутония, выделенного из отработавшего топлива других реакторов, и из запасов отвального обедненного урана.

Про обедненный отвальный уран и МОКС-топливо у меня тоже есть отдельная статья, и даже целый цикл статей, если говорить в целом о проблеме обедненного гексафторида урана, который к нам периодически завозят из-за границы под шум антиядерных экологических активистов.

Реактор БН-800

Реактор БН-800

Белоярская АЭС долгое время была единственной станцией в нашей стране, на которой работали реакторы разных типов – канальные уран-графитовые АМБ и быстрые натриевые БН. Сейчас к такой станции можно отнести Ленинградскую АЭС, т.к. там одновременно работают и РБМК и ВВЭР, но мы до этого дойдем.

2. Нововоронежская АЭС. Сухопутная колыбель ВВЭР

Нововоронежская АЭС - вид с пруда-охладителя ночью

Нововоронежская АЭС — вид с пруда-охладителя ночью

Как и Белоярская АЭС, это одна из старейших АЭС страны. Первый ее энергоблок заработал в том же 1964 году, всего через полгода после пуска АМБ-1. Но в отличии Белоярской АЭС, где отрабатывали технологию канальных уран-графитовых реакторов с ядерным перегревом пара, а затем технологии быстрых реакторов, в Нововоронеже занимались и занимаются освоением другого направления – водо-водяных реакторов. Здесь были построены все первые, головные блоки энергетических реакторов ВВЭР мощностью от 210 МВт, 440, 1000 и сейчас 1200. Всего на этой АЭС построено 7 энергоблоков – максимальное количество на российских АЭС.

Первый в мире энергоблок с ВВЭР-1000 на Нововоронежской АЭС

Первый в мире энергоблок с ВВЭР-1000 на Нововоронежской АЭС

В настоящее время из них работают 4. Это один ВВЭР-440, один ВВЭР-1000 и два первых в нашей стране и мире ВВЭР-1200. Получается, что каждый из этих реакторов – самый первый в своем роде. В том числе и нынешний флагманский продукт отечественной атомной промышленности – энергоблок с реактором ВВЭР-1200, которые активно приходят на замену старых блоков на АЭС в России и строится для зарубежных заказчиков. В России их уже построено 4, и в разной стадии строительства за рубежом еще более 10 штук.

Первые в мире и нашей стране два ВВЭР-1200 на Нововоронежской АЭС

Первые в мире и нашей стране два ВВЭР-1200 на Нововоронежской АЭС

Подробно про водо-водяные реакторы я рассказывал в прошлой статье про Кольскую АЭС. Коротко повторю, что эти реакторы отличаются от канальных графитовых тем что в них нет ни графитовой кладки, ни каналов. Это более компактные реакторы, топливо которых находится внутри прочного толстостенного металлического корпуса. Водо-водяной в названии реактора означает, что вода выступает в нем и замедлителем нейтронов и теплоносителем, который отводит тепло от ядерного топлива. Это реакторы, работающие по двухконтурной схеме, т.е. вода в самом реакторе и первом контуре нагревается до большой температуры – более 300 градусов, но не кипит, т.к. находится при этом под давлением более 150 атмосфер (для чего мощный корпус и нужен). Тепло через теплообменник передается второму контуру, где уже вода кипит, пар идет на турбину, ну и дальше обычная схема. КПД таких установок около 32% и выше.

Такой же тип водо-водяных реакторов используется и на атомных подводных лодках в силу ряда преимуществ, в первую очередь более компактных размеров. Собственно, изначально он для них и разрабатывался, но потом вышел на сушу и прочно обосновался в мирной атомной энергетике. Сейчас это самый популярный тип реактора в мире. Более чем на 80% энергоблоках АЭС в мире работают водо-водяные реакторы под давлением.

3. Кольская АЭС. Первая за Полярным кругом

Кольская АЭС. Фото: Росатом

Кольская АЭС. Фото: Росатом

Самая первая и самая мощная АЭС, построенная за Полярным кругом. Я подробно рассказывал про нее в прошлой статье и видео. Отмечу тут, что это АЭС, которая состоит из четырех блоков средней мощности с реакторами ВВЭР-440. Такие в России работают только на упомянутой выше Нововоронежской АЭС. Это тоже одна из старейших АЭС – ее первый энергоблок работает с 1973 года, т.е. уже 48 лет. В 2033 он будет остановлен, и это будет первый блок отечественной АЭС, который отработает 60 лет. На смену первой очереди АЭС к тому времени планируют построить два энергоблока ВВЭР-600С со спектральным регулированием – первые блоки такого типа в нашей стране. В целом — Кольская АЭС, это такая достаточно уникальная станция, работающая в условно изолированной небольшой энергостистеме, отсюда и набор нескольких небольших энергоблоков. Но есть и еще более изолированные АЭС.

4. Билибинская АЭС. Советская малая АЭС

Раз уж мы идем примерно в хронологическом порядке, и затронули тему крайнего севера, то следующая АЭС – Билибинская. Она еще чуть севернее Кольской АЭС, но не в Мурманской области, а на другой стороне России – на Чукотке. И примерно на полгода моложе Кольской АЭС. Ее первый блок заработал в 1974 году.

Билибинская АЭС

Билибинская АЭС

Всего эта АЭС состоит из четырех довольно уникальных энергоблоков. Это тоже канальные уран-графитовые реакторы, но специально разработанные для этой АЭС. Это реакторы ЭГП-6 — Энергетический Гетерогенный Петлевой реактор с 6-ю петлями циркуляции теплоносителя. Их электрическую мощность сократили всего до 12 МВт. Но важное условие для работы на севере – они предназначены для выдачи тепла. Ведь эта АЭС проектировалась и строилась для работы в небольшой и изолированной Чаун-Билибинской энергосистеме, в условиях суровой Арктики, для снабжения энергией горнорудных и золотодобывающих предприятий Чукотки. По сути это первая малая АЭС СССР.

Центральный зал Билибинской АЭС с 4 реакторами ЭГП-6

Центральный зал Билибинской АЭС с 4 реакторами ЭГП-6

Сама Билибинская АЭС в ближайшие годы будет выводиться из эксплуатации, первый блок уже остановлен в 2019 г. Поэтому суммарная текущая установленная электрическая мощность АЭС – 36 МВт. И ей на смену уже пришла современная малая АЭС.

5. ПАТЭС. Самая плавучая, самая северная

Понятно, что на замену одной уникальной по задачам и условиям работы АЭС – Билибинской, спустя полвека должна была прийти не менее уникальная установка, но созданная уже на основе других технологий. И она пришла, причем в прямом смысле – ее прибуксировали из Мурманска. И с весны 2020 года уже принята в промышленную эксплуатацию первая плавучая АЭС, или точнее Плавучая атомная теплоэлектростанция (ПАТЭС), с головным плавучим энергоблоком (ПЭБ) под собственным именем «Академик Ломоносов». Это самая новая российская АЭС, работающая на новой площадке, в порту Певек. От нее до Билибинской АЭС более 240 км по прямой на северо-восток. Так что ПАТЭС ко всему прочему еще и самая северная АЭС мира.

ПАТЭС Академик Ломоносов в Певеке на Чукотке

ПАТЭС Академик Ломоносов в Певеке на Чукотке

Конструкционно это несамоходная баржа, пришвартованная к специальной береговой инфраструктуре для приема тепло и электроэнергии. На ее борту два энергоблока с двумя водо-водяными реакторами, построенными на базе тех, что работают на некоторых наших атомных ледоколах – КЛТ-40С. Суммарная электрическая мощность ПАТЭС – до 70 МВт, а тепловая – до 50 Гкал/ч. Она должна заменить не только выбывающую Билибинскую АЭС, но и угольную Чаунскую ТЭЦ, которой уже более 70 лет.

Автор на пульте управления ПАТЭС на базе Атомфлота в Мурманске в 2018, где на нее загружали ядерное топливо

Автор на пульте управления ПАТЭС на базе Атомфлота в Мурманске в 2018, где на нее загружали ядерное топливо

Сейчас уже прорабатываются проекты оптимизированных ПАТЭС с новыми реакторами РИТМ-200 большей мощности, которые уже работают на атомном ледоколе нового поколения «Арктика». Планируется построить еще 5 плавучих АЭС для другого района Камчатки, а интерес к подобным плавучим АЭС проявляют разные регионы за рубежом. Но и конкуренты не дремлют. Планы по разработке и строительству плавучих АЭС есть у Китая и Южной Кореи.

6. Ленинградская АЭС. Первые РБМК

Теперь перейдем к самым крупным АЭС, с серийными блоками гигаваттной мощности. Начнем по хронологии и с реакторов РБМК.

Ленинградская АЭС — это первая АЭС с четырьмя серийными реакторами РБМК-1000. РБМК расшифровывается как Реактор Большой Мощности Канальный. Это большой энергетический потомок канальных уран-графитовых реакторов, созданный на основе опыта и Первой АЭС, и реакторов АМБ, и двухцелевых промышленных реакторов. Два энергоблока первой очереди Ленинградской АЭС заработали в 1973 и 1975 годах, они уже отработали по 45 лет и остановлены. 3-й и 4-й блоки продолжают работу.

Ленинградаская АЭС и ее энергоблоки. Графика автора

Ленинградаская АЭС и ее энергоблоки. Графика автора

Именно на реакторах РБМК СССР планировал масштабно развивать атомную энергетику в 1970-е годы для удовлетворения энергодефицита в европейской части страны, поскольку технологию изготовления корпусов гигаваттных ВВЭР осваивать не успевал. А активная зона реактора РБМК собирается как из кубиков, изготовление компонентов для нее было освоено промышленностью. Поэтому, например, ее можно масштабировать и увеличивать. Например, на Игналинской АЭС построили два РБМК мощностью уже 1500 МВт, хотя и в тех же габаритах. Но были проекты и с увеличенной мощностью и активной зоной, до 2400 МВт. Вообще, сам реактор РБМК-1000 — это один из крупнейших в мире реакторов, там только диаметр активной зоны более 11 м.

Верхняя плита реактора РБМК - одного из самых больших реакторов в мире

Верхняя плита реактора РБМК — одного из самых больших реакторов в мире

У РБМК есть ряд преимуществ перед ВВЭР. Например, он не требует остановки для перегрузки топлива, его можно перегружать, отключая отдельные каналы прямо на работающем реакторе. Из-за этого он позволяет облучать в каналах отдельные сборки-мишени и нарабатывать полезные изотопы, как, например, Co-60, который сейчас и производят на Ленинградской АЭС.

Но есть и ряд недостатков. Это, например, и сложность управления, и отсутствие защитной оболочки-контейнмента, и другие недостатки конструкции, которые не были своевременно устранены из-за гонки масштабного строительства АЭС в СССР в 1970-е и 1980-е. Все это привело к главной трагедии, сделавшей реактор РБМК печально известным на весь мир – Чернобыльской катастрофе. Именно такие реакторы были на этой АЭС. После аварии 1986-года реакторы РБМК доработали и модернизировали, устранив большинство недостатков. Поэтому сегодняшние РБМК все же существенно отличаются от дочернобыльских.

Два энергоблока с ВВЭР-1200 на Ленингрдаской АЭС-2. Один уже сдан (справа), второй строится.

Два энергоблока с ВВЭР-1200 на Ленингрдаской АЭС-2. Один уже сдан (справа), второй строится.

Два энергоблока первой очереди Ленинградской АЭС заработали в 1973 и 1975 годах, они уже отработали по 45 лет и остановлены в 2018 и 2020 годах. Им на смену были построены и синхронно с отключением старых блоков были подключены два новых энергоблока с реакторами ВВЭР-1200. Так что теперь Ленинградская АЭС – единственная российская, где одновременно работают реакторы разных типов – РБМК-1000 и ВВЭР-1200. Кстати, при этом мощность АЭС выросла на 400 МВт, и теперь это самая мощная АЭС России. Сейчас ЛАЭС обеспечивает электроэнергией Ленинградскую область более чем на 50%, а также частично снабжает теплом ближайший город атомщиков — Сосновый бор.

Мне дважды доводилось бывать на ЛАЭС-2, поэтому я видел новые энергоблоки и в строящемся виде, и тут же впервые побывал на уже работающем энергоблоке с ВВЭР-1200.

7. Курская АЭС

Курская АЭС — вторая АЭС с серийными РБМК, всего на 4 года моложе Ленинградской. Расположена в 40 км от Курска. Она могла стать одной из самых больших АЭС на территории России с шестью энергоблоками РБМК-1000. Но с 1977 по 1986 годы успели достроить и ввести в эксплуатацию лишь 4 (как и на Чернобыльской АЭС). После 1986 года строительство оставшихся двух энергоблоков заморозили. Причем, пятый блок был в очень высокой степени готовности. Его даже подумывали достроить вплоть до 2010-х, но в 2012 году от этой идеи окончательно отказались.

Энергоблоки Курской АЭС

Энергоблоки Курской АЭС

Зато из-за почти полной идентичности и при этом полной радиационной чистоты, ведь на него даже не завозили ядерное топливо, этот пятый блок хорошо подходил для киносъемок фильмов про чернобыльскую аварию. Именно на нем проходили сьемки недавнего фильма Данилы Козловского. Кстати, знаменитый сериал Чернобыль от HBO снимали на другой АЭС с реакторами РБМК – Игналинской, в Литве.

Внутри реакторного зала пятого блока Курской АЭС-2. Фото Lana-Sator.livejournal.com

Внутри реакторного зала пятого блока Курской АЭС-2. Фото Lana-Sator.livejournal.com

Сейчас идет строительство Курской АЭС-2. На замену первым двум реакторам РБМК строят два новых энергоблока с реакторами ВВЭР. Но это не обычные ВВЭР-1200, которые построили на других станциях – в Нововоронеже или ЛАЭС-2. Это новый проект ВВЭР-ТОИ — Типовой Оптимизированный и Информатизированный проект. Ранее он назывался ВВЭР-1300. Он чуть мощнее и должен быть более экономически эффективным. Возможно в будущем он придет на смену ВВЭР-1200.

Строительство Курской АЭС-2 с двумя ВВЭР-ТОИ

Строительство Курской АЭС-2 с двумя ВВЭР-ТОИ

Кстати, два энергоблока Курской АЭС-2 – это на текущий момент единственные строящиеся в России энергоблоки АЭС, если не брать в расчет замороженную стройку Балтийской АЭС.

8. Смоленская АЭС

Смоленская АЭС. Фото: Росэнергоатом

Смоленская АЭС. Фото: Росэнергоатом

Расположена в 100 км от Смоленска. Самая молодая станция с реакторами РБМК. Первый блок пущен в 1983 году – мой ровесник. Но опять же из-за чернобыльской аварии тут построено не четыре, а всего три блока. Так что это самая маленькая АЭС с такими реакторами. Скорее всего в ближайшие годы будет начато строительство станции замещения – Смоленской АЭС-2.

Энергоблоки Смоленской АЭС

Энергоблоки Смоленской АЭС

9. Калининская АЭС. Серийные ВВЭР-1000

Калининская АЭС

Калининская АЭС

Переходим к трем АЭС с серийными гигаваттными блоками ВВЭР. Первая из них – Калининская АЭС с четырьмя блоками ВВЭР-1000. Расположена в Тверской области, возле города Удомля. Это самая близкая к Москве действующая АЭС – 350 км по прямой. Ее первые блоки заработали в 1984 и 1986 году, правда они не самой популярной серии ВВЭР-1000 – модификации В-338. Вторая очередь станции, с серийными ВВЭР-1000 наиболее популярной модификации В-320, были построены уже в 21-м веке – в 2004 и в 2011.

Калининская АЭС и вид на г. Удомля. Блоки 3 и 4 ближе к нам. Дальше - блоки 1 и 2.

Калининская АЭС и вид на г. Удомля. Блоки 3 и 4 ближе к нам. Дальше — блоки 1 и 2.

Именно за их строительством я следил, когда учился на физтехе на физика-ядерщика. Тогда Россия строила не так много новых энергоблоков. Кстати, на Калининской АЭС мне довелось побывать в 2017 году. И поскольку это была первая крупная АЭС с четырьмя гигаваттными блоками на которой я был, то меня поразил именно масштаб самой станции, начиная с проходной – все же на ней работает более 3000 человек. Это реально огромное предприятие, которое производит около 3% всей электроэнергии страны. Близкая мне Белоярская АЭС куда компактнее, камернее и я бы даже сказал уютнее.

9. Балаковская АЭС

Балаковская АЭС Расположена в 145 км от Саратова, на берегу Саратовского водохранилища. Это первая серийная АЭС с четырьмя блоками ВВЭР-1000 самой популярной модификации – В-320. Первый из них был введен в эксплуатацию в 1985 году.

Балаковская АЭС с 4 ВВЭР-1000 (В-320)

Балаковская АЭС с 4 ВВЭР-1000 (В-320)

Надо сказать, что в СССР Балаковская АЭС строилась параллельно с другой такой же станцией с реакторами ВВЭР-1000 (В-320) – Запорожской АЭС на Украине. Они обе должны были стать крупнейшими АЭС в СССР – планировалось по шесть блоков на каждой. Причем, Запорожскую АЭС строили с небольшим опережением и в итоге достроили целиком, до шести блоков. Теперь это крупнейшая АЭС в Европе и одна из крупнейших в мире. А вот Балаковская из-за трудностей в начале 90-х осталась с 4 блоками. 5-й и 6-й блоки в 1993 году решили не достраивать.

Энергоблоки Балаковской АЭСЭнергоблоки Балаковской АЭС Старшая сестра-близняшка Запорожская АЭС с 6 энергоблоками ВВЭР-1000 (В-320)Старшая сестра-близняшка Запорожская АЭС с 6 энергоблоками ВВЭР-1000 (В-320)

Тем не менее, это одна из крупнейших по выработке электроэнергии АЭС России. В результате модернизаций мощность ее энергоблоков увеличена на 4%.

На первом энергоблоке в 2018 году была впервые проведена операция отжига корпуса реактора ВВЭР-1000, в результате чего его ресурс был продлен более чем на 20 лет. Подробнее о процедуре отжига и продлении эксплуатации на примере реакторов ВВЭР-440 я писал в прошлой статье.

Процедура отжига реактора ВВЭР-1000 на Балаковской АЭС

Процедура отжига реактора ВВЭР-1000 на Балаковской АЭС

Также на одном из блоков Балаковской АЭС сейчас испытываются топливные сборки с РЕМИКС-топливом – это топливо с неразделенной смесью урана и плутония, выделенных из отработавшего ядерного топлива. Такими образом, тут отрабатывается технология частичного замыкания топливного цикла на реакторах ВВЭР.

11. Ростовская АЭС. Молодая и жаркая

Ростовская АЭС с 4 блоками ВВЭР-1000

Ростовская АЭС с 4 блоками ВВЭР-1000

Ростовская АЭС – самая южная станция России. Расположена в Ростовской области, вблизи города Волгодонска, на берегу Цимлянского водохранилища. Какое-то время она носила имя Волгодонской АЭС. В самом Волгодонске располагается другой важный для мировой атомной энергетики объект — завод Атоммаш, где делают оборудование первого контура АЭС — корпуса реакторов ВВЭР-1200, парогенераторы и многое другое для российских и зарубежных станций. Я бывал на Ростовской АЭС, но вот именно Атоммаш своим масштабом впечатлил куда больше даже меня, человека с промышленного Урала

Автор демонстрирует габариты корпуса реактора ВВЭР-1000, установленного в качестве монумента у завода Атоммаш в Волгодонске. Такие же реакторы работают на Ростовской АЭС.

Автор демонстрирует габариты корпуса реактора ВВЭР-1000, установленного в качестве монумента у завода Атоммаш в Волгодонске. Такие же реакторы работают на Ростовской АЭС.

Ростовская АЭС при этом еще и самая молодая АЭС России, если не считать ПАТЭС. Это единственная станция, все четыре энергоблока ВВЭР-1000 которой построены и запущены в работу в XXI веке, с 2001 по 2018 годы. Причем ее четвертый блок – это последний ВВЭР-1000, который построили в России. Больше их строить не будут, теперь им на смену уже пришли ВВЭР-1200 и ВВЭР-ТОИ.

Внутри строящегося 4-го энергоблока Ростовской АЭС, 2018 г.. На переднем плане перегрузочная машина для ядерного топлива.Фото автора.

Внутри строящегося 4-го энергоблока Ростовской АЭС, 2018 г.. На переднем плане перегрузочная машина для ядерного топлива.Фото автора.

О несбывшемся

Мы поговорили обо всех работавших или работающих в настоящий момент на территории России АЭС. По описанию станций, построенных в конце 1980-х, видно, что на некоторых из них ряд энергоблоков не был закончен из-за чернобыльской катастрофы и экономических потрясений, связанных с крахом СССР. Тем не менее они достроены в каком-то виде и работают. Но был ряд проектов новых АЭС, на других площадках, которые не были реализованы вообще. Например, так и не было закончено начатое строительство двух атомных станций теплоснабжения под Воронежем и Нижним Новгородом. Они должны были отапливать эти города.

Недостроенные атомные станции теплоснабжения под Воронежем (слева) и Нижним Новгородом (справа)

Недостроенные атомные станции теплоснабжения под Воронежем (слева) и Нижним Новгородом (справа)

К началу 1990-х были прекращены работы (все на относительно начальных стадиях строительства) на Башкирской АЭС под Уфой с 4 ВВЭР-1000, Татарской АЭС на Каме с 4 ВВЭР-1000, Южно-Уральской АЭС в Озерске Челябинской области с тремя БН-800 и Костромской АЭС с двумя РБМК-1500.

Уже в 2010-м было начато строительство Балтийской АЭС в Калининградской области с двумя ВВЭР-1200. Однако через несколько лет строительство было заморожено в пользу реализации аналогичного, но конкурирующего проекта в соседнем регионе – Белорусской АЭС.

Результаты работы

На текущий момент в России работают 11 АЭС с 38 энергоблоками. Из них 22 энергоблока с реакторами ВВЭР (4 ВВЭР-1200, 13 ВВЭР-1000 и 5 ВВЭР-440), 12 энергоблоков с канальными реакторами (9 РБМК-1000 и 3 ЭГП-6), 2 быстрых реактора БН-600 и БН-800 и 2 реактора ПАТЭС КЛТ-40С. Суммарная мощность всех блоков — около 30,5 ГВт. Поэтому Росэнергоатом вторая по установленной мощности компания-оператор АЭС после французской EDF.

По итогам 2020 года доля атомного электричества в России впервые превысила 20%. Причем в Европейской части страны эта доля около 30%, а на Северо-Западе – более 37%.

В абсолютных показателях по выработке в 2020 году был побит рекорд выработки советских времен. Пик производства атомного электричества в СССР пришелся на 1988 год — 215,67 млрд кВт*ч. Это с учетом работы 47 энергоблоков в нескольких республиках. Кроме России это Украина (13 блоков, в т.ч. три на Чернобыльской АЭС) + Литва с двумя мощнейшими в СССР реакторами РБМК-1500 + Армения с двумя ВВЭР-440 + Казахстан с тогда еще работающим БН-350. А в 2020-м году Россия с всего 38 энергоблоками выдала чуть больше чем СССР с 47-ю — 215,75 млрд кВт*ч.

В принципе, это вполне закономерно. Растет средняя мощность энергоблоков, т.к. закрываются старые, а им на смену приходят более новые и мощные. Мощность старых энергоблоков в результате модернизации тоже повышается. Внедряется новое топливо, оптимизируются ремонтные кампании, а значит сокращается время ремонтов и перегрузок, в результате растет КИУМ – коэффициент использования установленной мощности. Проще говоря, этот коэффициент показывает какой процент времени в течение года АЭС работала на полную мощность. На некоторых наших станциях он уже превышает 90%.

О перспективах

Сейчас в России по-прежнему нет роста экономики или перспектив большого экспорта электроэнергии, которые бы создавали спрос на существенное наращивание энергомощностей. Поэтому у нас в последние годы лишь достраивались давно запланированные блоки Калининской и Ростовской АЭС, а сейчас строятся лишь новые энергоблоки замещения, которые заменяют старые выбывающие блоки АЭС – на Ленинградской и Курской АЭС. Хотя на Нововоронежской АЭС это замещение произошло с существенным приростом, там добавили два ВВЭР-1200 вместо одного выбывшего ВВЭР-440, но там как обычно построили головные энергоблоки новой серии. Добавился так же энергоблок БН-800 на Белоярской АЭС, и ожидается, что в ближайшее время будет принято решение о строительстве там же и БН-1200 – первого серийного блока на быстрых нейтронах.

Тем не менее, Россия строит довольно много АЭС по сравнению с другими странами. За последние 20 лет в мире было подключено к сети около 105 новых энергоблоков АЭС. Из них 21, т.е. каждый пятый, построила Россия. Из них 13 – на территории России, и 8 в других странах для иностранных заказчиков. При этом сейчас на разной стадии строительства за рубежом находится еще около 20 энергоблоков, которые строит Росатом.

Но в самой России в ближайшие годы вряд ли стоит ожидать появления крупных АЭС с блоками-гигаватниками на новых площадках. Но вот малые АЭС в новых регионах в ближайшие 10 лет появятся. Уже есть планы по строительству малой АЭС в Якутии мощностью около 50 МВт, и еще четырех малых плавучих АЭС на Чукотке мощностью до 100 МВт каждая. Все они будут нужны для энергоснабжения новых месторождений полезных ископаемых в изолированных районах.

БРЕСТ-ОД-300 в Северске

БРЕСТ-ОД-300 в Северске

Недавно начато строительство опытно-демонстрационного реактора БРЕСТ-ОД-300 в Северске, рядом с Томском. Конечно, его задачи в демонстрации принципиально новой реакторной технологии и технологии замыкания топливного цикла, но его тоже можно отнести к малой АЭС, т.к. он будет вырабатывать до 300 МВт электроэнергии.

По такому же принципу к малой АЭС можно отнести и многоцелевой исследовательский реактор МБИР, который строят в Димитровграде, в Ульяновской области, поскольку и он будет выдавать до 55 МВт электроэнергии.

Но вообще, хотелось бы чтобы экономика наша росла, а вместе с ней обновлялась и энергетика, чтобы мы уходили от сжигания угля в пользу более чистых источников (про сравнение экологического следа разных технологий у меня тоже есть отдельная статья) — атома, гидро, ветра и солнечных станций.

Дата-центр ITSOFT — размещение и аренда серверов и стоек в двух дата-центрах в Москве. За последние годы UPTIME 100%. Размещение GPU-ферм и ASIC-майнеров, аренда GPU-серверов, лицензии связи, SSL-сертификаты, администрирование серверов и поддержка сайтов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *