Так все таки, как мы получаем электричество?
Сегодня я постараюсь вам рассказать, как же производят бОльшую часть электричества в мире. Чем постоянный ток отличается от переменного. И коротко об устройстве машин, которые электричество вырабатывают.
Постараюсь понятно все рассказать, чтобы не было таких же казусов, как в мемасе). Поехали!
У всех на слуху эти слова: переменный и постоянный ток. Хочется, чтобы разницу знали все, но я понимаю, что это не так. Попробую рассказать, что из себя представляют эти токи, но без углубления в физику.
Постоянный ток – течет в одном направлении, от плюса «+» к минусу «-» или от точки с бОльшим потенциалом в точку с меньшим потенциалом. Если взять проволочку и прислонить к контактам пальчиковой батарейки, то проволока нагреется, вот тут как раз постоянный ток себя и проявит.
Перейдем к переменному току, тут все сложнее. Представьте, что у той же батарейки, контакты меняли бы свои знаки полюсов. То есть вы смотрите на батарейку, на один из контактов, а там то плюс, то минус, то плюс, то минус и так же происходит со вторым контактом. Магия, да и только!
Переменный ток вырабатывают генераторы переменного тока, как не странно. На их выводах знаки + и – меняются с частотой 50Гц, то есть, если замкнуть эту цепь, то ток за 1 секунду будет течь по проводнику 50 раз в одну сторону и 50 раз в другую. Сложно, но держимся!
Еще раз, переменный ток меняет свое направление сто раз в одну секунду. Вот тут и есть главное отличие от постоянного тока.
Нашел картинку из советского учебника:
Перейдем к тому самому получению электричества. Есть специальные объекты – электростанции. Сейчас расскажу про основные виды станций:
На тепловых станциях сжигают топливо (газ, уголь, мазут), тепловая энергия передается воде, вода превращается в пар, а пар вращает ротор турбины, а турбина вращает ротор генератора (устройство в целом называется турбогенератор). Генератор «выдает электричество».
Теперь про гидроэнергетику:
Крупнейшая ГЭС России — Саяно-Шушенская:
Специально обученные люди строят плотину. С одной стороны плотины воды становится много, а с другой мало. Вода под напором проходит сквозь гидроагрегаты и вращает их. Генератор вырабатывает электричество.
В атомных реакторах происходит реакция распада и выделяется огромное количество теплоты. Тепловая энергия нагревает воду, вода превращается в пар, который вращает ротор турбогенератора.
Как вы заметили, общий принцип получения электричества следующий – вода или пар вращает ротор генератора, генератор вырабатывает электричество.
Перейдем к конструкции генератора.
На электростанциях устанавливают синхронные генераторы. Почему синхронные рассказывать не буду, это сейчас не к чему.
Основные части синхронного генератора: ротор, та часть, которая вращается и статор, та часть, которая неподвижна. Ротор вращается непосредственно внутри статора.
У генератора есть выводы на статоре, где и появляется напряжение.
Ротор генератора соединяется с валом турбины и на обмотку (цепи) ротора генератора подают постоянный ток (чтобы получить переменный ток, надо подать постоянный, таков путь).
Имеем следующую систему:
На ротор подают постоянный ток, пар вращает турбину, турбина вращает ротор генератора, электромагнитные поля делают свою работу и на выводах статора появляется напряжение. Как-то так.
Теперь прогуливаясь по лесу, не стоит боятся лешего, который схватит вас за шкирку, поднесет к своему кривому носу и спросит:
«@username, расскажи-ка мне, а как это ваше электричество появляется, авось пойму чего?»
А вы ему в ответ: «Турбины крутятся – амперы мутятся!».
Коротко и по сути.
Спасибо что дочитали до конца,
6.7K постов 73.1K подписчика
Правила сообщества
ВНИМАНИЕ! В связи с новой волной пандемии и шумом вокруг вакцинации агрессивные антивакцинаторы банятся без предупреждения, а их особенно мракобесные комментарии — скрываются.
Основные условия публикации
— Посты должны иметь отношение к науке, актуальным открытиям или жизни научного сообщества и содержать ссылки на авторитетный источник.
— Посты должны по возможности избегать кликбейта и броских фраз, вводящих в заблуждение.
— Научные статьи должны сопровождаться описанием исследования, доступным на популярном уровне. Слишком профессиональный материал может быть отклонён.
— Видеоматериалы должны иметь описание.
— Названия должны отражать суть исследования.
— Если пост содержит материал, оригинал которого написан или снят на иностранном языке, русская версия должна содержать все основные положения.
Не принимаются к публикации
— Точные или урезанные копии журнальных и газетных статей. Посты о последних достижениях науки должны содержать ваш разъясняющий комментарий или представлять обзоры нескольких статей.
— Юмористические посты, представляющие также точные и урезанные копии из популярных источников, цитаты сборников. Научный юмор приветствуется, но должен публиковаться большими порциями, а не набивать рейтинг единичными цитатами огромного сборника.
— Посты с вопросами околонаучного, но базового уровня, просьбы о помощи в решении задач и проведении исследований отправляются в общую ленту. По возможности модерация сообщества даст свой ответ.
Наказывается баном
— Оскорбления, выраженные лично пользователю или категории пользователей.
— Попытки использовать сообщество для рекламы.
— Многократные попытки публикации материалов, не удовлетворяющих правилам.
— Нарушение правил сайта в целом.
Окончательное решение по соответствию поста или комментария правилам принимается модерацией сообщества. Просьбы о разбане и жалобы на модерацию принимает администратор сообщества. Жалобы на администратора принимает @SupportComunity и общество пикабу.
В общем вечная проблема таких попыток коротко объяснить что-то не очень простое.
Какая понятная статья. Те кто ее читал наверное и на проверочные вопросы ответят ?
1) Как регулируют мощность, то есть узнают что я включил чайник и нужно добавить угля в топку или наоборот, солнечная электростанция узнает что не нужно больше давать ток ?
2) Как подключают генератор к сети, ведь в сети переменное напряжение, вдруг вырабатываемый ток по фазе не совпадет ?
3) Почему на столбе три провода, а в наш многоквартирный современный дом приходит уже пять, а в розетке опять три, что за чудеса ?
4) Что такое полная, активная и реактивная мощность?
5) Почему большинство мощных электродвигателей требуют для питания именно переменный ток ?
«Ротор генератора соединяется с валом турбины и на обмотку (цепи) ротора генератора подают постоянный ток (чтобы получить переменный ток, надо подать постоянный, таков путь).»
А откуда взять постоянный ток?
Автор не с той стороны зашёл. Надо было подробно объяснять устройство генератора, и как можно сделать простейший генератор своими руками. А именно, как кинетическую энергию превратить в ток, а потом обратно ток в кинетическую энергию, тепло или свет. Эти знания уже хоть как-то можно начать применять на практике. Типа переделать водяную мельницу, чтоб она могла запитать какую-нибудь электроплитку в другом здании или привести в движение веретено.
Начал хорошо, до строчки в конце
Как появляется напряжение, что за выводы. И главное как потом снять переменное напряжение, и заставить его делать механическую работу.
Как тут не добавить)
И да, а как ты ответишь на вопрос «И что такое генератор? как его сделать?»
«Турбины крутятся – амперы мутятся!».
Как крутятся, куда, почему, в какую сторону, почему, что такое амперы, почему амперы, что такое потенциал, что за заряд, почему кулон, откуда, причем здесь Лейден, зачем в землю заводят землю, если муть мутится, где вода.
И все таки на вопрос как по факту в средневековье дать людям электричества вы не ответили. Например, найти залежи меди, выковать из них проволоку, намотать эту проволоку куда то, как то сделать выводы этих проводов, найти речку, найти палку, на один конец которой накрутить штуку с намотанной медной проволокой (статор), на другой конец палки приделать импровизированные лопасти и окунуть их в воду, выводы проводов с нашего «электродвигателя» подсоединить к какой нибудь железяке, она будет нагреваться, и например на ней можно готовить пищу.
Ты лучше скажи, как электроны на Саяно-Шушенской ГЭС узнают, что я хочу свет включить? Я только выключателем щёлкнул — а они уже тут как тут. И куда они потом деваются?
Профессор на экзамене:
— Что такое электричество?
— Ммм. Я знал, но забыл.
— Что же ты наделал?! Единственный человек знал что такое электричество и тот забыл.
Для средневековья лучше подойдет химический источник тока. Проволоку-то тогда делать умели, но изоляцию.
Но ведь электрический ток это движение электронов, а они бегут от минуса к плюсу.
Не будет у Ивана Грозного паровоза(с)
А я легче получаю — просто вставляю вилку в розетку). А есть проще система — выключатель. Правда есть и ноухау свет просто появляется, но там ещё технология сырая.
И все это придумали чтобы меня в детстве ебнуло током когда я радио разобрал, а потом еще раз когда я потрогал оголеные провода от дверного звонка? Хитро, но в третий раз я не куплюсь
«Перейдем к конструкции генератора.
На электростанциях устанавливают синхронные генераторы. Почему синхронные рассказывать не буду, это сейчас не к чему.»
Но эта жи важна!
Стоп-стоп! Я вчера думал о том если бы меня перенесло в прошлое, как бы я смог поделиться с людьми знаниями и технологиями, имея поверхностные знания.
Да, этот эффект замечания тем как-то называется.
Автор, спасибо. Лично мне всё понятно. Всё наглядно и доходчиво.
Ёбаная же ты ностальгия. Я в 8-9 лет по этой книге электронике учиться пытался. У меня был только паяльник и дохлые платы с помойки.
Р. Сворень «Шаг за шагом».
Два часа прошло и нет видосика с мистером фрименом? Мда.
— В общем чтобы получить электричество в розетке, надо взять электричество, засунуть палку в дырку, покрутить и магниты сделают своё дело
— Да он не демон, он просто е***утый
Я думаю, что древним людям сначала надо объяснить ЧТО такое электричество, а потом уже откуда оно берётся. Да, и зачем им это, что они с этой информацией делать будут?
-У блондинки спрашивают: как работает двигатель?
-А можно своими словами?
-Да конечно — Тыр тыр тыр тыр тыр!
Автор. Земной поклон тебе за такое простое описание столь сложных (для людей не имеющих профильного ВО) вещей и явлений. А можно ли ещё об устройстве генераторов? И тоже — вот чтобы прям для полных дебилов?
Не, ну а что, проволоку медную в прошлом найти можно, магнит тоже. Но я бы лучше открыл древним людям тайну самогона 🙂
А где описание самого физического процесса?
Как появляется электричество, зачем нужно вращение и тому подобное.
то есть, если взять электродвигатель и руками вращать вал, то на контактах можно получить электричество, например, чтобы зарядить телефон, так?
В розетке три провода? Ты точно видел розетку? Там две дырочки.
Хороший метод. Можно брать на вооружение
Волновые генераторы обещают обеспечить человечество самой дешевой энергией в мире
Компания «Sea Wave Energy Ltd» обещает снизить стоимость выработки энергии на своем волновом генераторе «Waveline Magnet» до невероятно низкого уровня в $0,01/кВт⋅ч. Это в 80 раз меньше, чем принятая оценка для данного способа генерации по формуле LCoE, и самый низкий показатель затрат для выработки энергии из любых источников, известных человечеству. Но есть небольшой нюанс – за десяток лет работы «Sea Wave Energy Ltd» не построила и не продала ни одной полноценной волновой электростанции.
Если зайти на сайт другой, не менее известной в прошлом компании «Albatern», которая разработала свою перспективную технологию волновой генерации «WaveNet», то мы увидим там скромную заглушку. Что касается технологии «Waveline Magnet», ее разработчики спустя десять лет трудов все еще собирают и анализируют данные испытаний, поэтому собранной информации нет в открытом доступе. Зато есть рекламные публикации, в которых указано, что система работает при «любой высоте волн», и чем суровее стихия, тем лучше идет выработка энергии.
Принцип действия «Waveline Magnet» предельно прост: подвижные поплавки соединены между собой рычагами, которые подключены к генераторам. Система анализирует силу волны и автоматически подстраивается под нее, чтобы обеспечивать максимальный КПД при каждом движении. Журналистам удалось раздобыть промежуточный отчет из лаборатории «Centrale Nantes», в котором указано, что прототип длиной 32 м и весом 1,8 тонны во время испытаний показал пиковую мощность 1,4 кВт.
Нетрудно подсчитать, что 100-мегаваттная волновая электростанция из рекламы «Sea Wave Energy Ltd» должна быть в 71 429 раз крупнее прототипа. При меньшей мощности рентабельности достичь станет проблематично, однако насколько сложно будет создать и собрать подобную конструкцию? И как дорого это обойдется потенциальному заказчику? К сожалению, это приводит к тому, что интересная в целом идея волновых генераторов пока не нашла практического воплощения.
Концептуальный дизайн магнита Waveline:
Блэкаут в США 2003: как два сервера обвалили энергосистему
Автор: Владимир Герасименко (@Woolfen).
Крупнейший в истории США блэкаут, случившийся в 2003 году — это один из тех случаев, когда едва ли не ведущую роль в развитии аварии сыграли неисправности ПО. Хотя хватает там и того, что все мы любим в любых авариях: халатность, нарушение протоколов или их отсутствие, несогласованность действий и полный шок, когда ситуация выходит окончательно из под контроля. В общем заваривайте чай, у нас очередной технодетектив.
Пара слов о том, почему линии электропередач могут отключаться
Энергосистема — это довольно сложный организм, состоящий из множества узлов генерации электроэнергии и узлов потребления, соединённых между собой линиями электропередач. Когда-то на заре энергетики электростанции были маленькими и находились рядом с потребителями, а потому были соединены напрямую. Но со временем станции становились больше, возникала задача транспортировки электроэнергии на всё большие расстояния, что требовало усложнять тракт передачи.
Как вы должны помнить из школьного курса физики, при протекании тока по проводу тот нагревается. Энергия, которая тратится на нагрев проводника – это потери, а терять электричество – это терять и деньги. Потери на нагрев определяются по формулам:
Соответственно, чтобы снизить потери на нагрев мы можем увеличить напряжение в проводнике или его сечение, причём, так как напряжение у нас в квадрате, то увеличение его оказывает гораздо больший эффект на величину потерь, чем площадь сечения проводника. Отсюда вывод: надо делать для передачи на дальние расстояния линии с большим напряжением. Но при этом чем выше напряжение – тем больше размеры оборудования и требования к безопасности, а значит для потребителей в большинстве случаев придётся сохранять низкие значения напряжения.
Это приводит к тому, что энергосистема выстраивается по следующему принципу: есть ЛЭП высокого напряжения, которые осуществляют транзит больших мощностей на большие расстояния, есть линии меньшего напряжения, которые дублируют их и распределяют энергию между более мелкими узлами потребления, и есть линии низкого напряжения в распределительной сети, к которой подключают потребителей.
Принципиальная схема сетей США
Но у нагрева проводов есть и ещё одно следствие. Опять же, вспоминаем школьный курс физики: при нагреве проводник расширяется, т.е. удлиняется, что вызывает ещё больший рост потерь. Провод из-за удлинения провисает и может либо оборваться, либо задеть какие-то объекты внизу, например ветку дерева, что вызовет замыкание. Худший случай – это перехлёст двух или трёх проводов, что вызовет междуфазное короткое замыкание. Поэтому перегрузку линии током (термическую перегрузку) требуется жёстко ограничивать по значению и длительности.
Ключевая проблема провисания ЛЭП в одной картинке: в данном случае при провисании до 38 футов ветер в 5 узлов может привести к касанию дерева; при 36 — уже даже в отсутствии ветра может произойти касание; при 34 — критический провис по механической прочности самого провода
Что такое короткое замыкание? Электрический ток, как вода, течёт по пути наименьшего сопротивления. Из двух линий больший ток и мощность потекут по той у которой меньшее сопротивление. Короткое замыкание случается, когда сопротивление линии внезапно резко падает по одной из озвученных выше причин, и по линии начинает протекать гораздо больший ток, чем допустимо. Ток короткого замыкания может быть в сотни раз больше, чем номинальный, что может привести к повреждению оборудования электростанций и подстанций. Поэтому короткое замыкание требуется как можно скорее устранить, пока оно не нанесло вреда, путём отключения повреждённого элемента энергосистемы.
После отключения повреждённого элемента электрическая мощность, которую мы должны передать потребителям, распределится между оставшимися в работе элементами. Обычно отключение даже одной ЛЭП высокого напряжения не должно оказывать существенного влияния на состояния системы. Тем не менее, из-за изменившихся потоков мощности становится возможна термическая перегрузка отдельных элементов энергосистемы и для исключения их отключения требуется вмешательство оперативно-диспетчерского управления.
Этих знаний нам будет достаточно для понимания процесса развития аварии.
Предпосылки
Любая авария в энергосистеме — это сочетание множества факторов. Как бы ни была сложна система передачи электроэнергии, она обычно имеет достаточный запас надёжности по отказам, а также большую инерцию из-за чего даже в случае неблагоприятного стечения обстоятельств обычно есть время провести компенсирующие мероприятия. Но проблема в том, что для начала опасную для энергосистемы ситуацию нужно вовремя распознать, а с этим в 14 августа 2003 в Северо-Восточной энергосистеме США случились большие проблемы.
Начало аварии положило незначительное на первый взгляд происшествие: в 13:30 остановился блок №5 ТЭЦ Eastlake мощностью 680 МВт. Причина аварии крылась в неправильных действиях персонала, приведших к выходу из строя регулятора возбуждения турбины. Само по себе это происшествие было некритичным: да, возник локальный дефицит мощности, но его компенсировало увеличение перетоков мощности по линиям из других частей энергосистемы.
Перетоки мощности между сетями энергокомпаний перед аварией
Вторым фактором стало отключение в 14:02 линии 345 КВ Stuart-Atlanta: из-за незначительной перегрузки провода провисли и произошло касание с деревьями, растущими под ЛЭП. Опять же, и этот инцидент не должен был значительно повлиять на состояние энергосистемы при внимательном наблюдении за режимом оператором диспетчерского пункта. Но именно с этим у энергообъединения First Energy Corporation (FE), в чьей зоне ответственности и происходили описанные события, в этот момент случились проблемы.
Ничего не вижу. Ничего не слышу
Для начала разберёмся с инструментарием, с помощью которого диспетчер управляет энергосистемой. Основным инструментом взаимодействия с энергосистемой у диспетчера является Supervisory control and data acquisition (диспетчерское управление и сбор данных) или попросту SCADA. SCADA служит для обеспечения работы систем сбора, обработки, отображения и архивирования информации об объекте мониторинга или управления. Условно её можно разделить на 3 крупных составных части: система сбора информации, система пользовательского интерфейса, система реализации управляющих воздействий.
Система сбора информации осуществляет сбор данных со всех датчиков (трансформаторов тока и напряжения, датчиков мощности, направления перетока мощности и т.д), информации о срабатывании защит и автоматик, расчёт дополнительных необходимых для контроля параметров и передачу их в систему пользовательского интерфейса.
Система пользовательского интерфейса предоставляет полученные данные в удобном для оператора формате: мнемосхемы, отображающей состояние элементов сети; графиков изменения ключевых параметров; окон данных параметров по ключевым узлам и каждому объекту сетевого хозяйства; оповещений о событиях.
Система реализации управляющих воздействий позволяет либо отправлять запросы на объекты электросетевого хозяйства об изменениях режима, либо напрямую управлять отдельными её элементами.
А это уже техническая реализация
Резервирует все эти три системы обычный телефон, с помощью которого оператор может узнать о текущем положении напрямую и также напрямую отдать указания. Фактически же, в то время всё оперативно-диспетчерское управление осуществлялось с помощью звонков по телефону, а SCADA выполняла лишь функцию информирования о режиме.
Более того, из-за размеров энергообъединения FE мнемосхема на экране диспетчера при максимальном масштабе отображения была крайне малоинформативна, поэтому диспетчеры полностью полагались на подсистему генерации оповещений, которая выдавала сообщения по факту любых изменений в энергосистеме: включение/отключение объектов, выход контролируемых параметров за допустимые пределы и т.д. По факту получения оповещения диспетчер увеличивал масштаб схемы, рассматривал нужный район и решал о том, какие дальнейшие действия следует предпринять.
Примерно так выглядела мнемосхема на экране оператора. Упустить какое-то изменение статуса линии очень легко
В 14:14 из-за ошибки сервера SCADA подсистема генерации оповещений была потеряна без всяких сообщений об ошибке и диспетчер не узнал об этом, считая отсутствие оповещений за признак нормальной работы энергосистемы, а не отказ функции SCADA. В результате диспетчер на протяжении следующих двух часов был уверен, что у него в энергосистеме всё в порядке. Решением проблемы могло бы быть использование видеостены с большой мнемосхемой, где были бы удобно отображены все объекты и планшеты с основными параметрами сети в ключевых точках. На такой мнемосхеме диспетчер мог бы вовремя увидеть отключение сетевых элементов и изменения параметров режима. Но по неизвестной причине в FE решили сэкономить на этом, из-за чего диспетчер оказался в полной ситуационной неосведомлённости о положении в его энергосистеме.
А вот так должен выглядеть диспетчерский пункт в идеале, с большой мнемосхемой
Что же произошло с серверами FE?
Подсистема генерации отчётов SCADA GE Energy’s XA/21, использовавшейся FE, исполнялась на отдельном резервированном сервере, вместе с другими вспомогательными подсистемами. Такое решение должно было увеличить надёжность работы всей системы и обеспечить большее быстродействие. Принцип работы системы был простой: она обрабатывала входящую информацию о событиях в энергосистеме и изменении параметров, как расчётных, так и измеряемых, и в случае, если один из параметров вызывал срабатывание заранее заданных триггеров, то формировалось оповещение в виде текстового сообщения и звукового сигнала.
Архитектура SCADA GE XA/21
Окно отчётов о событиях
Во время расследования первоначально предположили, что сервер подсистемы генерации отчётов был поражён червём “Slammer”, бушевавшем тогда в США и уже поразившем ранее несколько ТЭЦ. Но разбор логов и кода не подтвердил эту теорию, система кибербезопасности сетей FE была признана адекватной и нескомпрометированной. Тогда начали искать причину в самом коде и после анализа миллионов строк таки нашли. Проблема заключалась в самом принципе работы генератора отчётов и крайне маловероятном стечении обстоятельств. После срабатывания триггера на вход генератора подаётся запрос на создание оповещения. Из-за кратковременной задержки обработки запросов, не более чем на пару миллисекунд, два процесса одновременно обратились к записи в одну и ту же ячейку памяти. Это привело к «состоянию гонки» (race condition) и зависанию генератора отчётов в бесконечном цикле обращения к ячейке памяти. Из-за этого уже с 14:14 оповещения не генерировались SCADA.
Так как запросы обрабатывались по очереди поступления, то из-за зависания генератора вскоре в буфере скопились необработанные запросы. К 14:41 буфер сервера переполнился и он отключился. На этот случай был резервный сервер, в котором мгновенно из бэкапа были развёрнуты все процессы, ранее запущенные на основном сервере, в том числе и зависший генератор отчётов. Этот сервер протянул гораздо меньше из-за всё большего числа данных на входе и отрубился в 14:54. При этом никаких сообщений об этом диспетчеру сгенерировано не было, автоматически был создан только тикет в службу технической поддержки FE и то только после отключения второго сервера. Из-за отсутствия в протоколе ТП требования сообщать о неисправностях оборудования диспетчерам, техподдержка естественно этого не сделала и отправилась чинить сервера, в то время, как диспетчер был свято уверен, что весь последний час они работают нормально.
В 15:08 были «мягко» перезапущены сервера, но при этом инженеры проверили только сам факт восстановления работы серверов, но не функциональность их ПО. А ПО подсистемы генерации отчётов после ребута серверов из-за ошибки при завершении работы оказалось нефункциональным. Т.е. перезапуск серверов никак не решил проблему. В 15:42 звонок из техподержки сильно удивил диспетчеров, сообщением, что «мы восстановили работоспособность сервера генерации отчётов». При этом подсистема генерации отчётов всё ещё не работала и диспетчер пребывал в полной уверенности, что у него-то в энергосистеме всё в порядке. Хотя на самом деле к моменту этого звонка всё уже 10 минут как катилось к чёрту и точка невозврата была очень близка.
Потерянное время
Таймлайн блэкаута
Так как диспетчер FE не знал об отказе генерации отчётов, а потому считал, что в его зоне ответственности всё в порядке, то он естественно пропустил роковое для энергосистемы событие – отключение ЛЭП 345 кВ Chamberlin-Harding. Она отключилась в 15:05 при нагрузке всего 45,5% от номинальной из-за касания фазой дерева, растущего под ЛЭП. Первой очевидной причиной такого развития событий было пренебрежение FE ухаживанием за трассами ЛЭП, так как это было уже второе за два часа, но не последнее за день, отключение линии из-за касания деревьев. Второй же причиной, непосредственно приведшей к первой, стал рост перетоков по линиям и их нагрев из-за уже случившегося ранее ослабления сети. Тот факт, что перегрузка на них так и не наступила был скорее лишь отягчающим обстоятельством, так как незначительный провис из-за термического расширения провода привёл к короткому замыканию, чего в нормальной ситуации быть не должно.
Так как в SCADA никаких уведомлений не было, то диспетчер FE был уверен, что ЛЭП 345 кВ Chamberlin-Harding находится в работе и на звонки с вопросом о её состоянии отвечал, что «всё ОК». В 15:32 из-за выросшей нагрузки коснулась деревьев и отключилась ещё одна линия — 345 кВ Hanna-Juniper. Отключение уже трёх системообразующих линий 345 кВ привело к росту нагрузки на все остальные линии. Диспетчер FE всё ещё бездействовал, так как не знал о всех этих авариях.
Диспетчер FE
Точкой невозврата стал отказ линии 345 кВ The Star-South Canton расположенной на стыке FE and AEP (American Electric Power). Эта линия уже дважды отключалась из-за выросшей нагрузки по ней: в 14:27 и в 15:38. Оба раза причиной были всё то же сочетание факторов перегрузка + деревья, растущие под ЛЭП. В 15:41 линия 345 кВ The Star-South Canton отключилась в третий раз и восстановить её работу на этот раз не вышло.
Схема сети и 3 первых отключившихся линии 345 кВ
Всё, точка невозврата была пройдена – сеть потеряла 4 системообразующие ЛЭП из-за чего началась перегрузка сети меньшего напряжения 138 кВ. Первая линия 138 кВ отключилась в 15:39, т.е. за две минуты до отключения 345 кВ The Star-South Canton, но после процесс принял лавинообразный характер, так как чем меньше линий оставалось в работе – тем больше была перегрузка оставшихся.
Таймлайн роста перегрузки линий
При всём при этом оператор FE не делал НИЧЕГО, так как всё ещё не знал об отказе SCADA, а на все звонки отвечал, что «проблема не в моей зоне ответственности, ищите у себя». Время на предотвращение аварии было упущено и процесс вошёл в самоподдерживающуюся стадию – впереди был только блэкаут. Но неужели система была столь плохо выстроена, что отказ одного диспетчерского пункта привёл к неминуемому коллапсу энергосистемы? Конечно нет, но в тот день США очень не повезло.
Координировали, координировали, да не выкоординировали
Естественно, что в США управлением энергетики страны занимались не дураки и понимали, что для координации деятельности разных диспетчерских центров нужен единый орган. И он на Северо-Востоке США был – координатор надёжности энергосистемы или Midcontinent Independent System Operator (MISO), объединявший значительную часть операторов энергосистем северо-востока. К MISO в автоматическом режиме поступали все данные энергообъединений о состоянии объектов сетевого хозяйства (включены/отключены), а также результаты измерения основных параметров. По этим данным информационная система MISO должна была проводить анализ надёжности, сводящийся к расчёту режима и поиску опасных для работоспособности системы ситуаций. Выполнение таких расчётов должно было проводиться как автоматически по таймеру и при отключении/включении объектов, так и вручную в случае необходимости проверки верности предлагаемых управляющих воздействий.
Операционная зона MISO
В идеальном мире для этого использовалась бы real-time система, как SCADA, но MISO развивало свой собственный продукт, в основном методом добавления костылей. Система в распоряжении MISO была не real-time: да она получала данные с низовых устройств, но расчёт надёжности проводился по таймеру раз в 5 минут, таким образом оператор имел срез состояния энергосистемы, который мог за следующий промежуток времени сильно устареть. Автоматический расчёт надёжности проводился по скрипту, который днём в 13:07 был отключён для проведения работ с системой. Причиной стала необходимость привязать сигналы включенного/отключенного состояния линии 230 кВ Bloomington-Denois Creek к её отображению в расчётной модели. После окончания процесса диспетчер попросту забыл активировать скрипт и ушёл на ланч из-за чего до 14:40 автоматический расчёт надёжности не производился.
При этом даже после восстановления работы скрипта и получения результатов расчёта, свидетельствующих о нарастании кризиса в энергосистеме, эти расчёты оказались неадекватны ситуации. Как выяснится уже в ходе расследования, линия 345 КВ Stuart-Atlanta, отключившаяся ещё в 14:02, тоже не была подключена к автоматическому обновлению статуса по данным, получаемым от автоматик. Из-за этого расчётная модель обсчитывала более лёгкий режим и диспетчер MISO не понимал всю тяжесть ситуации.
Как результат MISO до 14:40 вообще не понимало о существовании кризисной ситуации. После 14:40 ситуация оценивалась куда легче, чем была в реальности. Сомнения в том, что результаты расчётов адекватны, появились у диспетчера MISO лишь в начале 15 часов, когда стало ясно, что реальные замеры мощности и расчётные сильно расходятся. И только в 15:29 после телефонного звонка оператору линии 345 КВ Stuart-Atlanta (фирма PJM), была найдена ошибка в модели, устранённая к 16:04, когда каскадная авария уже охватила всю энергосистему. В результате MISO не смог выполнить свою основную функцию – сохранить надёжность работы энергосистемы.
При этом, как выяснится в ходе расследования, схожая же проблема была и у SCADA оператора PJM. При этом у MISO кроме ПО для расчёта надёжности были и альтернативные решения, которые выступали вспомогательными средствами и могли бы помочь быстрее сориентироваться. Так в комплексе ПО MISO была ещё и программа Flowgate Monitoring Tool (FMT), которая была альтернативным средством, рассчитывавшим перегрузки наиболее важных линий и сигнализировавшей об этом. Данное ПО работало в тот день штатно и могло бы вовремя выявить аварийную ситуацию, но оно не смогло из-за особенностей сбора данных. В отличие от расчёта надёжности, FMT получала данные о состоянии линий не от их автоматик, а из базы данных NERC SDX, куда владельцы линий должны были сообщать в течении 24 часов(!) о всех выполняемых переключениях. В результате эта система обсчитывала подчас режимы, отстающие от реальных на часы, и никто этого вообще не замечал. По какой причине FMT брало данные не из обновляющейся автоматически информации о состоянии линий, неизвестно.
Кроме того, была и система оповещений об отключении линий, похожая на имевшуюся в SCADA FE. Но и она оказалась бесполезна, так как, во-первых, диспетчер просто не заметил оповещения. А во-вторых, пользовательский интерфейс был таков, что диспетчеру после получения оповещения требовалось найти на схеме нужный выключатель и, уже кликнув по нему, проверить его состояние. Система не подсвечивала выключатели, изменившие состояние, и не имела функции перехода к объекту по щелчку на уведомление. Все эти недостатки вместе стали фатальны для работы MISO в тот день.
После 15:42 энергосистему северо-востока было уже не спасти. Лавинообразный процесс нарастания перегрузок и отключений линий привёл к тому, что за следующие 25 минут отключилось из-за перегрузки 11 линий 138 кВ и 1 – 345 кВ. За следующие 5 минут отключилось 6 линий 345 кВ. Каскад перегрузок линий и их отключений привёл к ещё одному каскадному процессу – лавине напряжения, так как баланс нагрузки и генерации стал смещаться в сторону нагрузки и напряжение в сети стало проседать. А когда напряжение в сети уменьшается, то уменьшается и производительность асинхронных двигателей питательных насосов электростанций из-за чего их эффективность падает и ещё больше увеличивается дефицит генерации. В течении следующих 5 секунд с 16:10:39 по 16:10:46 отключилось 5 линий 345 кВ и 19 энергоблоков станций (в том числе 1 блок АЭС) суммарной мощностью 4700 Мвт.
При этом никто из диспетчеров так и не понимал что и почему происходит. MISO только-только восстановили нормальную работу ПО для оценки надёжности, но всё новые отключения приводили к расхождениям их схемы и реальности. Операторы AEP и PJM, на энергосистемы которых начали накатывать перегрузки, тоже потеряли контроль за ситуацией, так как не понимали причину возникших сложностей, а оператор FE клятвенно уверял, что «проблемы не в сети FE, у нас всё в порядке». При этом в работе SCADA AEP и PJM тоже были недостатки, в частности проблемы с обновлением статуса состояния линий, но это уже мало влияло на ситуацию.
Диспетчеры FE начали понимать, что что-то возможно идёт не так, когда после 15:42 на них обрушилась просто лавина звонков от соседних диспетчерских пунктов и низового персонала FE о всё новых отключениях линий. Только после этого диспетчер решил таки позвонить в техподдержку и попросить проверить работу сервера ещё раз. К 16:05 был произведён полный перезапуск подсистемы генерации отчётов и она заработала. Внезапное прозрение, что проблема таки в сети FE, произошло, но было уже слишком поздно. Диспетчеры FE и других операторов, могли лишь наблюдать за разворачивающимся апокалипсисом, так как сделать что-то было уже решительно невозможно.
Диспетчер FE в 16:00
Диспетчер FE в 16:05
История сохранила записи телефонных звонков операторов, в которых сквозит полное непонимание происходящего:
Оператор AEP: “У нас большие проблемы… много линий отключается. East Lima и New Liberty отключились. Посмотри на это.”
Оператор AEP: “О боже, я в глубокой …”
Оператор PJM: “Ты и я, мы оба, брат. Что мы собираемся делать? Если тебе что-нибудь нужно, дай мне знать.”
Оператор AEP: “Только что еще что-то отключилось. Много чего происходит.”
Оператор PJM: “И когда это произошло? Это могло бы. ”
Оператор MISO: “Я еще не знаю. У меня все еще есть. У меня не было пока возможности изучить этот вопрос. Сейчас слишком много всего происходит”.
Последние минуты перед коллапсом. Жёлтым отмечены перетоки мощности
К 16:13 коллапс энергосистемы завершился, приведя к отключению сотен линий электропередач и 508 энергоблоков на 265 электростанциях, из которых 10 это АЭС(!). В зоне отключения оказались: северная часть Огайо, восточная часть Мичигана, северная часть Пенсильвании и Нью- Джерси, большая часть Нью-Йорка, Массачусетс, Коннектикут, Вермонт, а также канадские провинции Онтарио и Квебек. Всего без света остались 40 миллионов человек в США и 15 миллионов в Канаде. Рухнула сотовая и телефонная связь, остановилась торговля на Нью-Йоркской фондовой бирже, возникли проблемы с посадкой самолётов и многочасовые задержки рейсов. Единственным плюсом было то, что авария произошла днём и власти успеют наладить подобие порядка на улицах городов. На полное возвращение энергоснабжения уйдёт несколько дней из-за того, что многие станции вынуждены были проводить ремонтные работы из-за аварийного останова.
Как несложно заметить, авария развивалась 2 часа, из которых первые полтора часа было достаточно возможностей для устранения аварии, но из-за бездействия диспетчеров она развилась в каскадную аварию, остановить которую было уже нереально. При этом причиной аварии стала череда из множества совершенно неожиданных отказов. Фактически только отсутствие оперативного диспетчерского управления и сделало блэкаут неизбежным, хотя если бы линии ЛЭП оператор FE вовремя очищал от деревьев, то может ничего вообще бы и не случилось. После аварии было проведено расследование, которое выявило все описанные и многие другие проблемы. Среди предложений мер реакции были, как организационные меры, в частности пересмотры внутренних регламентов и аудиты, так и технические меры: совершенствование систем SCADA, более жесткие требования к контролю состояния линий, установка автоматик отключения нагрузки при снижении напряжения и т.д. Более крупных блэкаутов в США не было, но, как и в любой сложной системе, сколько бы дыр в ней не закрывали, всегда может найтись новая.
NERC «Technical Analysis of the August 14, 2003, Blackout: What Happened, Why, and What Did We Learn?»
U.S.-Canada Power System Outage Task Force «Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations»
The Availability Digest «The Great 2003 Northeast Blackout and the $6 Billion Software Bug»
Автор: Владимир Герасименко (@Woolfen).
Пост написан для блога компании TimeWeb и перенесён на Пикабу с разрешения.
А ещё вы можете поддержать нас рублём, за что мы будем вам благодарны.
Яндекс-Юmoney (410016237363870) или Сбер: 4274 3200 5285 2137.
При переводе делайте пометку «С Пикабу от . «, чтобы мы понимали, на что перевод. Спасибо!
Как из переменного тока сделать постоянный
Для питания некоторых видов оборудования необходим постоянный ток. Если воспользоваться обычной розеткой на 220 В, то можно сжечь прибор. Выходом в такой ситуации является использование специального устройства, которое производит нужное преобразование.
Что такое выпрямление тока
Когда на вход любого устройства поступает переменное напряжение, его график имеет синусоидальную форму. При этом оно будет периодически изменяться от отрицательного значения к положительному и обратно.
Когда говорят о выпрямлении, подразумевается, что в результате ток или напряжение будут иметь постоянное значение. Существуют разные способы как из переменного тока в сети сделать постоянный. Например, если применить диод, то на выходе сохраняются только положительные полупериоды, а отрицательные превращаются в ноль. Выпрямитель с одним диодом называется однополупериодным.
График напряжения при использовании диода не будет прямой линией, но может рассматриваться как результат выпрямления переменного тока. Если используется диодный мост, то преобразование переменного тока в постоянный происходит более качественно.
График напряжения после выпрямления с помощью диодного моста будет представлять собой только положительные полупериоды. Такое напряжение называют пульсирующим. Применение диодного моста для преобразования переменного тока позволяет избежать потери части сигнала.
Но как видно из графика, хотя выпрямление и произошло, форма выходного сигнала всё ещё далека от прямой линии. Чтобы это исправить, на выходе из диодного моста устанавливают конденсатор.
Он действует следующим образом. Когда напряжение растёт, его обкладки заряжаются. Далее, как видно на графике, оно начинает вновь уменьшаться до нуля. В это время конденсатор разряжается. В следующем полупериоде ситуация повторяется.
Применение конденсатора приводит к тому, что амплитуда напряжения уменьшается, и такой сигнал уже можно считать выпрямленным. Он уже подходит для питания оборудования, работающего на постоянном токе.
На графике результат выпрямления показан синей линией. Видно, что он значительно более близок к прямой линии по сравнению с предыдущими вариантами.
Схема выпрямителя включает в себя еще и трансформатор. Его необходимость связана с тем, что требуется получить не просто постоянное напряжение, а только то, которое имеет строго определённые характеристики. Чаще всего оно должно иметь 12 В или 24 В.
Действие трансформатора основано на принципе электромагнитной индукции. В трансформаторе используются две обмотки и сердечник. Переменное напряжение подаётся на первичную обмотку. При этом оно формирует быстро изменяющееся магнитное поле, которое через сердечник передаётся на вторичную обмотку. Благодаря действию электромагнитной индукции на ней создаётся напряжение, величина которого определяется количеством витков в обмотке. Таким образом получают переменное напряжение нужной величины, которое затем проходит через диод и конденсатор и поступает на выходные клеммы.
Для чего необходимо постоянное напряжение в быту
В квартирах и частных домах обычно пользуются переменным напряжением 220 В частотой 50 Гц. Несмотря на это, в быту часто применяют оборудование, для работы которого требуется постоянный ток. Поэтому для получения напряжения 12 Вольт или 24 понадобится купить преобразователь переменного сетевого напряжения в постоянное. Необходимость в таком устройстве может возникнуть:
- При использовании электрической дрели, шуруповерта, электропилы и прочих электроинструментов.
- Выпрямитель понадобится в тех случаях, когда необходимо подзарядить смартфоны, ноутбуки, планшеты или другое электронное оборудование.
- Некоторые электроприборы, например, принтеры подключаются к розетке через адаптер, который преобразует сетевое переменное напряжение в постоянное.
- Постоянное напряжение может использоваться в стационарных насосах для полива огорода, используемых в частных хозяйствах.
- Для работы разной аудио и видео техники обычно требуется конвертировать переменное напряжение в постоянное.
- Если в квартире или в частном доме устанавливается система наблюдения, то следует купить и выпрямитель, который преобразует переменный ток в постоянный.
- От источников постоянного напряжения работают некоторые виды медицинского оборудования.
- В местах, где имеется повышенная влажность, выгодно применять слаботочные сети, предоставляющие для питания постоянное напряжение.
- Постоянное напряжение требуется также для работы светодиодного освещения или галогеновых ламп.
Следует также сказать, что зачастую постоянное напряжение обеспечивается не за счёт преобразования переменного сетевого напряжения, а при помощи аккумуляторов и батарей. При этом нужно учитывать, что покупку аккумуляторов приходится совершать регулярно, поскольку они постепенно изнашиваются и рано или поздно приходят в негодность. Если же использовать розетки, подключая к ним электроприборы через выпрямитель, то будет обеспечено надёжное и долговечное питание везде, где есть доступ к электросети.
Купить преобразователи переменного тока в постоянный можно на сайте АлиЭкспресс по ссылке: https://aliclick.shop/r/c/1r43k0wp1qmyep52?sub=2.
Как сделать выпрямитель самостоятельно
Если самостоятельно создать устройство, которое преобразовывает переменное напряжение, можно не только выйти из положения в сложной ситуации, но и лучше понять принцип его действия. Для работы необходимо приготовить следующее:
- Прибор, с помощью которого можно измерять напряжение. Для этого, например, можно использовать вольтметр или мультиметр.
- Изолирующую ленту, киперную ленту.
- Медную проволоку.
- Паяльник.
- Трансформатор. Покупайте тот, первичная обмотка которого рассчитана на 220 В.
Подготовив всё необходимое, можно приступать к работе:
- Сначала нужно подключить трансформатор к сети и измерить напряжение на вторичной обмотке. Если, например, требуется после выпрямления получить 12 Вольт, то придётся убрать часть витков.
- Затем следует припаять диодный мост и конденсатор в соответствии с принципиальной схемой выпрямителя.
Нужно учитывать, что по сравнению с переменным напряжением на вторичной обмотке результат на выходных клеммах увеличится в 1.41 раз. То есть, для получения 12 В необходимо, чтобы переменное было равно 8.51 В (12/1.41 = 8.51).
Здесь рассказано, как сделать простейший выпрямитель, но на практике также применяются и другие варианты. Например, выпрямитель с удвоением напряжения. Принцип его работы основывается на поочередной зарядке-разрядке конденсаторов входным напряжением с полуволнами разной полярности. В результате получают напряжение вдвое выше входного.
Удвоитель используется, когда возникает необходимость увеличить в 2 раза напряжение, снимаемое со вторичной обмотки трансформатора. Этот вариант является более выгодным по сравнению с перематыванием обмотки.
Постоянный ток: история открытия и изучения явления, применение в современном мире
Еще древнегреческий философ Фалес писал о свойствах янтаря, потертого шерстью, притягивать мелкие предметы. Но достаточно долгое время все знания об электричестве ограничивались этим любопытным опытом. Никто не связывал с этим явлением природные молнии, наблюдаемые во время гроз. Дальнейшее изучение электрического тока, пока без разделения на постоянный и переменный, продолжилось лишь в XVII веке. И за пару сотен лет ученые продвинулись очень далеко.
Открытие явления
В 1600 году был введен термин «электричество», а более чем полвека спустя началось его активное изучение. Изначально разделения на постоянный и переменный ток не существовало, так что исследования были несистематичными. Первая теория, касающаяся природы электричества, была сформулирована в XVIII веке Бенджамином Франклиным, который, впрочем, остался в истории в первую очередь как политический деятель. Чуть позднее был сконструирован первый конденсатор — так называемая Лейденская банка. Тем не менее, считается, что всерьез история исследования постоянного тока началась с опытов Гальвани, касающихся, как ни странно, в первую очередь биологии, а не физики. Знаменитый итальянец буквально перевернул науку.
Изучение постоянного тока
Опыты Гальвани касались в первую очередь физиологии. Пропуская электрический ток через тело лягушки, он заметил, как ее мышцы сокращались. Описание этих опытов заинтересовало не только биологов, но и физиков. Сам же Гальвани, проведя еще серию исследований, счел, что мышцы являются чем-то вроде Лейденской банки, или, если быть точнее, ее батарей. Эти опыты легли в основу современной электрофизиологии. Последователь итальянца, его соотечественник Алессандро Вольта, в 1800 году создал первый источник питания постоянного тока — гальванический элемент. Англичане Карлейл и Николсон повторили опыты своего коллеги, придя к выводу, что в определенных условиях электричество, пропущенное через воду, заставляет ее разлагаться на составные элементы. Подобные эксперименты в конечном итоге дали стимул развитию химии. Русские ученые также приложили руку к исследованиям — уроженец Санкт-Петербурга Василий Петров в 1803 году описал явление электрической дуги. Однако 9 лет спустя это открытие произошло снова и было представлено как случившееся впервые. Дальнейшие исследования уже были направлены на изучение характеристик и законов, управляющих током. Параллельно ученые находили все новые и новые способы применения электричества, изобретая удивительные приборы, которыми человечество пользуется до сих пор.
Характеристики и параметры
Как очевидно из названия, величина постоянного тока и его напряжение в любой момент остаются неизменными. Несмотря на то что движение заряженных частиц происходит непрерывно, их общее пространственное положение остается стационарным. Кстати, как ни удивительно, но с технической точки зрения термин «постоянный ток» является некорректным, ведь неизменным является не он, а напряжение источника питания, его электродвижущая сила (ЭДС). Но понятие настолько прочно вошло в употребление, что его изменение просто невозможно представить. Итак, главным признаком этой разновидности остается отсутствие смены полярности напряжения на источнике питания. Постоянный ток обладает рядом параметров, которые, разумеется, присущи и другим типам:
- Сила или величина (I). Показывает количество тока, протекающего через поперечное сечение проводника за единицу времени. Измеряется в амперах.
- Плотность (F). Отношение силы тока к площади поперечного сечения проводника. Единицы измерения — А/мм 2 .
- Напряжение (V). Эта физическая величина показывает работу источника электроэнергии при переносе заряда по отношению к ее величине. Измеряется в вольтах.
- Электрическая мощность (P). Обозначает скорость передачи или преобразования электроэнергии. Единица — ватт.
- Сопротивление (R). Эта величина характеризует свойство проводника препятствовать прохождению тока. Измеряется в омах.
Законы и формулы
Все вышеназванные величины напрямую связаны друг с другом, и практически любая из них может быть выражена через остальные. В школьном курсе физики это подробно изучается, но нелишним будет повторить все снова. Самыми простыми примерами формул могут являться следующие:
- V = I x R = P : I;
- I = V : R = P : V;
- R = V 2 : P = V : I = P : I 2 ;
- P = V x I = I 2 x R = V 2 : R.
Разумеется, многие помнят и о законе Ома, хотя не все смогут его сформулировать. Он применим и к постоянному току и описывает зависимость ЭДС источника или напряжения и силы от сопротивления. На языке формул это выглядит так:
- U = IR. То есть разность потенциалов между началом и концом проводника равна произведению силы тока и сопротивления.
В том числе и с этим законом связана еще одна важная зависимость. Она описывает переход электрической энергии в тепловую при передаче. Иными словами, речь идет о потерях мощности в виде нагрева проводов. Эта зависимость называется законом Джоуля-Ленца и описывается так:
- Q = I 2 Rt,
где Q — выделяемая теплота, I — сила тока, R — сопротивление, а t — промежуток времени.
Эта формула работает только для постоянной разновидности. То есть она применима только для частного случая, в то время как для переменного она будет выглядеть несколько сложнее.
Отличия от остальных видов
Если рассмотреть графики основных типов электротока, то никаких вопросов не возникнет. Линия постоянного будет прямой, остающейся на одном уровне с течением времени, переменного — пилообразной. В отличие от последнего, первый не обладает таким параметром, как частота, вернее, в этом случае она является нулевой. Кроме того, направление постоянного тока не меняется со временем. Различается и обозначение — DC (direct current) и AC (alternating current). Как нетрудно догадаться, первый — это постоянный, а второй — переменный. К тому же последняя разновидность может быть как одно-, так и трехфазной. В этом и заключаются основные отличия.
Источники и усилители
Разумеется, постоянный ток не берется из ниоткуда. Существуют спеицальные приборы, которые его генерируют. Это обычные батарейки, аккумуляторы и другие современные источники. Первым из них был тот самый гальванический элемент Вольта. Но иногда ток нужно не только генерировать, но и усиливать. Для этого тоже есть специальные устройства — усилители постоянного тока (УПТ). Эти приборы необходимы для того, чтобы повышать напряжение. Усилитель в полном смысле можно назвать УПТ, если его рабочий диапазон включает все частоты, вплоть до самых низких, и нулевую. Эти устройства очень востребованы и широко используются во многих областях электроники, так что их развитие и совершенствование происходит непрерывно.
Применение в современном мире
Он повсеместно. Любые современные приборы, работающие как от сети, так и от аккумуляторов, используют постоянный ток. В первом случае устройство предусматривает специальный элемент, преобразующий электричество из одной разновидности в другую. Во втором же в источнике питания происходит химическая реакция, которая поддерживает напряжение неизменным. Казалось бы, что в этом случае проще было бы, если бы в сети был постоянный, а не переменный ток, но это не так. Вторую разновидность проще вырабатывать, а также его не приходится преобразовывать для работы трансформаторов. А устройства, позволяющие из переменного получать постоянный называются выпрямителями, хотя приборы, проводящие обратное действие, — инверторами. Нашел свое применение этот вид тока и в электрохимии, некоторых видах сварки, обработке металлов, медицине и многих других областях. Он действительно везде, и иногда это кажется настоящим чудом, ведь все начиналось с обычного янтаря.
Чем отличается переменный ток от постоянного — объяснение простыми словами
Основное отличие переменного тока от постоянного. Как получают каждый из этих токов.
Определение
Электрическим током называется направленное движение заряженных частиц. Так звучит определение из учебника по физике. Простыми словами можно перевести так, что у его составляющих всегда есть какое-то направление. Собственно, это направление и является определяющем в сегодняшнем разговоре.
Переменный ток (Alternative Current – AC) отличается от постоянного (Direct Current – DC) тем, что у последнего электроны (носители заряда) всегда движутся в одном направлении. Соответственно отличием переменного тока является то, что направление движения и его сила зависят от времени. Например, в розетке направление и величина напряжения, соответственно и сила тока, изменяется по синусоидальному закону с частотой в 50 Гц (50 раз за секунду изменяется полярность между проводами).
Для так сказать чайников в электрике изобразим это на графике, где по вертикальной оси изображена полярность и напряжение, а по горизонтальной время:
Красной линией изображено постоянное напряжение, оно остаётся неизменным с течением времени, разве что изменяется при коммутации мощной нагрузки или КЗ. Зелеными волнами показан синусоидальный ток. Вы можете видеть, что он протекает то в одну, то в другую сторону, в отличие от постоянного тока, где электроны всегда протекают от минуса к плюсу, а направлением движения электрического тока выбран путь от плюса к минусу.
Если сказать по-простому, то разницей в этих двух примерах является то, что у постоянки всегда плюс и минус находятся на одних и тех же проводах. Если говорить о переменном, то в электроснабжении используют понятия фазы и нуля. Если рассматривать по аналогии с постоянкой, то фаза и ноль являются плюсом и минусом, только полярность меняется 50 раз в секунду (в США и ряде других стран 60 раз в секунду, а в самолётах более 400 раз).
Происхождение
Разница между AC и DC заключается в их происхождении. Постоянный ток можно получить из гальванических элементов, например, батареек и аккумуляторов.
Также его можно получить с помощью динамомашины – это устаревшее название генератора постоянного тока. Кстати с их помощью генерировалась энергия для первых электросетей. Мы об этом говорили в статье об открытиях Николы Тесла, в заметках о войне идей между Теслой и Эдисоном. Позже так называли небольшие генераторы для питания велосипедных фар.
Переменный ток добывают также с помощью генераторов, в наше время в основном трёхфазных.
Также и то и другое напряжение можно получить с помощью полупроводниковых преобразователей и выпрямителей. Так вы можете выпрямить переменный ток или получить его же, преобразовав постоянный.
Формулы для расчета постоянного тока
Разницей между переменкой и постоянкой являются и формулы для расчетов процессов, происходящих в цепи. Так сопротивление рассчитываются по Закону Ома для участка цепи или для полной цепи:
Мощность также просто рассчитываются:
Формулы для расчета переменного тока
В расчётах цепей переменного тока разница в формулах обусловлена отличием процессов, протекающих в емкостях и индуктивностях. Тогда формула закона Ома будет для активного сопротивления:
Здесь 1/wC и wL – емкостное и индуктивное реактивные сопротивления, а w – угловая частота, она равна 2пиF.
Для цепи с ёмкостью и индуктивностью:
wL-1/wC – это реактивное сопротивление, оно обозначается как Z.
На видео ниже более подробно рассказывается, в чем отличие переменного тока от постоянного: