Dd1 на схеме что это
Перейти к содержимому

Dd1 на схеме что это

Генераторы и формирователи импульсов

На базе логических элементов цифровых устройств могут быть сконструированы разнообразные генераторы импульсов. Вот несколько конкретных примеров.

Генератор по схеме на рисунке 1 (используются элементы 2И-НЕ с открытым коллектором) вырабатывает импульсы в широком диапазоне частот — от единиц герц до нескольких килогерц. Зависимость частоты f (кГц) от емкости конденсатора С1 (пФ) выражается приближенной формулой f»3*105/C1. Скважность импульсного напряжения практически равна 2. При снижении напряжения источника питания на 0,5 В частота генерируемых импульсов уменьшается на 20%.

В генераторе по схеме на рисунке 2 длительность импульсов можно регулировать переменным резистором R2 (скважность изменяется от 1,5 до 3), а частоту — резистором R1. Например, в генераторе с С1==0,1 мкф при исключении резистора R2 только резистором R1 частоту генерируемых импульсов можно изменять от 8 до 125 кГц. Для получения другого диапазона частот необходимо изменить емкость конденсатора С1.

Широкое изменение частоты генерируемых импульсов (около 50 тысяч раз) обеспечивает устройство, собранное по схеме на рисунке 3. Минимальная частота импульсов здесь около 25 Гц. Длительность импульсов регулируют резистором R1. Частоту следования можно определить по формуле:
f=1/(2R1C1)
f — частота Гц, R1 — сопротивление Ом, С1 — ёмкость фарад.

При реализации цифровых устройств различного назначения часто необходимо сформировать короткие импульсы по фронтам входного сигнала. В частности, такие импульсы используют для сброса счетчиков в качестве импульсов синхронизации при записи информации в регистры и т. д. На рисунке 4 изображены схема и временные диаграммы формирователя коротких отрицательных импульсов по положительному перепаду напряжения на его входе. При изменении напряжения Uвх от низкого уровня до высокого этот перепад без задержки поступает на вход 13 элемента DD1.4. В то же время на входе 12 элемента DD1.4 напряжение высокого уровня сохраняется, в течение времени распространения сигнала через элементы DD1.1-DD1.3 (около 75 нc). В результате в течение этого времени на выходе устройства сохраняется напряжение низкого уровня. Затем на входе 12 устанавливается напряжение низкого уровня, а на выходе устройства — высокого. Таким образом, формируется короткий отрицательный импульс, фронт которого совпадает с фронтом входного напряжения. Чтобы такое устройство использовать для формирования отрицательного импульса по срезу входного сигнала, его надо дополнить еще одним инвертором рисунок 4.

На рисунке 5 изображены схема и временная диаграмма работы формирователя импульсов по фронту и срезу входного сигнала. Длительность каждого сформированного импульса равна
tи1=tи2=nt1,0зд.р.+(n+1)t0,1зд.р.
Здесь n — четное число элементов, участвующих в задержке сигналов. Принцип работы этого формирователя аналогичен принципу работы описанных ранее формирователей коротких импульсов.

Широкое распространение получил формирователь коротких импульсов, схема и временная диаграмма работы которого изображены на рисунке 6. При напряжении низкого уровня на входе устройства конденсатор С1 заряжается через резисторы R1 и R2. При этом напряжение на выходе устройства имеет низкий уровень. При появлении на входе формирователя напряжения высокого уровня конденсатор С1 начинает разряжаться через резистор R2. До тех пор, пока напряжение на конденсаторе не уменьшится до низкого уровня, на обоих входах элемента DD1.2, а следовательно, и на выходе формирователя присутствуют напряжения высоких уровней. Как только напряжение на конденсоре станет меньше 0,4 В, уровень на выходе формирователя изменяется рисунок 6,б. Длительность импульса пропорциональна постоянной времени разрядки конденсатора и равна tи=3R2*С1.

Формирователи импульсов имеются и в составе микросхем серии К155. Так, микросхема К155АГ1 представляет собой одновибратор с тремя входами, прямым и инверсным, выходами и выводами для подключения внешних времязадающих цепей рисунок 7. Одновибратор может запускаться как положительным, так и отрицательным перепадами входных сигналов при определенном напряжении, не зависящем от длительности входных импульсов. Переключается одновибратор отрицательным перепадом входного сигнала, поданного на один из входов А, в то время как на вход В подано напряжение высокого уровня, или положительным перепадом, поданным, на вход В, если на одном из входов А или А1 присутствует напряжение низкого уровня.

При максимальном сопротивлении резистора Rвн=40 кОм длительность выходного импульса не должна превышать 0,9Т, где Т — период следования входных импульсов. Длительность выходного импульса зависит от сопротивления Rвн=(0-40) кОм и С=(0-1000) мкф и определяется формулой:
tи=RС1n2. Здесь R=2к+Rвн, 2к — сопротивление внутреннего резистора.

В состав серии К155 входит также микросхема К155АГЗ. В одном корпусе в ней содержатся два одновибратора. Варианты подключения внешних времязадающих элементов и временная диаграмма работы одновибратора изображены на рисунке 8. Одновибратор также запускается либо отрицательным (перепадом входного сигнала на входе А при высоком уровне на входах B и R, либо положительны перепадом положительным перепадом напряжения на входе В при низком уровне на входе А и высоком уровне на входе R. Длительность импульса tи1 определяется постоянной времени времязадающей цепи, но может быть уменьшена за счёт подачи на вход R напряжения низкого уровня при tи2

Микросхемы и их функционирование

Для обозначения полярности сигнала на схемах используется простое правило: если сигнал отрицательный, то перед его названием ставится знак минус, например, -WR или -OE, или же над названием сигнала ставится черта. Если таких знаков нет, то сигнал считается положительным. Для названий сигналов обычно используются латинские буквы, представляющие собой сокращения английских слов, например, WR — сигнал записи (от » write » — «писать»).

Инверсия сигнала обозначается кружочком на месте входа или выхода. Существуют инверсные входы и инверсные выходы (рис. 2.2).

Если какая-то микросхема выполняет функцию по фронту входного сигнала, то на месте входа ставится косая черта (под углом 45°), причем наклон вправо или влево определяется тем, положительный или отрицательный фронт используется в данном случае (рис. 2.2).

Тип выхода микросхемы помечается специальным значком: выход 3С — перечеркнутым ромбом, а выход ОК — подчеркнутым ромбом (рис. 2.2). Стандартный выход (2С) никак не помечается.

Наконец, если у микросхемы необходимо показать неинформационные выводы, то есть выводы, не являющиеся ни логическими входами, ни логическими выходами, то такой вывод помечается косым крестом (две перпендикулярные линии под углом 45°). Это могут быть, например, выводы для подключения внешних элементов ( резисторов , конденсаторов) или выводы питания (рис. 2.3).

В схемах также предусматриваются специальные обозначения для шин (рис. 2.4). На структурных и функциональных схемах шины обозначаются толстыми линиями или двойными стрелками, причем количество сигналов, входящих в шину, указывается рядом с косой чертой, пересекающей шину. На принципиальных схемах шина тоже обозначается толстой линией, а входящие в шину и выходящие из шины сигналы изображаются в виде перпендикулярных к шине тонких линий с указанием их номера или названия (рис. 2.4). При передаче по шине двоичного кода нумерация начинается с младшего разряда кода.

При изображении микросхем используются сокращенные названия входных и выходных сигналов, отражающие их функцию. Эти названия располагаются на рисунке рядом с соответствующим выводом. Также на изображении микросхем указывается выполняемая ими функция (обычно в центре вверху). Изображение микросхемы иногда делят на три вертикальные поля . Левое поле относится к входным сигналам, правое — к выходным сигналам. В центральном поле помещается название микросхемы и символы ее особенностей. Неинформационные выводы могут указываться как на левом, так и на правом поле ; иногда их показывают на верхней или нижней стороне прямоугольника, изображающего микросхему.

В табл. 2.1 приведены некоторые наиболее часто встречающиеся обозначения сигналов и функций микросхем. Микросхема в целом обозначается на схемах буквами DD (от английского » digital » — «цифровой») с соответствующим номером, например, DD1, DD20.1, DD38.2 (после точки указывается номер элемента или узла внутри микросхемы).

Таблица 2.1. Некоторые обозначения сигналов и микросхем

Обозначение Название Назначение
& And Элемент И
=1 Exclusive Or Элемент Исключающее ИЛИ
1 Or Элемент ИЛИ
А Address Адресные разряды
BF Buffer Буфер
C Clock Тактовый сигнал (строб)
CE Clock Enable Разрешение тактового сигнала
CT Counter Счетчик
CS Chip Select Выбор микросхемы
D Data Разряды данных, данные
DC Decoder Дешифратор
EZ Enable Z-state Разрешение третьего состояния
G Generator Генератор
I Input Вход
I/O Input/Output Вход/Выход
OE Output Enable Разрешение выхода
MS Multiplexer Мультиплексор
Q Quit Выход
R Reset Сброс (установка в нуль)
RG Register Регистр
S Set Установка в единицу
SUM Summator Сумматор
T Trigger Тригер
TC Terminal Count Окончание счета
Z Z-state Третье состояние выхода

Более полная таблица обозначений сигналов и микросхем, используемых в принципиальных схемах , приведена в приложении.

Применяем D-триггер в электронных приборах

Триггеры различных видов зачастую входят в состав различной простой схемотехники, где не требуется применение микроконтроллеров. Они могут сохранять ранее установленные значения, изменять их, производить запись логического нуля или единицы. D-триггер является одним из наиболее распространённых видов таких устройств. Он позволяет осуществлять задержку сигналов, а также хранить информацию на протяжении нужного времени.

Триггеры используются в схемах самых разных устройств

Какие бывают триггеры

Действие триггеров основывается на определенных принципах, зависящих от их типа. Эти логические устройства принимают входные сигналы, которые ими и управляют. Выходная информация зависит от сигнала, поступившего на вход и от полученного на предыдущем этапе. Следовательно, D-триггер реагирует и на существующие в данный момент значения, и на поступившие ранее.

Условное обозначение D-триггера

Условно-графическое обозначение (УГО) Д-триггера демонстрирует, что у него вход D является информационным, а второй, обозначенный буквой С, используется для синхронизации записи и позволяет сохранить на выходе состояние, которое было на входе в момент его изменения в 1 (что называется режим «прозрачности»).

Триггер может быть синхронный (тактируемый) и асинхронный (нетактируемый). В первом случае устройство учитывает тактовые сигналы. В любой вычислительной системе все действия выполняются с привязкой к сигналам такого типа с целью обеспечения согласованной работы.

Использование тактовых сигналов в синхронных триггерах означает, что срабатывание по заложенному принципу происходит не в любой момент времени, а лишь тогда, когда на управляющем входе наблюдается определенное событие. Например, если осуществляется переход тактового импульса от максимального значения до нулевого или наоборот. У асинхронных устройств такой привязки нет. В них переход из одного режима в другой выполняется перепадом напряжения.

Триггеры представляют собой достаточно сложные электронные схемы, но они обеспечивают выполнение простого и понятного принципа преобразования входных сигналов в выходные. D-триггеры называют еще «защелками», что наглядно поясняет их принцип работы.

Схема классического D-триггера

Как работает D-триггер

Входы D-триггера разделяются на информационные (управляющие) и вспомогательные. Последние предназначены синхронизировать работу устройства. Первые устанавливают на входе определённую комбинацию двоичных чисел, которая будет учитываться при формировании выходного сигнала. Управляет логикой работы тактовый сигнал. Именно он определяет момент срабатывания триггера, а от его характеристик зависит состояние выходного сигнала.

D-триггер называют еще триггером задержки, поскольку он способен задерживать входной информационный сигнал на один такт. Время задержки определяется частотой импульсов синхронизации. Если информационный сигнал изменится, то выходной повторит его изменение, но лишь после того как тактовый сигнал примет значение, равное единице. Пока его значение будет оставаться нулевым, сигнал на выходе меняться не будет.

Работа любого D-триггера отражается в таблице истинности. Как видим, таблица истинности статического D-триггера достаточно простая. Она показывает, что нулевое значение управляющего сигнала обеспечивает хранение предыдущего значения сигнала на выходе на протяжении любого нужного периода времени. На практике речь идёт о том времени, когда к устройству подключено электропитание.

Таблица истинности

В представленной таблице истинности приведена информация о срабатывании D-триггера при значении C = 1. На практике применяется ещё один вариант, когда срабатывание происходит по переднему фронту импульса. То есть, выходное значение становится равным входному в тот момент, когда значение управляющего импульса меняется с нуля на 1. Логический элемент, в котором используется управление по уровню напряжения, называется статический D-триггер, а по фронту — динамический.

Когда применяется управление по фронту, срабатывание происходит при изменении управляющего значения. Может применяться два варианта — по переднему фронту или по заднему. При использовании первого варианта значение меняется с 0 на 1, второго — с 1 на 0.

Помимо таблицы, для описания работы логических элементов используются еще временные диаграммы.

Временная диаграмма при управлении по переднему фронту

Усложнённый вариант триггера

Иногда используется усложнённый вариант, когда добавляется ещё один вход. Обычно его обозначают буквой R. Если на него подается сигнал с нулевым значением, он не оказывает никакого влияния на работу элемента. В том случае, когда на вход R поступает сигнал с единичным значением, происходит сброс Q в 0. Этого же можно добиться на классическом D-триггере, если использовать C = 0 и D = 0.

Триггер с использованием входа R

Схемы реализации D-триггера

Существуют разные варианты построения данного логического элемента. Ниже представлена схема одноступенчатого D-триггера с применением элементов И-НЕ. Входы у него прямые статические. Элементы, обозначенные DD1.1 и DD1.2, задействованы в схеме управления, а на остальных построен асинхронный RS-триггер.

Структурная схема

Роль каждого элемента будет проще понять, изучив принцип работы Д-триггера. Из схемы видно, если C = 0, то логическая операция И создаст нулевое значение независимо от вторых входных значений на DD1.1 и DD1.2. Операция отрицания сформирует единицу на выходе обоих этих элементов.

На входе третьего элемента будет два значения: единица и отрицание Q. Операция И на выходе сформирует отрицание Q. Отрицание приведёт к тому, что на выходе будет значение Q, совпадающее с тем, которое здесь было раньше.

На четвертый элемент поступят единица и Q. Результатом применения И будет Q. После применения отрицания на выходе этого элемента будет отрицание Q. Следовательно, и в этом случае значение не изменится.

Теперь нужно рассмотреть ситуацию, когда на управляющем входе единичное значение. Если D = 0, то после применения И будет получен ноль, а в результате отрицания выходным значением DD.1 станет единица, которая будет передана на вход DD1.2.

В DD1.2 на входе имеется две единицы, значит операция И сформирует 1, а отрицание даст 0. Следовательно, на DD1.4 на выходе будет единица, что соответствует нулевому значению Q. По такому же принципу рассчитываются остальные варианты.

Схему D-триггера можно получить из синхронного RS-триггера за счет введения дополнительного элемента И-НЕ1, соединяющего оба инверсных входа в один информационный. Это позволяет исключить состояние неопределенности для S и R.

D-триггер, построенный на базе RS-триггера

Существуют еще комбинированные D-триггеры. Они имеют входы S и R, предназначенные для асинхронной установки логического 0 и 1. С помощью этих входов устройству можно придать первоначальное определенное состояние.

Комбинированный D-триггер

На схеме видно, что из 6 элементов И-НЕ построен D-триггер, его принцип работы следующий: при наличии 1 на входе R и нуля на C, D, S будут оставаться закрытыми элементы с первого по пятый. Шестой элемент при этом будет открытым, то есть, Q = 1, а /Q = 0. Первый элемент откроется, если с входа S будет снят нулевой сигнал. Состояние остальных элементов не изменится.

Когда на вход С поступит единичный сигнал, на всех входах третьего элемента появится такой же сигнал, в результате чего он откроется. Шестой элемент при этом закроется и /Q = 1. Затем на входы пятого элемента также поступят единичные сигналы, и он примет открытое состояние, а Q = 0. В результате после переключения триггера на выходе Q появится сигнал идентичный тому сигналу, который был на входе D до переключения, то есть, Qn+1 = Dn = 0. Если же с входа С снимается единичный сигнал, состояние триггера не меняется.

Достаточно просто схема D-триггера реализовывается на КМОП микросхемах. В подобных устройствах функции логических элементов И выполняют обычные транзисторные ключи.

Схема D-триггера на транзисторах

После поступления синхросигнала высокого уровня на вход С транзистор №1 открывается, обеспечивая поступление сигнала с D на Q. При этом задействуется первый инвертор. В данной ситуации второй транзистор остается закрытым. Он отключает инвертор, построенный на транзисторах VT1 и VT3. Включается этот инвертор после поступления низкого потенциала на вход С.

D-триггеры входят в состав многих микросхем. Например, в микросхеме ТМ2 содержится два таких элемента, ТМ5, ТМ7, ТМ8 — четыре, ТМ9 — шесть.

Функциональные схемы микросхем с D-триггером

Применение D-триггеров

Способность сохранять информацию позволяет применять D-триггеры для реализации устройств памяти. Эти работающие элементы способны сохранять нужный режим на выходе до тех пор, пока не будет подан управляющий сигнал для изменения. Триггер даёт возможность, как вносить двоичную информацию, так и хранить и считывать её.

Понимая, что такое Д-триггер, его можно применить для создания регистра-защёлки. Эти устройства важны в определённых ситуациях. Иногда сигнал длится на протяжении очень небольшого промежутка времени и микросхема может не успеть среагировать на него. В подобных случаях выгодно использовать ещё одну микросхему, на которой сохранятся необходимые значения на протяжении времени, достаточного для выполнения нужных действий.

Схема регистра

Одно из основных назначений D-триггера — использование в счетном режиме. Чтобы заставить его работать в качестве счетчика импульсов, достаточно на вход D подать сигнал с его собственного инверторного выхода. В таком режиме по приходу каждого импульса на вход С триггер будет менять свое состояние на противоположное, как показано на временной диаграмме.

Делитель частоты — устройство, способное изменять частоту выходного сигнала относительно входного значения. Используя каскадное соединение нескольких элементов, можно построить делители частоты, обладающие различными коэффициентами деления. Два D-триггера, соединенных последовательно, обеспечивают получение выходного сигнала, частота которого в четыре раза меньше по сравнению с той, что была на входе. Три последовательно соединенных элемента будут делить ее на восемь, а четыре — на шестнадцать.

Схема делителя

При создании цифровых схем, действие которых синхронизируется единым тактовым генератором, очень часть бывает необходимо добиться синхронизации действующей схемы и внешнего входного сигнала. То есть, асинхронный сигнал должен преобразоваться в синхронный для всей системы, в которую он поступает. Эту задачу можно решить путем установки D-триггера.

Триггер способен выполнять логическую функцию и при этом поддерживать обратную связь. Именно поэтому его используют при создании многих устройств, предназначенных для запоминания, хранения, передачи и преобразования информации. Найти эти элементы можно в самых разных приборах, включая и устройства цифровой микроэлектроники.

Основы цифровой схемотехники #1 ⁠ ⁠

Для изображения электронных устройстви их узлов применяют три основных типа схем:

принципиальную, структурную, функциональную. В чем разница?

Принципиальная схема самая точная. Ее целью является возможность полного повторения устройства. Именно поэтому здесь наиболее полно указываются все используемые элементы, связи, входы и выходы микросхем и т.д. Обозначения в такой схеме жестко стандартизированны (привет ГОСТ 2.702-2011, все желающие могут самостоятельно ознакомиться)

Структурная схема самая простая. Позволяет выделить наиболее главные блоки системы и основные связи между ними. Применяется для общего представления, что вообще происходит. Часть обозначений стандартна, часть может быть произвольной.

Функциональная схема — нечто среднее между принципиальной и структурной. Фактически, часть наиболее простых блоков указывается, как в структурном виде, остальное- как на принципиальной схеме. По функциональной схеме вы сможете понять всю логику работы устройства (ага, прям всю и сразу) , но без доработки повторить его не получится.

Теперь пару слов про самые-самые нужные обозначения. Все узлы, блоки, части, элементы, микросхемы обозначают прямоугольниками. Все связи, по которым передаются сигналы, обозначают линиями. Все входы микросхем обычно рисуют слева прямоугольника, а выходы- справа. Но это не точно правило иногда нарушают для простоты и удобства рисунка.

Далее, введем еще несколько базовых понятий.

Положительный сигнал— сигнал, положительный уровень которого- логическая единица. Еще раз для самых тупеньких маленьких: есть сигнал-1, нет сигнала-0.

Понятие отрицательного сигнала попробуйте осмыслить сами 🙂

Основы цифровой схемотехники #1 Схемотехника, Электроника, Логика, Микросхема, Длиннопост

Активный уровень — уровень сигнала, при котором выполняется некое действие. При пассивном уровне сигнал не выполняет никакой функции.

Инвертирование — изменение уровня сигнала на противоположный.

Инверсный выход — выход, выдающий инверсный по сравнению с входным сигнал.

Прямой выход выдает сигнал такой же полярности, что и у входного.

Положительный фронт-переход сигнала из 0 в 1, отрицательный фронт -наоборот.

Передний фронт — переход из пассивного уровня в активный, задний фронт — наоборот.

Тактовый сигнал определяет своим приходом момент выполнения узлом его функции (помните, как мамка начинала ругаться, и вы тут же садились делать уроки?:) )

Ну и вспомним, что такое шина. Это группа объединенных по какому-то принципу линий передачи сигналов. (Нет, объединять по принципу «Хай буде так як хочеш ти» не стоит.) В шину, например, удобно объединять сигналы всех разрядов двоичного кода.

Посмотрим еще на кружочки, черточки, крестики и ромбики. Обозначения хорошие, писать я про них, конечно же, не буду.

Основы цифровой схемотехники #1 Схемотехника, Электроника, Логика, Микросхема, Длиннопост

Основы цифровой схемотехники #1 Схемотехника, Электроника, Логика, Микросхема, Длиннопост

Основы цифровой схемотехники #1 Схемотехника, Электроника, Логика, Микросхема, Длиннопост

Пару слов о неинформационных выводах. Сделано так просто для удобства восприятия, что данные выводы логические сигналы не принимают и не выдают.

На микросхеме так же принято обозначать значком выполняемую функцию и сокращенно указывать входные и выходные сигналы. Сами микросхемы обычно обозначаются подписью DD с порядковым номером. Например, DD1, DD2, DD3.1, DD3.2, DD4. (После точки номер элемента внутри микросхемы, т.к. иногда на схемах удобно выносить частичную функциональность за пределы одного корпуса)

Основы цифровой схемотехники #1 Схемотехника, Электроника, Логика, Микросхема, Длиннопост

Для осознания, как это все смотрится вместе, смотрим ниже:

Основы цифровой схемотехники #1 Схемотехника, Электроника, Логика, Микросхема, Длиннопост

Также не буду вас особо грузить цифро-буквенными обозначениями микросхем, просто посмотрите картинки. Я вот совсем не люблю писать, но люблю картинки. Особенно когда за меня их кто-то нарисовал 🙂

Основы цифровой схемотехники #1 Схемотехника, Электроника, Логика, Микросхема, Длиннопост

Основы цифровой схемотехники #1 Схемотехника, Электроника, Логика, Микросхема, Длиннопост

Обычно микросхемы разных серий легко спрягаются, так как работают со стандартизированными уровнями сигналов. Но и тут не без исключений. КМОП- микросхемы иногда требуют особого сопряжения с ТТЛ. Почему? Я решил, что тут следует вставить очень наглядную картинку от наших забугорных товарищей. (Кстати, отметьте, у них совсем другие обозначения)

Основы цифровой схемотехники #1 Схемотехника, Электроника, Логика, Микросхема, Длиннопост

Основы цифровой схемотехники #1 Схемотехника, Электроника, Логика, Микросхема, Длиннопост

Думаю, теперь станет ясно назначение резистора в следующей картинке. Он просто несколько поднимает выходной логический уровень ТТЛ, чтобы с ним могла корректно работать КМОП-микросхема.

Основы цифровой схемотехники #1 Схемотехника, Электроника, Логика, Микросхема, Длиннопост

Тут есть всякие нюансы сопряжения, но вам пока достаточно помнить, что за вас уже давно все придумали и готовую схему сопряжения всегда вам готов подсказать всемогущий гугл 🙂

На этом первую часть я заканчиваю, а для тех, кому интересно, сслыка на нулевую часть:

947 постов 9.5K подписчика

Правила сообщества

1-Мы А-политическое сообщество. 2-Запрещено оскорбление: Администрации Пикабу, сообщества, участников сообщества а также родных, близких выше указанных.

3-Категорически запрещается разжигание межнациональной розни или действий, направленных на возбуждение национальной, расовой вражды, унижение национального достоинства, а также высказывания о превосходстве либо неполноценности пользователей по признаку их отношения к национальной принадлежности или политических взглядов. Мат — Нежелателен. Учитесь выражать мысли без матерщины

Автор, пост годный, пили еще. Ссаных ШКОЛОардуинщиков не слушай.

Обозначение DD это цифровые микросхемы.. В том же ГОСТ прописано что есть еще и аналоговые микросхемы и у них обозначение будет DA.

Хуй ты угадал, «повторить устройство по принципиальной схеме». Могу влегкую нарисовать устройство, которое, будучи сделанным по принципиальной схеме, но без сборочника, будет работать не так, как задумано

Хм. А зачем здесь всё это ?

Хотите понмиать цифровую схемотехнику ?
Тогда читайте книги:

Угрюмов Е. П. — Цифровая схемотехника.

Уэйкерли Дж.Ф. — Проектирование цифровых устройств.

Дэвида Харриса и Сары Харрис — Цифровая схемотехника и архитектура компьютера

Потом изучайте теорию конечных автоматов.

Потом плавно подходите к программированию FPGA.

После этого изучайте спецификации на интерфейсы:

SDR SDRAM, DDR SDRAM, I2c, SDI, UART, ISA, PCI, Ethernet, USB, AXI, Avalon и многое другое.

В общем если вы ходите стать специалистом — данный пост не поможет никак.

Если хотите побаловаться — то программируйте ардуинку. Там этого знать практически не надо.

Как я нейроны паял⁠ ⁠

Здравствуйте. Наверное, многие из вас слышали об искуcственном интеллекте и очевидно что это — важная тема, которая изменяет сегодня нашу жизнь. Над созданием ИИ работает множество учёных. На данный момент существуют два фундаментальных подхода: нейробиология и нейросети. Лично я считаю нейробиологию более перспективной, но менее развитой т.к. о том, как именно работают нейроны мы знаем сегодня всё ещё очень мало. Нейросети являются наиболее развитым подходом, который, однако фактически достиг пределов развития т.к. для улучшения результатов требуются всё большие и большие вычислительные ресурсы. Кроме того, его отношение к настоящим нейронным сетям и нейронам весьма опосредованное и представляет собой всего лишь приблизительную математическую модель.

Подойдём к вопросу иначе: если нейрон — это электрохимическая структура, то можем ли мы попытаться воспроизвести его химическую активность с помощью электронных компонентов? Другими словами, можем ли мы составить электрическую цепь аналогичную нейрону?

Итак, нейрон состоит из клеточного тела и специальных отростков — дендритов (в них поступает сигнал) и аксона (из него сигнал выходит). Между собой нейроны соединяются синапсами. Различают 5 видов нейронов: униполярный, псевдоуниполярный, биполярный, мультиполярный, безаксонный, каждый из которых имеет разное число отростков.

Как я нейроны паял Техника, Электроника, Нейроны, Нейронные сети, Нейробиология, Искусственный интеллект, Робот, Робототехника, Машинное обучение, Мозг, Схемотехника, Видео, Длиннопост

О функциях и строении нейронов мы знаем мало, но зато хорошо знаем о функции синапса — проведении сигнала только в одном направлении.

Вообще, они бывают двух видов: химические и электрические. Химические, проводят импульс только в одном направлении, они наиболее распространены. Электрические проводят импульс в обоих направлениях. Важная деталь в устройстве электрического синапса, заключается в том, что он соединяет не только внутренние части нейронов, но и внешние. Я считаю что ток идёт и внутри нейрона и снаружи, т.к. уже доказано, что внешняя часть электроположительна относительно внутренней. В дальнейших рассуждениях будем считать, что внешняя часть нейрона представляет минус, землю, а внутренняя плюс, сигнал.

Существует радиодеталь функция которой идентична химическому синапсу — это диод. Когда ток течёт только в одном направлении (от «плюса» к «минусу») диод не требуется. Но, если в каждом нейроне есть постоянно заряжающаяся и разряжающаяся часть, то чтобы при разрядке ток не пошёл в обратном направлении, он должен быть перекрыт синапсом.

Какая деталь могла бы смоделировать постоянную зарядку и разрядку? Такой деталью может послужить либо дроссель, либо конденсатор. Конечно, дроссель не мог бы сформироваться в настоящем нейроне т.к. катушка из проволоки имеет уже достаточно сложную форму для природного происхождения, но конденсатор — напротив, очень простая радиодеталь состоящая всего из двух проводящих пластин разделённых диэлектриком.

Скорее всего функцию конденсатора должно взять на себя клеточное тело. Конденсатор примечателен тем, что способен реализовать функцию памяти, ведь конденсатор способен держать заряд, а значит его естественная разрядка будет означать «забывание, очередная подача сигнала восстановит заряд.

Такая гипотеза имеет косвенное подтверждение в том факте, что область в которой мозг хранил бы память, так и не была найдена. Из чего можно сделать следующий вывод, что функция памяти осуществляется всеми видами нейронов, а как мы знаем: у всех видов нейронов имеется клеточное тело.

Униполярный нейрон

Как я нейроны паял Техника, Электроника, Нейроны, Нейронные сети, Нейробиология, Искусственный интеллект, Робот, Робототехника, Машинное обучение, Мозг, Схемотехника, Видео, Длиннопост

Как я нейроны паял Техника, Электроника, Нейроны, Нейронные сети, Нейробиология, Искусственный интеллект, Робот, Робототехника, Машинное обучение, Мозг, Схемотехника, Видео, Длиннопост

Униполярный нейрон имеет только один отросток — нейрит, выполняющий функции дендрита и аксона, т.е. сигнал по нему идёт в обе стороны. Предположим, что в униполярном нейроне одна пластина конденсатора будет соединена c нейритом, а другая с землёй. В таком случае наша модель (схема) сможет выполнять функцию памяти. Известно, что униполярные нейроны не встречаются отдельно, они всегда прикреплены к другим нейронам. Если основному нейрону не хватает ёмкости его клеточного тела (т.е. конденсатора), то к нему должен быть прикреплён униполярный. Выглядит логичным, что такая пара соединена электрическим синапсом, иначе бы это не работало.

Псевдоуниполярный нейрон

Как я нейроны паял Техника, Электроника, Нейроны, Нейронные сети, Нейробиология, Искусственный интеллект, Робот, Робототехника, Машинное обучение, Мозг, Схемотехника, Видео, Длиннопост

Как я нейроны паял Техника, Электроника, Нейроны, Нейронные сети, Нейробиология, Искусственный интеллект, Робот, Робототехника, Машинное обучение, Мозг, Схемотехника, Видео, Длиннопост

Чувствительный нейрон принимающий сигналы от органов чувств. Его схема почти идентична схеме униполярного нейрона, с той разницей, что это самостоятельный нейрон, отделённый диодом. Для его моделирования удобно использовать советские германиевые диоды т.к. они имеют меньшее сопротивление. Если схема верна, то единственная функция псевдоуниполярного нейрона должна быть запоминающей, но всё же можно предположить, что он делает что-то ещё. Возможно получить ситуацию в которой моделируется пороговая функция: т.е. малый сигнал не проходит, а большой проходит без изменений. Это выглядит аналогичным принципу известному из нейробиологии — «всё или ничего», но работает только при условии, когда после нейрона данного типа не подключается синапс (диод).

Биполярный нейрон

Как я нейроны паял Техника, Электроника, Нейроны, Нейронные сети, Нейробиология, Искусственный интеллект, Робот, Робототехника, Машинное обучение, Мозг, Схемотехника, Видео, Длиннопост

Как я нейроны паял Техника, Электроника, Нейроны, Нейронные сети, Нейробиология, Искусственный интеллект, Робот, Робототехника, Машинное обучение, Мозг, Схемотехника, Видео, Длиннопост

Биполярный нейрон имеет один аксон и один дендрит. Если предыдущие модели были верны, то этот вид нейрона должен иметь следующее строение: одна обкладка конденсатора соединяется с аксоном, а другая — с дендритом. Конденсатор при таком подключении не будет пропускать постоянный ток и не составит преграду переменному.

Можно предположить только одно применение биполярному нейрону: не давать неисправному органу чувств посылать неверные сигналы. По всему человеческому телу распределены тысячи рецепторов и в ситуации когда один из них перестаёт корректно работать, он будет либо молчать, либо непрерывно посылать сигнал. Жить в таких условиях стало бы некомфортно. Биполярный нейрон позволит условно выключить такой сенсор. Эта гипотеза подтверждается тем, что биполярные нейроны находят во многих органах чувств: сетчатке глаза, обонятельном эпителии, слуховом и вестибулярном ганглиях.

Соберём схему этого нейрона. Подаём на вход постоянное напряжение, и видим на экране вольтметра что оно быстро стремится к нулю из-за нарастающего сопротивления конденсатора.

Мультиполярный нейрон

Как я нейроны паял Техника, Электроника, Нейроны, Нейронные сети, Нейробиология, Искусственный интеллект, Робот, Робототехника, Машинное обучение, Мозг, Схемотехника, Видео, Длиннопост

Как я нейроны паял Техника, Электроника, Нейроны, Нейронные сети, Нейробиология, Искусственный интеллект, Робот, Робототехника, Машинное обучение, Мозг, Схемотехника, Видео, Длиннопост

Мультиполярный нейрон имеет один аксон и множество дендритов, т.о. он складывает все входящие в него импульсы в один.

Сложить напряжения можно было бы обычным последовательным соединением, но в случае когда сигналы с сенсоров будут равны нулю, такая схема работать не будет. Следовательно, необходимо параллельно сенсорам подключить два резистора (примерно 220 Ом, для схемы с двумя входами и 1 кОм для схемы с тремя), а так же не забыть про конденсатор. Тогда получится схема моделирующая мультиполярный нейрон. Модель является масштабируемой, т.е. можно складывать как два сигнала, так и (например) десять.

При обычном подключении в схеме складываются два напряжения, но если перевернуть полярность сенсора, то таким же образом можно и вычитать. Т.к. с сенсора будет приходить отрицательное напряжение, а схема всё так же выполняет сложение, то результатом станет вычитание (через сложение).

В нейробиологии известно о существовании возбуждающих и тормозящих сигналов. Предположим, что сигналы положительного напряжения являются возбуждающими, а отрицательного — тормозящими.

При подключении кроны к одному из входов, получаем: +6 В

При подключении кроны к другому входу, получаем также: +6 В

При подключении батареек сразу к обоим входам, получаем: +12 В

Теперь, развернём полярность одной (любой) из батареек, получаем: 0 В

Развернём полярность второй из батареек, получаем: -12 В

Проведём ещё один эксперимент.

У нас есть три солнечные батареи подключённые через входы мультиполярного нейрона к одному светодиоду на выходе. На одну батарею постоянно падает свет, но напряжения с неё не хватает, чтобы заставить светодиод светить на всю мощность. Вторая батарея подключена так, чтобы напряжение на нейроне складывалось, а третья — перевёрнута. Тогда можно сказать, что одна батарея выдаёт возбуждающий импульс, в то время, как вторая — перевёрнута, и, следовательно, выдаёт тормозящий импульс. Если мы светим на одну панель, то светодиод начинает светить ярче, но если светим на другую, то он вообще перестаёт светить.

Как я нейроны паял Техника, Электроника, Нейроны, Нейронные сети, Нейробиология, Искусственный интеллект, Робот, Робототехника, Машинное обучение, Мозг, Схемотехника, Видео, Длиннопост

Безаксонный нейрон

Как я нейроны паял Техника, Электроника, Нейроны, Нейронные сети, Нейробиология, Искусственный интеллект, Робот, Робототехника, Машинное обучение, Мозг, Схемотехника, Видео, Длиннопост

У безаксонных нейронов невозможно выделить аксон или дендрит, т.к. всё его отростки одинаковы. В таком случае, по строению это просто мультиполярный нейрон. Но всё же, про безаксонные нейроны мы знаем очень мало.

Как я нейроны паял Техника, Электроника, Нейроны, Нейронные сети, Нейробиология, Искусственный интеллект, Робот, Робототехника, Машинное обучение, Мозг, Схемотехника, Видео, Длиннопост

Теперь, когда смоделированы схемы для всех видов нейронов, можно попытаться собрать робота. Самый простой способ движения для робота — это виброход. Возьмём два компьютерных вентилятора и приклеим на них гайки, а затем зафиксируем их на общем корпусе.

При подаче напряжения робот должен начать движение, но также хотелось бы научить его и тормозить. Здесь возникает проблема: всё датчики (касания, давления) доступные в продаже не выдают напряжения достаточного для проведения эксперимента. Поэтому, можно заменить датчик простой кнопкой. Однако, это имеет недостаток: при аналоговом датчике скорость вентилятора менялась бы в зависимости от степени нажатия, в то время как у кнопки всего два положения: нажата или нет.

Робот будет использовать три вида нейронов: униполярные, псевдоуниполярные и мультиполярные. На входе получившейся схемы нейросети устанавливаем два псевдоуниполярных нейрона, затем мультиполярный нейрон (на который постоянно подаётся положительное напряжение, но если нажать кнопку начнёт подаваться отрицательное). Параллельно конденсатору мультиполярного нейрона подключается конденсатор униполярного.

Как я нейроны паял Техника, Электроника, Нейроны, Нейронные сети, Нейробиология, Искусственный интеллект, Робот, Робототехника, Машинное обучение, Мозг, Схемотехника, Видео, Длиннопост

Здесь возникает следующая (опять, чисто электрическая проблема) — сопротивление диодов. Несмотря на то, что диодов в схеме всего лишь два, тока после них оказывается уже недостаточно для раскрутки вентилятора. В качестве обходного решения берётся транзистор, вентилятор подключается к эмиттеру, ещё один источник тока — к коллектору, а на базу подаётся напряжение с нейросети. Всего потребуются две таких схемы: по одной для каждого вентилятора, в результате робот оказывается состоящим из 8 моделей нейронов.

Если робот сталкивается с препятствием, то кнопка нажимается и один из вентиляторов перестаёт крутится.

Такой робот имеет преимущества по сравнению с подобным проектом на Arduino (если предположить наличие подходящих датчиков).

Во-первых, на Arduino такой проект работал бы как цикл, в котором сначала берутся значения с датчиков, считаются и только затем, соответствующие напряжения подаются на вентиляторы. Быстродействие простой электрической схемы значительно выше.

Во-вторых, простая электрическая схема проще и дешевле. Процессор используемый в Arduino UNO состоит из 100 000 транзисторов. Т.е. 18 дешёвых радиодеталей способны выполнить работу для которой обычно используются, как минимум 100 000 транзисторов.

В данном проекте было осуществлено схемотехническое моделирование работы нейронов и их объединение в более сложные структуры — нейросети. Экспериментально был проверен и смоделирован ряд предположений касающихся природы нейробиологических явлений. Удалось создать модель простейшего робота.

Простая схемотехника без Arduino, SMS и регистрации⁠ ⁠

Не, я все понимаю, Ардуинки это круто. Но зачем тратить миллион транзисторов там, где можно обойтись десятком? Аналоговая схемотехника это слишком сложно? Ну ок, начнем с простейшего.

Дискламер. Все резисторы на схеме подбирались исключительно для красивой симуляции. Ибо транзисторы — сферические в вакууме. Реальные значения я буду подбирать когда наковыряю транзисторов (наши КТ315 или импортные не важно).

Вводная. Есть проточный водонагреватель. Нужно организовать его автоматическое включение. Есть поток воды — включено. Нет потока — выключено. Простейший датчик потока стоит 500 руб и выдает прямоугольник. От этого и будем строить схему. Исполнительный блок — твердотельное реле (на схеме лампочка).

Софт — http://www.falstad.com/circuit/ (бесплатный, GPL, есть браузерная и десктопная версии).

Итак, поехали. Общий вид получившейся схемы.

Простая схемотехника без Arduino, SMS и регистрации Электроника, Схемотехника, Обучение, Длиннопост

Слева входной датчик и переключатель для эмуляции останова потока. В состоянии вкл или выкл. Нужно отработать оба варианта.

Рассмотрим схему по блокам, в порядке рисования. Блок первый, входной. Подготовка сигналов, с которыми мы будем работать.

Простая схемотехника без Arduino, SMS и регистрации Электроника, Схемотехника, Обучение, Длиннопост

Два связанных инвертора. Аналоговые транзисторы тут работают в режиме ключей (цифровом). На выходе прямой (сверху) и инвертированный (снизу) сигнал. При наличии любого из этих сигналов в течении некоторого времени мы должны включить реле. Разобьем задачу на части — некоторое время и любого из.

Блок два. Таймер.

Простая схемотехника без Arduino, SMS и регистрации Электроника, Схемотехника, Обучение, Длиннопост

Два конденсатора медленно заряжаются и очень быстро разряжаются через транзисторы. Так как импульсы поступают гораздо чаще, чем нужно времени для зарядки, то оба конденсатора разряжены.

Блок три. Сумматор.

Простая схемотехника без Arduino, SMS и регистрации Электроника, Схемотехника, Обучение, Длиннопост

Если на оба входа подается логический ноль, то на выходе получается логическая единица. Базовая схема И-НЕ.

Ну и последний кусок — исполнительный блок с лампочкой (будет реле). Там все понятно.

Как это работает, эмуляция.

Состояние 1. На входе есть сигналы.

Простая схемотехника без Arduino, SMS и регистрации Электроника, Схемотехника, Обучение, Длиннопост

В точках 5 и 6 напряжение максимум 1,5 вольта, что недостаточно для открытия транзисторов сумматора. В точке 7 напряжение достаточно для открытия ключа. Лампочка горит.

Простая схемотехника без Arduino, SMS и регистрации Электроника, Схемотехника, Обучение, Длиннопост

Источник остановился в состоянии лог1. Левый конденсатор заряжен, сумматор выдает на выход лог0. Лампочка не горит.

Простая схемотехника без Arduino, SMS и регистрации Электроника, Схемотехника, Обучение, Длиннопост

Аналогично для останова в состоянии лог0. Заряжен правый конденсатор, на выходе сумматора лог0, лампочка не горит.

Простая схемотехника без Arduino, SMS и регистрации Электроника, Схемотехника, Обучение, Длиннопост

Переходный процесс. Лампочка, гори!

Полчаса работы и схема готова. Следующая задача — подобрать транзисторы (точнее найти 6+1 в моей помойке) и подбор обвеса (резисторы). Конденсаторы по факту, пара одинаковых на 1-100 мкф меня устроит.

Если интересно — напишу продолжение. Плату разводить лень, но опять же — если будет интересно могу сделать.

Эта компания делает машины, которые делают процессоры. Без нее невозможно будущее⁠ ⁠

Когда вы за несколько сотен долларов покупаете процессор, выполненный по 7-нанометровому техпроцессу, к вам в руки попадает произведение искусства. Технологического искусства. Чтобы его создать, требуется невероятно длинная цепочка исследований, открытий, прорывов, инвестиций и труда. В создании такого процессора задействован весь потенциал технологий и науки, которые человечество прошло всего за несколько тысяч лет.

Эта компания делает машины, которые делают процессоры. Без нее невозможно будущее Познавательно, Факты, Техника, Научпоп, История, Нидерланды (Голландия), Asml, Электроника, Микросхема, Чипы, Onliner by, Импортозамещение, Длиннопост, Завод, Производство

Темная лошадка из Нидерландов:

Ключевой шаг во всем этом технологическом процессе — создании машины, которая создает процессоры. По сути это не одна машина, а литографическая система. Она едва ли не более удивительная и сложная в производстве, чем сами компьютерные чипы. И делают ее в компании, исчезновение которой на добрых два десятка лет затормозило бы цифровой прогресс.
Эта компания находится в самом сердце 400-миллиардной индустрии производства чипов, без ее оборудования Intel, Samsung и TSMC не способны производить микросхемы. Оборудование это столь сложное, что в год его выпускают в объеме всего нескольких десятков. И эта сложившаяся естественным путем монополия немного пугает.

Эта компания делает машины, которые делают процессоры. Без нее невозможно будущее Познавательно, Факты, Техника, Научпоп, История, Нидерланды (Голландия), Asml, Электроника, Микросхема, Чипы, Onliner by, Импортозамещение, Длиннопост, Завод, Производство

Речь про мультинациональную компанию ASML из Нидерландов, которая разрабатывает и производит системы фотолитографии — кирки для шахтеров, добывающих чипы на фабриках Intel, Samsung и TSMC. ASML — уникальная компания. Она единственная в мире сегодня владеет системами, которые способны давать излучение с длиной волны в 13,5 нм. Этот диапазон называют свержестким ультрафиолетовым излучением. Рядышком с уровнем рентгеновского излучения.

Чем ýже световая волна, тем более мелкие детали она способна рисовать на кремниевых пластинах для будущих процессоров. Чем мельче детали, тем меньше размеры транзисторов, тем больше их умещается на одном кристалле и тем производительнее и энергоэффективнее получаются чипы.

Сложно вспомнить еще одну такую компанию, которая была бы столь важной и одновременно настолько неизвестной для широкой публики.

Эта компания делает машины, которые делают процессоры. Без нее невозможно будущее Познавательно, Факты, Техника, Научпоп, История, Нидерланды (Голландия), Asml, Электроника, Микросхема, Чипы, Onliner by, Импортозамещение, Длиннопост, Завод, Производство

Новейшие системы ASML стоят больше сотни миллионов долларов и жизненно необходимы для производителей чипов, которые рассчитывают выпускать их на передовых технологических процессах. Которые хотят совершенствовать свою продукцию, умещать все больше транзисторов на подложке, повышать энергоэффективность и мощность чипов.

Гонка вдолгую:

Делать процессоры крайне сложно и дорого. Производство многогранно, требовательно к экспертизе и многочисленным технологиям на переднем крае науки. В этом процессе приходится плавить кремний, выращивать из этого монокристаллы цилиндрической формы, нарезать алмазной пилой эти цилиндры на тончайшие, ровные и отполированные вафли — кремниевые пластины. На эти вафли затем воздействуют светом, чтобы создать мельчайшие детали будущих интегральных схем.

Эта компания делает машины, которые делают процессоры. Без нее невозможно будущее Познавательно, Факты, Техника, Научпоп, История, Нидерланды (Голландия), Asml, Электроника, Микросхема, Чипы, Onliner by, Импортозамещение, Длиннопост, Завод, Производство

Первую твердотельную интегральную схему, которую назвали микрочипом, показала в 1959 году американская компания Texas Instruments. И фотолитография сыграла значительную роль в ее создании. С помощью системы линз и зеркал на поверхности светочувствительной кремниевой пластины фокусировали лучи света, которые проходили через заранее подготовленный шаблон и запечатлевали его схему на пластине. Пластину двигают и постепенно всю покрывают шаблонным узором.

Эта компания делает машины, которые делают процессоры. Без нее невозможно будущее Познавательно, Факты, Техника, Научпоп, История, Нидерланды (Голландия), Asml, Электроника, Микросхема, Чипы, Onliner by, Импортозамещение, Длиннопост, Завод, Производство

В те годы фотолитография была более грубым искусством, чем сегодня. В 1980-х годах компаний, которые делали или пытались делать фотолитографические машины, было с десяток. Среди них Canon, Nikon, а также Phillips. Эта компания из Нидерландов в 1984 году создала совместное производство вместе с компанией Advanced Semiconductor Materials. Первая хотела получить оборудование для производства собственных чипов. Вторая выпускала такое оборудование.

В годы, когда основали ASML, самым современным источником света для литографии была ртутная лампа. Ртуть нагревали током до состояния плазмы, которая испускала излучение света с различной длиной волны. С помощью специального фильтра отбиралась необходимая длина. В ASML это были 436 нанометров. Со временем длину волны уменьшали, переходя от ртутных ламп к лазерам со смесями различных газов. Криптон и фтор производили свет на волне 248 нанометров, а со временем при допиливании такие лазеры сужали волну до 150 и даже 80 нанометров. Следующим поколением лазерных технологий стали лазеры на фтористом аргоне, который излучал свет с длиной волны 193 нанометра. Уменьшение длины волны позволяло наносить на кремний все больше транзисторов меньших размеров.

Эта компания делает машины, которые делают процессоры. Без нее невозможно будущее Познавательно, Факты, Техника, Научпоп, История, Нидерланды (Голландия), Asml, Электроника, Микросхема, Чипы, Onliner by, Импортозамещение, Длиннопост, Завод, Производство

Вы, вероятно, слышали про закон Мура, согласно которому каждые два года удваивается количество транзисторов, размещенных на кристалле интегральной схемы. На самом деле это не обязательный к исполнению закон, а всего лишь наблюдение одного из основателей Intel, которое тем не менее долгое время выполнялось благодаря совершенствованию фотолитографического оборудования.

Сверхжесткий ультрафиолет:

В начале 2000-х годов ландшафт этого рынка серьезно поменялся. Из крупных конкурентов ASML остались только Nikon и Canon, а требования рынка возросли — цифровые камеры, MP3-плееры, мобильные телефоны, все более широкое проникновение компьютерной техники в массы. Все это нуждалось в чипах. Для их совершенствования ASML решила сосредоточиться на технологии EUV — сверхжесткого ультрафиолетового излучения на длине волны в 13,5 нанометра.

Такие машины должны были каждую секунду бить лазером по потоку из 50 000 капель расплавленного олова, чтобы из образовавшейся плазмы извлечь свет на длине волны 13,5 нанометра. Эти капли диаметром всего около 25 микрон выбрасывает генератор на скорости 70 метров в секунду. Производитель сравнивает точность выстрелов по каплям с фонариком, который с Земли попал бы лучом в монетку на Луне.

Надо сказать, что все начинается с довольно простого углекислотного лазера. Но его луч проходит через пять стадий усиления в 10 000 раз каждый. На выходе получается пиковая мощность в несколько мегаватт. Столь высокая мощность нужна, так как по пути к каплям олова часть этой энергии теряется.

Притом по каплям сперва бьют лазером с низкой интенсивностью. Они приобретают форму блина, после чего уже подключается более мощный лазер, который испаряет «блин» в состояние плазмы. В этом состоянии она излучает сверхжесткий ультрафиолет. 50 000 раз каждую секунду, чтобы сверкало достаточно ярко. Параболическое зеркало собирает этот свет, фокусирует его на точке, из которой он передается на сканер в вакуумной камере и на кремниевую пластину.

Эта компания делает машины, которые делают процессоры. Без нее невозможно будущее Познавательно, Факты, Техника, Научпоп, История, Нидерланды (Голландия), Asml, Электроника, Микросхема, Чипы, Onliner by, Импортозамещение, Длиннопост, Завод, Производство

Этот технологический процесс на многие годы опережал то, что было на тот момент стандартом индустрии. Однако разработка такой машины была крайне трудной. То, что задумали на рубеже тысячелетий, до рынка добралось только спустя 16 лет.

В первую очередь все упиралось в то, что сверхжесткий ультрафиолет не может распространяться в воздухе. Тот абсолютно черный для такого излучения. Так что с самого начала было очевидно, что придется работать с вакуумной камерой, куда через воздушный шлюз будет поступать пластина. Вес такой камеры в финальном продукте составляет 7,5 тонны.

К тому же через простое стекло спроецировать сверхжесткий ультрафиолет на пластину не выйдет. Стекло также поглотит излучение. Потому от линз отказались, начали искать зеркальные поверхности с достаточной отражательной способностью для EUV.

Остановились на брэгговском отражателе с показателем отражаемости в 70% от давних партнеров из оптической компании Zeiss. Их зеркало представляет собой слоистую структуру из сотни пар кремния и молибдена, уложенных слоями в несколько нанометров. Они невероятно плоские. Если такое масштабировать до размеров Германии, то самая высокая выпуклость на его поверхности не превысит 1 мм. Производство такого зеркала — отдельное искусство.

Стоит отметить, что подрядчиков и стратегических партнеров у ASML немало. Как нам известно, есть такие партнеры и в Беларуси. Тут они задействованы в обеспечении работы системы автоматизированного проектирования электронных схем и печатных плат в ASML. Такое сотрудничество продолжается уже 14-й год.

Первый прототип EUV-машины был готов в 2010 году, а первая полноценная готовая к производству — спустя шесть лет. Каждый такой аппарат весит больше 180 тонн, в нем 100 000 частей, 3000 кабелей, 40 000 болтиков. На его создание уходит больше четырех месяцев, а для доставки покупателю необходимо несколько рейсов «Боинга» с рассованными по 40 грузовым контейнерам частями.

К тому же на заводах, где работают эти системы, постоянно должны находиться специалисты ASML, которые обслуживают, ремонтируют и обновляют их.

Эта компания делает машины, которые делают процессоры. Без нее невозможно будущее Познавательно, Факты, Техника, Научпоп, История, Нидерланды (Голландия), Asml, Электроника, Микросхема, Чипы, Onliner by, Импортозамещение, Длиннопост, Завод, Производство

Конкурентов нет:

Машины эти прорывные, но пока не захватили весь рынок. Не каждому нужна передовая технология, многие производители довольствуются более дешевыми и старыми технологиями для производства чипов. Из 258 систем фотолитографии, которые ASML поставила в прошлом году(2021), только 31 была со сверхжестким ультрафиолетом. Тем не менее, производитель уверен, что к 2025 году три четверти своей выручки будет получать именно от них.

Может ли кто-то повторить подобное? Время стремительно утекает, а конкурентов на горизонте и не видно. В научно-исследовательском направлении ASML трудятся 5,5 тысячи инженеров, на нужды которых выделяют ежегодно более 1 млрд евро. Для любой компании, чтобы конкурировать с ASML, потребуются десятилетия инноваций и огромный капитал. Такое могли бы себе позволить крупнейшие производители полупроводниковой продукции, однако они не хотели бы нарушить устоявшийся баланс и попасть в опалу у разработчика новейших технологий. Да и все три крупнейших производителя Intel, Samsung и TSMC в 2012 году инвестировали в ASML миллиарды долларов. Тогда рыночная капитализация ASML составляла всего $26 млрд, сегодня она перевалила за $300 млрд.

К тому же не ведутся какие-либо серьезные разработки конкурирующей со сверхжестким ультрафиолетом технологии. Компания, которая пару десятков лет экспериментировала с литографией с помощью пучка электронов, обанкротилась несколько лет назад и была выкуплена той же ASML. Разрешение у этого метода литографии было высоким, в экспериментальных установках удавалось получать структуры с разрешением менее 1 нм. Однако масштабировать эти рекорды до скоростей литографии в массовом производстве не получилось.

Эта компания делает машины, которые делают процессоры. Без нее невозможно будущее Познавательно, Факты, Техника, Научпоп, История, Нидерланды (Голландия), Asml, Электроника, Микросхема, Чипы, Onliner by, Импортозамещение, Длиннопост, Завод, Производство

Монополия на будущее:

TSMC сегодня покупает половину всех выпускаемых систем литографии на сверхжестком ультрафиолете. Эти машины есть и у Samsung. Intel немного отстает. В этом году будет выпущено до 50 таких машин, в следующем — до 60 штук.

Руководство ASML говорит, что нынешний дефицит чипов — это не разовая волна, а выход рынка на качественно и количественно новый уровень. А это значит, что ASML в ближайшие десятки лет будет укреплять свою естественно сложившуюся монополию. Жизненно важные для прогресса технологии будут сосредоточены в руках одной компании, которая способна превратиться в оружие геополитики.

Ее уже используют в торговой войне с Китаем. Правительство Нидерландов по настоятельным просьбам США запретило ASML продавать EUV-системы Китаю — крупнейшему рынку в мире, готовому поглощать чипы сотнями миллиардов.

Это может как замедлить технологический прогресс Поднебесной, так и вырастить местных конкурентов ASML. Китай планирует вложить $30 млрд в то, чтобы создать производство чипов, не зависящее от зарубежных компаний, и это у него вполне может получиться.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *