В каком случае поверхность рассеивает падающий на нее свет почему
Перейти к содержимому

В каком случае поверхность рассеивает падающий на нее свет почему

A. Законы отражения

Свет распространяется прямолинейно только в однородной среде. Если свет подходит к границе раздела двух сред, он изменяет направление распространения.

Кроме того, часть света возвращается в первую среду. Это явление называется отражением света. Луч света, идущий к границе раздела сред в первой среде (рис. 16.5), называется падающим (а). Луч. остающийся в первой среде после взаимодействия на границе раздела сред, называется отраженным (b).

Aksen-16.5.jpg

Угол \(\alpha\) между падающим лучом и перпендикуляром, восставленным к отражающей поверхности в точке падения луча, называется углом падения.

Угол \(\gamma\) между отраженным лучом и тем же перпендикуляром называется углом отражения.

Еще в III в. до н.э. древнегреческим ученым Евклидом опытным путем были открыты законы отражения. В современных условиях проверку этого закона можно провести с помощью оптической шайбы (рис. 16.6), состоящей из диска, по окружности которого нанесены деления, и из источника света, который можно перемещать по краю диска. В центре диска закрепляют отражающую поверхность (плоское зеркало). Направляя свет на отражающую поверхность, измеряют углы падения и углы отражения.

Aksen-16.6.jpg

1.Лучи падающий, отраженный и перпендикуляр, восставленный к границе двух сред в точке падения луча, лежат в одной плоскости.

2.Угол отражения равен углу падения:

Законы отражения можно вывести теоретически, пользуясь принципом Ферма.

Пусть на зеркальную поверхность падает свет из точки А. В точке А1 собираются лучи, отраженные от зеркала (рис. 16.7). Предположим, что свет может распространяться двумя путями, отражаясь от точек О и О’. Время, которое потребуется свету, чтобы пройти путь АОА1, можно найти по формуле \(t=\frac<\upsilon>+\frac<\upsilon>\), где \(

\upsilon\) — скорость распространения света.

Кратчайшее расстояние от точки А до зеркальной поверхности обозначим через l, а от точки А1 — через i1.

Из рисунка 16.7 найдем

Из рисунка видим, что \(\frac=\sin \alpha\); \(\frac=\sin \gamma\).

Следовательно, \(t’_x=\frac<1><\upsilon>(\sin \alpha-\sin \gamma)\).

Для того чтобы время t было минимально, производная должна быть равна нулю. Таким образом, \(\frac<1><\upsilon>(\sin \alpha-\sin \gamma)=0\). Отсюда \(

\sin \alpha = \sin \gamma\), а так как углы \(

\gamma\) — острые, то отсюда следует равенство углов\[

Мы получили соотношение, выражающее второй закон отражения. Из принципа Ферма вытекает и первый закон отражения: отраженный луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности, так как если бы эти лучи лежали в разных плоскостях, то путь AOA1 не был бы минимальным.

Падающий и отраженный лучи обратимы, т.е. если падающий луч направить по пути отраженного луча, то отраженный луч пойдет по пути падающего — закон обратимости световых лучей.

В зависимости от свойств границы раздела сред отражение света может быть зеркальным и диффузным (рассеянным).

Зеркальным называется отражение, при котором падающий на плоскую поверхность (рис. 16.8) параллельный пучок лучей после отражения остается параллельным.

Aksen-16.8.jpg

Шероховатая поверхность отражает параллельный падающий на нее пучок света по всевозможным направлениям (рис. 16.9). Такое отражение света называют диффузным.

Aksen-16.9.jpg

Соответственно различают зеркальные и матовые поверхности.

Следует отметить, что это относительные понятия. Поверхностей, отражающих только зеркально, не существует. В большинстве случаев имеется лишь максимум отражения в направлении угла зеркального отражения. Этим объясняется то, что мы видим зеркало и другие зеркально отражающие поверхности со всех сторон, а не только в одном направлении, в котором они отражают свет.

Одна и та же поверхность может быть зеркальной и матовой в зависимости от длины волны падающего света.

Если граница имеет вид поверхности, размеры d неровностей которой меньше длины волны света \(\lambda\), то отражение будет зеркальным (поверхность капли ртути, отполированная металлическая поверхность и т.д.), если \(d \gg \lambda\), отражение будет диффузным. Чем лучше обработана поверхность, тем большая доля падающего света отражается в направлении угла зеркального отражения, а меньшая — рассеивается.

Рассеянный свет возникает вследствие мелких дефектов полировки, царапин, мельчайших пылинок, имеющих величину порядка нескольких микронов.

Поверхность, которая равномерно рассеивает падающий свет во все стороны, называют абсолютно матовой. Абсолютно матовых поверхностей также не существует. К абсолютно матовым поверхностям близки поверхности неглазурованного фарфора, чертежной бумаги, снега.

Даже для одного и того же излучения матовая поверхность может стать зеркальной, если увеличить угол падения. Диффузно отражающие поверхности могут отличаться и по величине коэффициента отражения \(\rho=\frac> \), показывающего, какую часть энергии W падающего на поверхность светового пучка составляет энергия Wотр отраженного светового пучка.

Белая бумага для рисования имеет коэффициент отражения, равный 0,7—0,8. Очень высокий коэффициент отражения для поверхностей, покрытых окисью магния, — 0,95 и очень малый для черного бархата — 0,01—0,002.

Заметим, что зависимость отражения и поглощения от частоты колебаний чаще всего имеет избирательный характер.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — С. 457-460.

Отражение света

В этом состоит закон отражения света. Он, как и другие физические законы, выражает устойчивую, повторяющуюся связь между физическими величинами, в данном случае между углом падения и углом отражения света.

3. Из закона отражения света следует, что падающий и отражённый лучи обратимы. Если световой пучок падает на зеркало в направлении АО, то отражаться он будет в направлении ОB (см. рис. 150); если же свет будет падать на зеркало в направлении ВО, то отражённым будет луч ОА.

4. Если параллельный пучок света падает на гладкую плоскую поверхность, например на плоское зеркало, то отражённый пучок тоже будет параллельным (рис. 151, а). Лучи имеют одинаковое направление. Такое отражение называют зеркальным.

Если параллельный пучок света падает на шероховатую поверхность, то отражённый пучок уже не будет параллельным (рис. 151, б). Лучи будут направлены в разные стороны. Говорят, что отражение света от шероховатой поверхности диффузное. По-другому можно сказать, что поверхность рассеивает падающий на неё свет.

В жизни с диффузным отражением света человек встречается чаще, чем с зеркальным. Именно благодаря диффузному отражению света мы видим окружающие предметы.

1. Что происходит с пучком света при падении на границу раздела двух сред?

2. Сформулируйте закон отражения света.

3. Чем зеркальное отражение света отличается от диффузного?

1. Угол падения луча света равен 30°. Начертите падающий и отражённый лучи. Обозначьте углы падения и отражения. Чему равен угол отражения? Чему равен угол между падающим и отражённым лучами?

2. При каком угле падения падающий и отражённый лучи света составляют прямой угол?

Отражение света.

Темы кодификатора ЕГЭ: закон отражения света, построение изображений в плоском зеркале.

Когда световой луч падает на границу раздела двух сред, происходит отражение света: луч изменяет направление своего хода и возвращается в исходную среду.

На рис. 1 изображены падающий луч , отражённый луч , а также перпендикуляр , проведённый к отражающей поверхности в точке падения .

Рис. 1. Закон отражения

Угол называется углом падения. Обратите внимание и запомните: угол падения отсчитывается от перпендикуляра к отражающей поверхности, а не от самой поверхности! Точно так же угол отражения — это угол , образованный отражённым лучом и перпендикуляром к поверхности.

Закон отражения.

Сейчас мы сформулируем один из самых древних законов физики. Он был известен грекам ещё в античности!

Закон отражения.
1) Падающий луч, отражённый луч и перпендикуляр к отражающей поверхности, проведённый в точке падения, лежат в одной плоскости.
2) Угол отражения равен углу падения.

Таким образом, , что и показано на рис. 1 .

Закон отражения имеет одно простое, но очень важное геометрическое следствие. Давайте посмотрим на рис. 2 . Пусть из точки исходит световой луч. Построим точку , симметричную точке относительно отражающей поверхности .

Рис. 2. Отражённый луч выходит из точки

Из симметрии точек и ясно, что . Кроме того, . Поэтому , и, следовательно, точки лежат на одной прямой! Отражённый луч как бы выходит из точки , симметричной точке относительно отражающей поверхности. Данный факт нам чрезвычайно пригодится в самом скором времени.

Закон отражения описывает ход отдельных световых лучей — узких пучков света. Но во многих случаях пучок является достаточно широким, то есть состоит из множества параллельных лучей. Картина отражения широкого пучка света будет зависеть от свойств отражающей поверхности.

Если поверхность является неровной, то после отражения параллельность лучей нарушится. В качестве примера на рис. 3 показано отражение от волнообразной поверхности. Отражённые лучи, как видим, идут в самых разных направлениях.

Рис. 3. Отражение от волнообразной поверхности

Но что значит «неровная» поверхность? Какие поверхности являются «ровными»? Ответ таков: поверхность считается неровной, если размеры её неровностей не меньше длины световых волн. Так, на рис. 3 характерный размер неровностей на несколько порядков превышает величину длин волн видимого света.

Поверхность с микроскопическими неровностями, соизмеримыми с длинами волн видимого света, называется матовой. В результате отражения параллельного пучка от матовой поверхности получается рассеянный свет — лучи такого света идут во всевозможных направлениях. (Именно поэтому мы видим окружающие предметы: они отражают рассеянный свет, который мы и наблюдаем с любого ракурса.)
Само отражение от матовой поверхности называется поэтому рассеянным или диффузным. (Латинское слово diffusio как раз и означает распространение, растекание, рассеивание.)

Если же размер неровностей поверхности меньше длины световой волны, то такая поверхность называется зеркальной. При отражении от зеркальной поверхности параллельность пучка сохраняется: отражённые лучи также идут параллельно (рис. 4 )

Рис. 4. Отражение от зеркальной поверхности

Приблизительно зеркальной является гладкая поверхность воды, стекла или отполированного металла. Отражение от зеркальной поверхности называется соответственно зеркальным. Нас будет интересовать простой, но важный частный случай зеркального отражения — отражение в плоском зеркале.

Плоское зеркало.

Плоское зеркало — это часть плоскости, зеркально отражающая свет. Плоское зеркало — привычная вещь; таких зеркал несколько в вашем доме. Но теперь мы сможем разобраться, почему, смотрясь в зеркало, вы видите в нём отражение себя и находящихся рядом с вами предметов.

Точечный источник света на рис. 5 испускает лучи в разных направлениях; давайте возьмём два близких луча, падающих на плоское зеркало. Мы уже знаем, что отражённые лучи пойдут так, будто они исходят из точки , симметричной точке относительно плоскости зеркала.

Рис. 5. Изображение источника света в плоском зеркале

Самое интересное начинается, когда расходящиеся отражённые лучи попадают к нам в глаз. Особенность нашего сознания состоит в том, что мозг достраивает расходящийся пучок, продолжая его за зеркало до пересечения в точке . Нам кажется, что отражённые лучи исходят из точки — мы видим там светящуюся точку!

Эта точка служит изображением источника света Конечно, в реальности ничего за зеркалом не светится, никакая энергия там не сосредоточена — это иллюзия, обман зрения, порождение нашего сознания. Поэтому точка называется мнимым изображением источника . В точке пересекаются не сами световые лучи, а их мысленные продолжения «в зазеркалье».

Ясно, что изображение будет существовать независимо от размеров зеркала и от того, находится ли источник непосредственно над зеркалом или нет (рис. 6 ). Важно только, что-бы отражённые от зеркала лучи попадали в глаз — а уж глаз сам сформирует изображение источника.

Рис. 6. Источник не над зеркалом: изображение есть всё равно

От расположения источника и размеров зеркала зависит область видения — пространственная область, из которой видно изображение источника. Область видения задаётся краями и зеркала . Построение области видения изображения ясно из рис. 7 ; искомая область видения выделена серым фоном.

Рис. 7. Область видения изображения источника S

Как построить изображение произвольного предмета в плоском зеркале? Для этого достаточно найти изображение каждой точки этого предмета. Но мы знаем, что изображение точки симметрично самой точке относительно зеркала. Следовательно, изображение предмета в плоском зеркале симметрично предмету относительно плоскости зеркала (рис. 8 ).

Рис. 8. Изображение предмета AB в плоском зеркале

Расположение предмета относительно зеркала и размеры самого зеркала не влияют на изображение (рис. 9 ).

Закон отражения света: определение, формула, применение

Закон отражения света имеет следующее определение: угол отражения равен углу падения. Падающий и отраженный лучи и перпендикуляр к поверхности зеркала в точке падения лежат в одной плоскости. Более подробно о физическом смысле закона и о том на базе чего он был сформулирован читайте далее в этой статье.

Небольшое вступление.

Если вы не знаете, что находится по ту сторону зеркала, спросите физика! Он скажет вам, что вы найдете там не перевернутую копию нашего мира, а другой, столь же загадочный мир физики. Он произнесет множество благозвучных физических названий, таких как видимый образ, закон отражения и луч света.

Хотя сегодня мы не можем представить себе жизнь без зеркал, или плоских стеклянных зеркал, их история не особенно длинна. Однако само явление отражения, благодаря которому зеркала могут существовать и работать, известно уже много веков и не менее увлекательно, чем они сами.

Явление отражения света

Проведите наблюдение, которое позволит вам понять механизм формирования изображения при отражении световых лучей, как вы это наблюдаете на поверхности зеркала или поверхности воды.

Что вам понадобится?

  • зеркало без рамы;
  • фонарик с сильным светом (он может быть встроенным в телефон);
  • расчёска;
  • лист бумаги;
  • линейка;
  • карандаш;
  • широкий пластырь или серебристая изоляционная лента.

Инструкция.

  1. Нанесите ленту на зубья расчески так, чтобы в середине остались один или два зазора.
  2. На листе бумаги проведите линию, перпендикулярную длинному краю бумаги.
  3. На тот же край листа бумаги, лежащего на столе, вертикально положите отражающую сторону зеркала.
  4. Положите расческу на стол вдоль длинного края бумаги напротив зеркала так, чтобы кончики зубцов были перпендикулярны столешнице.
  5. Осветите расческу, чтобы один или два луча света прошли через незапечатанные щели.
  6. Осветите зеркало так, чтобы свет фонарика падал на точку, где нарисованная линия пересекается с поверхностью зеркала.
  7. Изменяйте угол освещения зеркала, располагая расческу под разными углами к листу бумаги – всегда держите фонарик так, чтобы свет падал на расческу перпендикулярно.
  8. Что происходит с лучом света, отраженным от зеркала?

Подведём итог эксперимента.

Для того чтобы избежать двусмысленности в описании наблюдаемого нами явления, следует сначала выучить определения нескольких терминов.

В физике все гладкие поверхности, отражающие свет, называются зеркалами. Линия, перпендикулярная поверхности зеркала, называется нормалью. Свет фонаря падал в точку, где перпендикуляр (нормаль) пересекался с поверхностью зеркала. Угол между падающим лучом и перпендикуляром называется углом падения. Падающий луч отражается от поверхности зеркала, и получается отраженный луч. Угол между отраженным лучом и перпендикуляром называется углом отражения.

Наблюдения показали, что изменение угла, под которым свет фонаря падает на зеркало после прохождения через расчёску, влечет за собой изменение угла, под которым отражается падающий свет. Когда угол падения увеличивается, угол его отражения также увеличивается; когда он уменьшается, угол отражения также уменьшается.

Закона отражения света

Изменяя угол падения, мы одновременно изменяем угол отражения. Угол падения и угол отражения вместе с перпендикуляром лежат в одной плоскости и равны друг другу.

Закон отражения света

Иллюстрация закона отражения света

Формулировка закона и его формула.

Закон отражения света гласит так: угол отражения равен углу падения. Падающий и отраженный лучи и перпендикуляр к поверхности зеркала в точке падения лежат в одной плоскости.

В виде формулы закон отражения света записывается следующим образом: ∠ α = ∠ β.

Применение

Закон отражения используется во многих оптических системах. Повседневное значение имеют применения, описанные ниже.

Закон отражения используется для всех типов зеркал (плоские зеркала, вогнутые зеркала, выпуклые зеркала, параболические зеркала) и их применения (например, фары, фонари, косметические зеркала).

Он также используется для светоотражателей, которые должны быть установлены, например, на велосипедах. Они имеют гладкие стеклянные или пластиковые поверхности снаружи и множество маленьких призм внутри, на которых свет отражается таким образом, что выходит в том же направлении, откуда вошел. Поэтому велосипеды, находящиеся точно по направлению движения автомобиля, могут быть распознаны в темноте гораздо раньше, чем это было бы возможно без дополнительного оснащения светоотражателями.

Также закон отражения должен соблюдаться и в других местах. Гладкая поверхность воды отражает свет. И в тоже время, отражение тел видно на поверхности воды.

В помещениях, освещаемых сфокусированными прожекторами – например, на сцене театра – установка больших стеклопакетов может быть запрещена строительными нормами. Это связано с тем, что стекла воспринимаются только в том случае, если глаз смотрит на отраженный луч света. Для всех остальных людей существует опасность столкнуться со стеклом. В музеях, где много стеклянных витрин с точечным освещением, можно неоднократно наблюдать, как гости ударяются головой о стеклянную обшивку, потому что не заметили само стекло. Поэтому комнаты с большим количеством стеклянных витрин должны иметь рассеянное освещение.

Обратимость световых лучей

Световые пути обычно обратимы. Что это значит, показано на двух рисунках на рис. 2 на простом примере.

В левом изображении на рис. 2 свет исходит слева и отражается от зеркала. Читая угловую шкалу, можно увидеть, что закон отражения выполняется.

Демонстрационный эксперимент по обратимости светового пути

Рис. 2. Демонстрационный эксперимент по обратимости световых лучей

В правом изображении на рис. 2 луч света падает на зеркало точно с того направления, в котором луч света был отражен ранее. Вы видите, что теперь отраженный луч света проходит точно там же, где раньше проходил луч падающего света: поэтому путь света является обратимым.

Обратимость светового пути является важным основным принципом геометрической оптики, а также применима к гораздо более сложным явлениям, например, к преломлению света на воде.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *