Что происходит с металлом в магнитном поле
Перейти к содержимому

Что происходит с металлом в магнитном поле

Магнит и магнитное поле: почему притягивается только металл? .

Неодимовые магниты SuperMagnit

Любой магнит, который мы видим в своей жизни, имеет некоторые необычные черты. Самое главное свойство – это притяжение к металлическим или стальным предметам. Вторая черта – наличие полюсов. Чтобы их проверить, достаточно начать приближать один магнит к другому. Притяжение произойдет между разными полюсами (южный и северный). Одноименные полюса при этом отталкиваются.

Немного о магнитном поле

Магнитное поле появляется благодаря электронам, они двигаются вокруг атома, неся отрицательный заряд. Постоянное перемещение производит электрический ток.Движение тока производит магнитное поле, сила которого напрямую зависит от силы тока. Учитывая всю информацию выше, получаем полную связь между электричеством и магнетизмом, которые представляют такое понятие, как электромагнетизм.

Однако магнитное поле получается не только движением электронов вокруг ядра, в большей степени его формирует движение атомов вокруг своей оси. Некоторые материалы имеют магнитное поле, где атомы двигаются без определенного порядка, подавляя друг друга. Если говорить о металлических предметах, то здесь атомы упорядочены в группы, которые ориентируются в одну сторону. Благодаря возможности воздействовать на атомы, ориентируя их в одном направлении, и сложить магнитные поля, железные предметы могут намагничиваться.

Почему не все материалы могут магнититься?

Взаимодействие магнита происходит практически со всеми веществами, при этом вариантов этих самых взаимодействий намного больше, чем известные нам «притягивание» и «отталкивание». Специфическое строение некоторых металлов и сплавов позволяет им достаточно мощно притягиваться к магниту. Другие металлы и вещества тоже имеют это свойство, однако оно во много раз слабее. Рассмотреть притяжение в данный момент будет крайне сложно, для этого потребуется сильнейшее магнитное поле, которое невозможно создать в домашних условиях.

Итак, если свойство притягивания к магниту есть у всех веществ, то почему именно металлические предметы сильно магнитятся, и этот процесс можно увидеть? Дело в том, что все зависит от внешнего строения атомов и их взаимосвязи именно в металле.

Всё, что нас окружает, состоит из атомов, которые связаны между собой. Именно эта связь определяет материала. Атомы во многих веществах плохо скоординированы, поэтому имеют очень слабую взаимосвязь с магнитом. У металла атомы скоординированы, они ощущают магнитное поле и тянутся к нему, заставляя все остальные атомы действовать также. Такая система создает очень сильное взаимодействие с магнитом.

В завершении

Определенные виды: кобальт, железо, никель поддаются влиянию магнита. Они являются ферромагнетиками, т.е. имеют способность к намагничиванию. Если расположить эти металлы близко к магниту, атомы внутри них станут перестраиваться, образовывая магнитные полюса.

Подробно про магнитные и немагнитные металлы

Магнитные и немагнитные металлы играют важную роль в технике. Магнетизм является основой для многих применений. В то же время, это свойство может быть нежелательным в определенных обстоятельствах. Поэтому важно знать, какие металлы являются магнитными, а какие — нет.

Что такое магнетизм?

Говоря простым языком, магнетизм — это сила, которая может притягивать или отталкивать магнитные объекты. Магнитные поля, пронизывающие различные среды, являются посредниками этой силы.

По умолчанию магнетизм является свойством некоторых материалов. Однако некоторые материалы могут быть намагничены или размагничены в зависимости от требований.

Магнетизм в металлах создается неравномерным распределением электронов в атомах некоторых металлических элементов. Неравномерное вращение и движение, вызванное этим неравномерным распределением электронов, перемещает заряд внутри атома вперед и назад, создавая магнитные диполи.

Электрический ток способен создавать магнитные поля и наоборот. Когда электрический ток проходит через провод, он создает вокруг него круговое магнитное поле. Точно так же, если поднести магнитное поле к хорошему проводнику электричества, в проводнике начинают течь электрические токи.

Эта удивительная взаимосвязь между электричеством и магнетизмом привела к созданию множества гениальных устройств.

Типы магнитов:

Существуют различные классификации магнитов. Один из способов отличить магнитные металлы друг от друга — это то, как долго действуют их свойства. Исходя из этого, мы можем классифицировать магниты следующим образом:

  • Постоянные;
  • Временные;
  • Электромагниты.

Давайте рассмотрим каждый из них более подробно.

Постоянные магниты

Постоянные магниты создают магнитное поле благодаря своей внутренней структуре. Они не так легко теряют свой магнетизм. Постоянные магниты изготавливаются из ферромагнитных материалов, которые не перестают создавать свое магнитное поле независимо от внешнего воздействия. Таким образом, они устойчивы к размагничивающим силам.

Чтобы понять, что такое постоянные магниты, мы должны рассмотреть внутреннюю структуру магнитных материалов. Материал проявляет магнитные свойства, когда его домены выровнены в одном направлении. Домены — это мельчайшие магнитные поля, которые присутствуют в кристаллической структуре материала.

В ферромагнитных материалах домены идеально выровнены. Существуют различные способы их выравнивания, но самым надежным методом является нагрев магнита до определенной температуры. Эта температура различна для разных материалов и приводит к постоянному выравниванию доменов в одном направлении.

Именно благодаря аналогичным условиям, существующим в земном ядре, оно ведет себя как постоянный магнит.

Временные магниты

Временные магниты, как следует из названия, сохраняют свои магнитные свойства только при определенных условиях. Мягкие материалы с низкими магнитными свойствами, такие как отожженное железо и сталь, являются примерами временных магнитов. Они становятся магнитными в присутствии сильного магнитного поля.

Вы наверняка видели, как скрепки прикрепляются друг к другу, когда рядом находится постоянный магнит. Каждая скрепка становится временным магнитом, притягивающим другие скрепки в присутствии магнитного поля. Как только постоянный магнит убирают, скрепки теряют свои магнитные свойства.

Электромагниты

Электромагниты — это магниты, которые создают магнитное поле, когда через них проходит электрический ток. Они имеют различные сферы применения. Например, в двигателях, генераторах, реле, наушниках и т.д. используются электромагниты.

В электромагнитах катушка проволоки наматывается вокруг ферромагнитного сердечника. Подключение провода к источнику электричества создает сильное магнитное поле. Ферромагнитный материал еще больше усиливает его. Электромагниты могут быть очень сильными в зависимости от силы электрического тока.

Они также позволяют включать и выключать магнитное поле нажатием кнопки.

Возьмем пример магнитного крана, используемого для сбора металлолома на свалке. С помощью электромагнита мы можем поднимать металлолом, пропуская через него электрический ток. Чтобы бросить металлолом, все, что нам нужно сделать, это отключить электричество, подаваемое на магнит.

Другим интересным примером использования электромагнитов является поезд на магнитной подушке. Поезд на магнитной подушке буквально отталкивается от рельсов и левитирует. Это возможно только тогда, когда электрический ток проходит через электромагниты на корпусе поезда. Это значительно снижает сопротивление, с которым сталкивается поезд во время движения. Благодаря этому такие поезда имеют очень высокую скорость.

Какие металлы являются магнитными?

Существуют различные способы, с помощью которых металл может взаимодействовать с магнитом. Это зависит от внутренней структуры материалов. Металлы можно классифицировать как:

  • Ферромагнитные;
  • Парамагнитный;
  • Диамагнитные;

В то время как магниты сильно притягивают ферромагнитные металлы, они лишь слабо притягивают парамагнитные. Диамагнитные материалы, с другой стороны, демонстрируют слабое отталкивание, когда находятся рядом с магнитом. По-настоящему магнитными считаются только ферромагнитные металлы.

Список магнитных металлов:

Давайте рассмотрим некоторые из наиболее известных магнитных металлов. Некоторые из них магнитятся всегда. Другие, например, нержавеющая сталь, обладают магнитными свойствами только при определенном химическом составе.

Железо — чрезвычайно известный ферромагнитный металл. Фактически, это самый сильный ферромагнитный металл. Оно является составной частью земного ядра и придает магнитные свойства нашей планете. Именно поэтому Земля сама по себе действует как постоянный магнит.

Различные кристаллические структуры обуславливают различные свойства железа.

Никель — еще один популярный магнитный металл с ферромагнитными свойствами. Как и железо, его соединения присутствуют в земном ядре. Исторически никель использовался для изготовления монет.

Сегодня никель находит применение в батареях, покрытиях, кухонных инструментах, телефонах, зданиях, транспорте и ювелирных изделиях. Значительная часть никеля используется для производства ферроникеля для нержавеющей стали.

Благодаря своим магнитным свойствам никель также входит в состав магнитов AlNiCo (изготовленных из алюминия, никеля и кобальта). Эти магниты сильнее, чем магниты из редкоземельных металлов, но слабее, чем магниты на основе железа.

Кобальт — важный ферромагнитный металл. Более 100 лет превосходные магнитные свойства кобальта способствовали развитию различных областей его применения.

Кобальт можно использовать как для производства мягких, так и твердых магнитов. Мягкие магниты, в которых используется кобальт, имеют преимущества перед другими мягкими магнитами. А именно, у них высокая точка насыщения, температура Кюри в диапазоне 950. 990° Цельсия. Таким образом, их можно использовать в высокотемпературных cистемах.

Кобальт и его сплавы используются в жестких дисках, ветряных турбинах, аппаратах МРТ, двигателях, приводах и датчиках.

Сталь также обладает ферромагнитными свойствами, поскольку она происходит из железа. Большинство сталей притягиваются к магниту. При необходимости сталь можно использовать для изготовления постоянных магнитов.

Рассмотрим на примере стали EN C15D. Эта марка стали содержит от 98,81 до 99,26% железа. Таким образом, очень большой процент этой марки стали составляет железо. Следовательно, ферромагнитные свойства железа распространяются и на сталь.

Нержавеющая сталь

Некоторые виды нержавеющей стали являются магнитными, а некоторые — нет. Легированная сталь становится нержавеющей, если в ней содержится не менее 10,5% хрома. Из-за различий в химическом составе существуют различные типы нержавеющей стали.

Ферритные нержавеющие стали

Ферритные и мартенситные нержавеющие стали являются магнитными благодаря составу и молекулярной структуре. Аустенитные стали, с другой стороны, не проявляют ферромагнитных свойств из-за другой молекулярной структуры. Это делает их пригодными для использования в оборудовании МРТ.

Структурное различие обусловлено количеством никеля. Он укрепляет оксидный слой для лучшей защиты от коррозии, но при этом изменяет структуру нержавеющей стали.

Редкоземельные металлы

Наряду с вышеупомянутыми металлами, соединения некоторых редкоземельных элементов также обладают превосходными ферромагнитными свойствами. Гадолиний, самарий, неодим — все это примеры магнитных редкоземельных металлов.

Из перечисленных металлов в сочетании с железом, никелем и кобальтом можно изготовить магниты с различными свойствами. Эти магниты обладают специфическими свойствами, необходимыми для определенных применений.

Например, самарий-кобальтовые магниты используются в турбомашинах, электродвигателях высокого класса и т.д.

Какие металлы не являются магнитными?

Только несколько металлов в периодической таблице менделеева являются магнитными. Большинство других распространенных металлов являются немагнитными. Давайте рассмотрим некоторые из них.

Список немагнитных металлов:

Кристаллическая структура алюминия, как и лития и магния, делает его немагнитным. Все три материала являются популярными примерами парамагнитных металлов.

Хотя алюминий может подвергаться нескольким видам коррозии, он известен своей устойчивостью к агрессивным средам. Это, наряду с его легким весом, делает его полезным металлом во многих отраслях промышленности.

Золото — это диамагнитный металл, как и большинство других металлов. В чистом виде золото немагнитно и проявляет лишь слабое отталкивание по отношению к магнитам, как и все диамагнитные металлы.

Серебро — еще один немагнитный металл. Это свойство делает возможным выявление поддельного серебра. Если «серебряные» монеты или украшения притягиваются к магнитам, это что-то другое.

Медь сама по себе не магнитна, но в некоторой степени взаимодействует с магнитами. Это свойство помогает вырабатывать электричество на электростанциях.

Заключение:

При достаточно большом магнитном поле все виды металлов будут взаимодействовать с магнитом. Это происходит потому, что в металлах возникают вихревые токи, когда они подвергаются воздействию движущегося магнитного поля.

Используя этот принцип, металлоискатели способны обнаруживать немагнитные металлы, такие как золото, серебро. Но для большинства практических целей этого взаимодействия недостаточно, что ограничивает возможные варианты использования.

Если вам понравилась статья, то ставьте лайк, делитесь ею со своими друзьями и оставляйте комментарии!

Какие металлы, кроме железа, притягиваются магнитом?

Какие металлы, кроме железа, притягиваются магнитом?

Интересно

Возможность магнита притягивать к себе различные металлические предметы наверняка хорошо знакома каждому. Присутствие их в повседневной жизни остается практически незамеченным, например, в виде различных изображений на дверцах холодильника. Не говоря уже о применении магнитов в медицине и других отраслях. Как устроен магнит и какие вещества он притягивает, помимо железа?

Что такое магнит и как он устроен?

Магнит – это тело, которое обладает собственным магнитным полем. Магниты бывают нескольких видов:

  1. Постоянные – изделия, которые после однократного намагничивания сохраняют данное свойство. Магниты разделяются на несколько подвидов в зависимости от силы и других параметров.
  2. Временные – функционируют по принципу постоянных, но лишь тогда, когда располагаются в сильном магнитном поле. Например, изделия из так называемого мягкого железа (гвозди, скрепки и т.п.).
  3. Электромагниты представляют собой провода, плотно намотанные на каркас. Как правило, такое устройство оснащено железным сердечником. Работает оно лишь при условии прохождения по проводу электрического тока.

Постоянный магнит – наиболее привычный и распространенный. Для его изготовления чаще всего используют следующие сочетания материалов:

  • неодим-железо-бор;
  • альнико или сплав ЮНДК (железо, алюминий, никель, кобальт);
  • самарий-кобальт;
  • ферриты (соединения оксидов железа и других металлов-ферримагнетиков).

Любой магнит имеет южный и северный полюс. Одинаковые полюса отталкиваются, а противоположные – притягиваются.

Почему магнит притягивает лишь определенные вещества?

Принцип его работы построен на создании магнитного поля при помощи движущихся электронов. В целом электрон является простейшим магнитом. А любая заряженная частица, находящаяся в движении, образует магнитное поле. Если движущихся частиц много, а их перемещение происходит вокруг одной оси, получается тело с магнитными свойствами.

Почему в таком случае магнит не притягивает все вещества подряд? В состав атома входит ядро, а также электроны, вращающиеся вокруг него. У электронов есть специальные уровни, по которым они вращаются, или орбиты. На каждом таком уровне расположено по 2 электрона. Причем вращаются они в разных направлениях.

Однако есть вещества под названием ферромагнетики. Некоторые электроны у них непарные. Соответственно, определенное их количество может вращаться в одном и том же направлении. Так создается магнитное поле вокруг каждого атома вещества.

Обычно атомы находятся в произвольном порядке. В таком случае поля уравновешивают друг друга. Но если же направить магнитные поля всех атомов в одном направлении, получается магнит. Примечательно, что притягиваться могут разные металлы и другие вещества, но намного слабее по сравнению с ферромагнетиками. Чтобы ощутить притяжение, необходимо задействовать очень сильный магнит.

Направление магнитного поля

Направление магнитного поля

К ферромагнетикам относятся такие металлы, как железо, кобальт, никель, гадолиний, тербий, диспрозий, гольмий, эрбий. Также аналогичными свойствами характеризуются некоторые металлические сплавы и соединения. Количество ферромагнетиков неметаллического происхождения не так велико или пока мало изучено. К ним относится, например, оксид хрома.

Магнитной восприимчивостью характеризуются вещества (преимущественно металлы), которые обладают определенной структурой. Их называют ферромагнетиками – это вещества, у которых магнитные поля атомов складываются в одном направлении. Помимо железа, к ферромагнетикам относятся кобальт, никель, тербий, гадолиний, диспрозий, гольмий, эрбий. Также магнит притягивает некоторые сплавы и даже неметаллические вещества – например, оксид хрома.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

. Магнитное поле и металлы ▶▶ Однородное магнитное поле тока ▶▶ Сила индукция магнитного поля.

А в последнее время, благодаря сильному повышению свойств этих материалов для постоянных магнитов, то есть повышению их сопротивления внешнему размагничивающему полю, удалось создать совершенно новые устройства. Самый яркий пример — это железная дорога на магнитной подвеске. Она стала возможна (хотя и довольно дорого стоит до сих пор), потому что эти вещества, которые обнаружили в 80-е годы XX века, сопротивляются внешнему магнитному полю.

Важнейшие магнитные материалы — это то, чем я занимался первую треть своей профессиональной деятельности, — это материалы для постоянных магнитов. Они известны очень давно, начиная с Древнего Китая. Обращаю ваше внимание, что обычно магниты по традиции рисуют в виде изогнутой подковы. Почему это так? Потому что у магнитной стрелки есть север и юг, силовые линии магнитного поля выходят из северного полюса, заходят в южный, и любой магнит находится под действием собственного размагничивающего поля.

Металлы с выраженными магнитными свойствами

Эти металлы имеют температуру плавления около 1500°С, могут притягиваться магнитом и намагничиваться, поэтому из них изготовляют постоянные магниты, сердечники трансформаторов, детали телефонных и телеграфных аппаратов и т. п.

Основным таким материалом в электротехнике являетсяжелезо

‒ элемент восьмой группы четвёртого периода периодической системы химических элементов Д.И. Менделеева (приложение 1) с атомным номером 26. Атом железа может потерять 2 электрона и превратиться в ион Fe2+. Возможна потеря атомом еще и третьего электрона. В этом случае образуется ион Fe3+.

Чистое железо ‒ серебристо-белый металл, быстро тускнеющий (ржавеющий) на влажном воздухе или в воде, содержащей кислород. Железо пластично, легко подвергается ковке и прокатке, температура плавления 1539°С (таблица 4). Обладает сильными магнитными свойствами (ферромагнетик), хорошей тепло- и электропроводностью. Образует много сплавов с различными металлами.

Физические свойства железа

Свойство Численное значение Единица измерения
Относительная атомная масса 55,84
Атомный радиус 0,13 нм
Плотность Кг/м3
Температура плавления °С
Температура кипения °С

Химические свойства железа

Железо ‒ активный металл.

На воздухе образуется защитная оксидная пленка, препятствующая коррозии металла. При сильном нагревании на воздухе железо раскаляется и медленно окисляется, а в чистом кислороде горит. Очень эффектным является опыт по сжиганию стальной пружинки. На пружинке закрепляют спичку (напротив ее головки) и зажимают ее в лабораторных щипцах. Спичку, опущенную головкой вниз, поджигают. Когда пламя достигнет пружинки, ее сразу переносят в стакан с кислородом. Дно сосуда заранее засыпают слоем песка, чтобы на стекло не попали капли расплавленного металла.Пружинка сгорает в кислороде, разбрасывая искры во все стороны (это напоминает сварку металла). Железо вытесняет из растворов солей металлы, находящиеся в электрохимическом ряду напряжений правее железа. Железный гвоздь, погруженный в голубоватый раствор медного купороса, постепенно покрывается налетом красной металлической меди:

Fe + CuSO4 = FeSO4 + Cu.

Железо взаимодействует с хлором, углеродом и другими неметаллами при нагревании:

2Fe + 3Cl2 = 2FeCl3.

Во влажном воздухе железо окисляется и покрывается ржавчиной, которая частично состоит из гидратированного оксида железа (III):

4Fe + 3О2+ 6Н2О = 4Fe(ОН)3.

Железо растворяется в разбавленных серной и соляной кислотах c выделением водорода:

Fe + 2HCl = FeCl2 + H2.

С водой железо реагирует и в обычных условиях, но очень медленно и с участием кислорода. В результате на поверхности металла образуется коричневый или желто-бурый налет ‒ ржавчина. Разрушение железа под действием воды и кислорода называют коррозией. Ежегодно из-за коррозии теряется примерно 1/5 всего произведенного металла. Для предотвращения разрушения железа его смазывают специальными смазочными маслами, покрывают красками, лаками, керамическими эмалями, слоем другого металла, устойчивого к коррозии, ‒ никеля, хрома, цинка.

Железо в природе

Железо — один из самых распространённых в земной коре металлов (таблица 5). Он занимает второе место после алюминия. В чистом виде железо в природе не встречается.

Основные данные по железным рудам

Название минерала Химическая формула Содержание железа, % Месторождение
Магнетит Fe3O4 Урал
Гематит Fe2O3 Криворожское
Лимонит Fe2O3∙nH2O Крым, Урал
Пирит FeS2 Урал
Сидерит FeСO3 Урал

Получение железа

В лаборатории

Чистое железо получают электролитическим разложением солей железа:

FeCl2 = Fe2+ + 2Cl-.

Получение железа из оксида с помощью алюминия называется алюмотермией:

8Al + 3Fe3O4 = 9Fe + 4Al2O3.

В промышленности

На долю железа приходится около 95% металлургического производства в мире. Это один из наиболее востребованных и используемых металлов. Основная масса железа используется не в чистом виде, а виде чугуна

и
стали
— сплавов с углеродом и другими элементами. Основная масса железа вырабатывается в доменных печах (рис. 4). Процесс, протекающий в доменной печи при получении сплавов железа, основан на восстановлении оксидов железа при нагревании.

Рис. 4. Получение стали в доменной печи

– сложнейшее инженерное сооружение высотой более 60 м и диаметром 10 м, снабженное системой контроля и управления, предназначенное для выплавки чугуна – продукта химико-восстановительных процессов.

Снизу через фурму (устройство для подвода дутья) поступают горячий воздух, кислород, метан, а навстречу движется шихта – смесь, состоящая из кокса (источник энергии и восстановитель), подготовленного рудного концентрата и флюса (последний для связывания пустой породы в шлаки). Домну через колошник (верхняя часть шахтных доменных плавильных печей) покидает доменный газ, содержащий до 30% СО.

Основными химическими реакциями доменного процесса являются:

— горение кокса в зоне над горном (нижняя часть домны, где происходит горение топлива). Шлак выполняет также функцию защиты чугуна от окисления;

— восстановление примесных элементов;

— насыщение железа углеродом;

Какие металлы имеют магнитные свойства

Магниты – это материалы, которые создают магнитные поля, которые привлекают определенные металлы. У каждого магнита есть северный и южный полюс. Обратные полюса привлекают, в то время как полюса отталкиваются.

В то время как большинство магнитов изготовлены из металлов и металлических сплавов, ученые разработали способы создания магнитов из композиционных материалов, таких как магнитные полимеры.

Что создает магнетизм?

Магнетизм в металлах создается неравномерным распределением электронов в атомах некоторых металлических элементов.

Неравномерное вращение и движение, вызванные этим неравномерным распределением электронов, сдвигают заряд внутри атома назад и вперед, создавая магнитные диполи.

Когда магнитные диполи выравниваются, они создают магнитный домен, локализованную магнитную область с северным и южным полюсами.

В немагнитных материалах магнитные домены сталкиваются в разных направлениях, отменяя друг друга. В то время как в намагниченных материалах большинство этих доменов выровнены, указывая в том же направлении, что создает магнитное поле. Чем больше областей, которые выравнивают друг друга, тем сильнее магнитная сила.

Типы магнитов:

  • Постоянные магниты (также известные как жесткие магниты) – это те, которые постоянно производят магнитное поле. Это магнитное поле вызвано ферромагнетизмом и является самой сильной формой магнетизма.
  • Временные магниты (также известные как мягкие магниты) являются магнитными только при наличии магнитного поля.
  • Электромагниты требуют, чтобы электрический ток проходил через их провода катушки, чтобы создать магнитное поле.

Развитие магнитов:

Греческие, индийские и китайские писатели задокументировали базовые знания о магнетизме более 2000 лет назад. Большая часть этого понимания была основана на наблюдении за влиянием магния (естественного магнитного минерала железа) на железо.

Ранние исследования магнетизма были проведены еще в XVI веке, однако развитие современных высокопрочных магнитов происходило не раньше 20-го века.

До 1940 года постоянные магниты использовались только в базовых приложениях, таких как компасы и электрические генераторы, называемые магнитосами. Разработка магнитов из алюминия и никеля-кобальта (Alnico) позволила постоянным магнитам заменить электромагниты в двигателях, генераторах и громкоговорителях.

Создание магнитов самария-кобальта (SmCo) в 1970-х годах создало магниты с вдвое большей магнитной плотностью энергии, чем любой ранее доступный магнит. Меньше более мощные магниты способствовали развитию многих известных нам электронных устройств.

К началу 1980-х годов дальнейшие исследования магнитных свойств редкоземельных элементов привели к открытию магнитов неодима и железа-бора (NdFeB).Магниты NdFeB снова привели к удвоению магнитной энергии над магнитами SmCo.

Магниты из редкой земли теперь используются во всем: от наручных часов и iPad до гибридных двигателей автомобилей и ветрогенераторов.

Магнетизм и температура:

Металлы и другие материалы имеют разные магнитные фазы, в зависимости от температуры окружающей среды, в которой они расположены. В результате металл может проявлять более одной формы магнетизма.

Железо, например, теряет свой магнетизм, становясь парамагнитным при нагревании выше 1418 ° F (770 ° C).

Температура, при которой металл теряет магнитную силу, называется ее температурой Кюри.

Железо, кобальт и никель – единственные элементы, которые в металлической форме имеют температуры Кюри выше комнатной температуры. Таким образом, все магнитные материалы должны содержать один из этих элементов.

Общие ферромагнитные металлы и их температуры кюри:

Вещество Температура Кюри
Железо (Fe) 1418 ° F (770 ° C)
Кобальт (Со) 2066 ° F (1130 ° C)
Никель (Ni) 676. 4 ° F (358 ° C)
Гадолиний 66 ° F (19 ° C)
Диспрозий -301. 27 ° F (-185. 15 ° C)

Источники: How Stuff Works, Inc. Как работают магниты. // science. Как это работает. ком / magnet1. HTM Wikipedia. Температура Кюри. // ru. википедия. орг / вики / Curie_temperature

Намагничивание металлов

Железоуглеродистые сплавы широко применяются как магнито-мягкие материалы в качестве магнитопроводов электрических машин, трансформаторов, сердечников магнитных усилителей и т. д.

Способность железа притягиваться магнитом и быть самому магнитом была известна очень давно. Очевидно, человек познакомился с этим удивительным свойством, встретив куски магнитного железняка. Впервые магнетизм получил практическое применение в Древнем Египте и Индии — в медицине, в Китае — изобретение компаса (около 3000 лет назад).

Металлов, способных намагничиваться (их назвали ферромагнетиками), всего девять. Более 95 % магнитов, существующих в мире, представляют собой сплавы на основе железа, никеля и кобальта. Остальные шесть металлов — гадолиний, тербий, диспрозий, гольмий, эрбий, тулий — представители редкоземельных металлов — пока не нашли широкого практического применения, но предвидится их исключительная перспектива.

Еще в школе нам показывали опыт с намагничиванием железа. Кажется, получить постоянный магнит — простейшая задача. Да, не очень сложная. А как увеличить магнитную энергию? Ученые и инженеры, постоянно совершенствуя свойства магнитов, сделали очень много. Так, 60 лет назад металл считался хорошо намагниченным, если он удерживал груз, равный себе по массе. А современные постоянные магниты имеют способность притягивать и поднимать груз, который в 500 раз превышает массу самого магнита. Достигается это термообработкой, легированием и некоторыми другими методами. Основными сплавами для постоянных магнитов на основе железа являются сплавы железо — кобальт — молибден, железо — никель — медь — кобальт и др.

Однако технике необходимы не только постоянные магниты. Необходимы материалы, которые могли бы применяться для усиления и концентрации магнитного потока в качестве магнитопроводов электрических машин, трансформаторов, электромагнитных сердечников. Данная группа сплавов должна обладать малой потерей энергии при перемагничивании. В этом случае на помощь приходит легирование. Железо, содержащее до 5 % кремния, удовлетворяет подобным требованиям.

Следует отметить, что кремний, как и всякая другая примесь, оказывает вредное влияние на магнитные свойства стали, однако он имеет способность вытеснять при плавке углерод, кислород и серу — более вредные примеси. В шлак уходят, например, кислород в виде окиси кремния и углерод в виде графита (кремний способствует графити-зации углерода). Тем самым кремний улучшает магнитные свойства.

В заводской практике стали, содержащие до 2 % кремния, идут на штамповку якорных и статорных наборов со сложной конфигурацией. А стали с высоким содержанием кремния (2—5 %), что сильно ухудшает штампуемость, используют только для получения сердечников трансформаторов, имеющих более простую конфигурацию.

Можно ли получить железо немагнитное? Оказывается, есть такая возможность. Например, сплав железа с никелем (25%), хромом (3 %) и углеродом (0,25 %). Такая сталь применяется для изготовления болтов, стягивающих сердечники трансформаторов, кожухи обмоток.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *