Диэлектрики: определения, формулы, примеры
Диэлектриками называют вещества, не обладающие способностью проводить электрический ток.
Стоит отметить, что данное определение лишь приблизительно выражает физический смысл приведенного понятия.
Абсолютных изоляторов, то есть веществ, которые совсем не проводят ток, в природе не существует. Диэлектрики по сравнению с проводниками в 1015 − 1020 раз хуже проводят ток. Данный факт основывается на том, что в диэлектриках отсутствуют свободные заряды.
Что такое диэлектрики и их примеры
Если диэлектрик поместить в электрическое поле, то, как диэлектрик, так и само поле значительно изменятся. В диэлектриках, в которых до контакта с полем не было заряда, возникают электрические заряды. Это явление объясняется процессом поляризации вещества, другими словами, в поле диэлектрик обретает электрические полюсы. Возникающие при этом заряды называются поляризационными.
Разделить такие заряды невозможно, чем они существенно отличаются от индукционных зарядов в проводниках. Данное отличие основывается на том факте, что в металлах присутствуют электроны, имеющие возможность перемещаться на относительно большие расстояния. В диэлектриках положительные и отрицательные заряды связаны между собой, и их перемещение ограничено пределами одной молекулы, что является крайне малым расстоянием.
Диэлектрики состоят либо из нейтральных молекул, либо из закрепленных в положении равновесия, к примеру, в узлах кристаллической решетки заряженных ионов. Ионные кристаллические решетки могут быть разбиты на, в целом, нейтральные «элементарные ячейки».
Действие электрического поля на заряды, принадлежащие диэлектрику, провоцирует лишь легкое смещение относительно изначального положения, тогда как заряды проводников, испытывающие такое же влияние, срываются с места. В условиях отсутствующего электрического поля диэлектрик может быть условно представлен в виде совокупности молекул, в каждой из которых положительные и отрицательные заряды равные по величине распределены по всему объему вещества.
В процессе поляризации заряды каждой отдельной молекулы диэлектрика смещаются в противоположные ее стороны. Соответственно, одна часть молекулы становиться положительно заряженной, а другой — отрицательно, что, в общем, дает возможность заявить: молекула превращается в электрический диполь.
Равнодействующая электрических сил, в однородном поле оказывающих влияние на нейтральную молекулу диэлектрика, эквивалентна нулю. Этот факт основывается на том, что центр тяжести молекулы не передвигается ни в одну из сторон. Молекула просто претерпевает деформирование.
Существуют такие диэлектрики, в которых в условиях отсутствующего электрического поля молекулы имеют дипольный момент (полярные молекулы).
В случае, когда поле отсутствует, такие молекулы, принимающие непосредственное участие в тепловом движении, ориентированы беспорядочно. Если же диэлектрик находится в поле, молекулы, в основном, ориентируются по его направлению. Соответственно, диэлектрик проходит процесс поляризации.
У симметричных молекул, таких как, к примеру, O 2 , N 2 , в отсутствие поля центры тяжести отрицательных и положительных зарядов одинаковы. По этой причине собственного дипольного момента у молекул нет (неполярные молекулы). У несимметричных же молекул (возьмем в качестве примера H 2 O , C O ) центры тяжести сдвинуты друг относительно друга, в результате чего молекулы имеют дипольный момент и носят название полярных.
Также существуют диэлектрические или же ионные кристаллы, которые формируются при помощи ионов с противоположным знаком. Такой кристалл состоит из пары “вдвинутых” друг в друга кристаллических решеток, одна из которых является положительной, а вторая — отрицательной. В целом кристалл условно можно принять за подобие гигантской молекулы. Процесс наложения электрического поля провоцирует сдвиг одной решеток относительно друг друга, вследствие чего и происходит поляризация ионных кристаллов. Существует также тип поляризованных без участия поля кристаллов. При дальнейшем исследовании поведения диэлектриков в электрических полях механизм возникновения поляризации значения иметь не будет. Существенным фактом является только то, что поляризация диэлектрика происходит через появление некомпенсированных макроскопических зарядов. Значения объемной плотность зарядов ( ρ ) и поверхностной плотности ( σ ) неполяризованного диэлектрика равняются нулю. После же процесса поляризации σ ≠ 0 , а в некоторых случаях и ρ ≠ 0 . Поляризация приводит к появлению в тонком поверхностном слое диэлектрика избытка связанных зарядов с одним знаком. В том случае, если ортогональная или же перпендикулярная часть напряженности поля E n → ≠ 0 на приведенном участке, то в результате влияния поля заряды с одним знаком уходят внутрь, а с другим, наоборот, выходят наружу.
Вектор поляризации диэлектрика
Поляризованность P → или, другими словами, вектор поляризованности характеризует степень поляризации диэлектрика:
где ∆ ρ представляет собой дипольный момент элемента диэлектрика.
В условиях неполярных молекул вектор поляризованности может быть определен в следующем виде:
P → = 1 ∆ V ∑ ∆ V ρ i → = N ρ 0 → ,
где сложение идет относительно всех молекул в объеме △ V . N — концентрация молекул,
ρ 0 → является индуцированным дипольным моментом (Он один и тот же у всех молекул). ρ 0 → ↑ ↑ E → .
Формула поляризованности в условиях полярных молекул принимает вид следующего выражения:
P → = 1 ∆ V ∑ ∆ V ρ i → = N p → ,
в котором P → представляет собой среднее значение дипольных моментов, которые равнозначны по модулю, но обладают разными направлениями.
В изотропных диэлектриках средние дипольные моменты по направлению идентичны напряженности внешнего электрического поля. У диэлектриков с молекулами полярного типа, вклад в поляризованность от наведенных зарядов значительно ниже вклада от переориентации поля.
Ионная решеточная поляризации может быть описана следующей формулой: P → = 1 ∆ V ∑ ∆ V ρ i → = N p → .
В большей части случаев подобная поляризация является анизотропной.
Если представить плоский конденсатор, который заполнен диэлектриком так, как это проиллюстрировано на рисунке 1 , то на принадлежащей ему левой обкладке расположен положительный заряд, а на правой — отрицательный. По причине того факта, что разноименные заряды притягиваются друг к другу, у положительной обкладки на поверхности диэлектрика появится отрицательный заряд, а у правой, то есть отрицательной – положительный заряд диэлектрика. Выходит, что поле, формирующееся поляризационными зарядами, имеет противоположное направлению поля направление, которое создают обкладки, соответственно, диэлектрик ослабляет поле.
+ q , − q представляют собой заряды на обкладках конденсатора.
E → является напряженностью поля, которое формируется обкладками конденсатора.
− q ′ , + q ′ — это заряды диэлектрика.
E → ‘ — напряженность поля, которое создается как результат поляризации диэлектрика.
Явление влияния вещества на магнитное и электрическое поля было эмпирическим путем открыто Фарадеем. Именно этим ученым было в науку были введены такие термины, как диэлектрик и диэлектрическая постоянная.
В случае если однородный изотропный диэлектрик полностью заполняет собой объем, ограниченный эквипотенциальными поверхностями поля сторонних зарядов, то напряженность поля внутри него в ε раз меньше напряженности поля сторонних зарядов.
где ε определяет диэлектрическую проницаемость среды.
Напряженность поля точечного заряда, который расположен в диэлектрике с некоторой диэлектрической проницаемостью ε, может быть выражена в виде следующего выражения:
E → = 1 4 π ε ε 0 q r 3 r → .
Закон Кулона для зарядов, находящихся в жидком и газообразном диэлектрике принимает такой вид:
F → = 1 4 π ε ε 0 q 1 q 2 r 3 r → .
Задание: Бесконечную плоскую пластину из однородного изотропного диэлектрика разместили в однородном электростатическом поле с напряженностью E = 200 В м , направленной под прямым углом силовым линиям поля. Диэлектрическая проницаемость диэлектрика равняется 2 . Какова напряженность поля внутри диэлектрика?
Решение
Поле в вакууме в ε раз сильнее, чем поле в диэлектрике, по этой причине запишем, что:
Произведем некоторые расчеты:
E → ‘ = 200 2 = 100 В м .
Ответ: Напряженность поля в пластине будет 100 В м .
Задание: Заряженные шарики обладают массой m 1 = m 2 = m . Они подвешены на нитях, имеющих одинаковые значения длины, в одной точке, их заряды эквивалентны q 1 и q 2 ( смотри рисунок 1 ). Изначально они располагаются в воздухе (диэлектрическая проницаемость ε 1 ), после этого погружаются в жидкость ε 2 . Каково отношение диэлектрических проницаемостей ε 2 ε 1 , если при погружении в жидкость системы из шариков угол расхождения нитей не претерпел изменений? Отношение плотности шариков к плотности диэлектрика ρ s h ρ d = b .
Решение
Запишем условие равновесия шарика в симметричной системе в воздухе:
F e 1 → + m g → + N 1 → = 0 .
Теперь выразим условие равновесия одного шарика в жидкости:
F e 2 → + m g → + N 2 → + F A → = 0 .
Запишем проекции уравнения F e 1 → + m g → + N 1 → = 0 на оси:
О х : F e 1 — N 1 sin a 2 = 0 ,
O y : m g — N 1 cos α 2 = 0 .
Проекции уравнения F e 2 → + m g → + N 2 → + F A → = 0 на оси:
О х : F e 2 — N 2 sin α 2 = 0 ,
O y : m g — N 2 cos α 2 — F A = 0 .
Берем отношение уравнения F e 1 — N 1 sin a 2 = 0 и m g — N 1 cos a 2 = 0 , в качестве результата получаем:
t g a 2 = F e 1 m g .
Уравнение F e 2 — N 2 sin a 2 = 0 на уравнение m g — N 2 cos a 2 — F A = 0 , получаем:
t g a 2 = F e 2 m g — F A → F e 1 m g = F e 2 m g — F A .
Основываясь на законе Кулона, запишем такое выражения для F e 1 , F e 2 :
F e 1 = q 1 q 2 4 π ε 1 ε 0 r 2 и F e 2 = q 1 q 2 4 π ε 2 ε 0 r 2 .
Модуль силы Архимеда равняется следующему выражению:
F A = ρ d V g = ρ d m ρ s h g .
Подставим в уравнение t g a 2 = F e 2 m g — F A → F e 1 m g = F e 2 m g — F A уравнения F e 1 = q 1 q 2 4 π ε 1 ε 0 r 2 и
F e 2 = q 1 q 2 4 π ε 2 ε 0 r 2 , в результате получим:
q 1 q 2 4 πε 1 ε 0 r 2 m g = q 1 q 2 4 πε 2 ε 0 r 2 m g — ρ d m ρ s h g → 1 ε 1 1 = 1 ε 2 1 — ρ d ρ s h → ε 2 ε 1 = 1 1 — ρ d ρ s h = 1 1 — b .
Ответ: Диэлектрическая проницаемость жидкости должна быть ε 2 e 1 = 1 1 — b .
Виды, свойства и область применения электроизоляционных материалов
Любое электрическое оборудование, включая генераторы, силовые установки и распределительные устройства, состоит из токоведущих частей. Для надежной и безопасной эксплуатации последние должны быть защищены друг от друга и от воздействия окружающих компонентов. В этих целях используются электроизоляционные материалы.
Важно, чтобы обмотка на якоре была отделена от его сердечника, виток возбуждения – от аналогичной детали, полюсов и каркаса агрегата. Материалы, которые применяются для изоляции чего-либо от воздействия электрического тока, называются диэлектриками. Стоит отметить, что такие изделия бывают двух типов – одни абсолютно не пропускают ток, другие – хоть и делают это, но в мизерных количествах.
При создании подобных материалов применяют органические и неорганические элементы вкупе с различными добавками, необходимыми при пропитке и склеивании. В последнее время широкую популярность набирает жидкая изоляция для проводов, часто используемая в выключателях и трансформаторах (например, трансформаторное масло). Не реже в электротехническом оборудовании применяют газообразные диэлектрики, вплоть до обычного воздуха.
Электроизоляционные материалы и сферы их применения
К основным областям применения электроизоляционных материалов можно отнести различные промышленные ветви, радиотехнику, приборостроение и монтаж электрических сетей. Диэлектрики – это основные элементы, от которых зависит безопасность и стабильность работы любого электроприбора. На качество и функциональность изоляции влияют различные параметры.
Таким образом, главная причина применения электроизоляции – соблюдение правил безопасности. В соответствии с ними строго запрещено эксплуатировать оборудование с частично или полностью отсутствующей изоляцией, поврежденной оболочкой, поскольку даже малые токи могут нанести вред человеческому организму.
Свойства диэлектриков
Для того чтобы гарантировать выполнение важных функций, электроизоляционные изделия должны обладать необходимыми свойствами. Основное отличие диэлектрика от проводника – намного большее удельное сопротивление (100-1100 Ом*см). С другой стороны, их электрическая проводимость в 14-15 раз ниже токоведущих жил. Связано это с природным происхождением изоляционных материалов, в составе которых намного меньше свободных отрицательных электронов и положительно заряженных ионов, влияющих на токопроводимость.
Важно! Несмотря на последнее высказывание, при нагревании любого диэлектрика количество ионов и электронов существенно возрастает, из-за чего повышается электрическая проводимость и возникает риск пробоя током.
Все свойства диэлектриков можно разделить на две основные группы – активные и пассивные, при этом вторая является наиболее важной. К пассивным относится диэлектрическая проницаемость: чем меньше ее значение, тем более надежным и качественным является изолятор, поскольку он не оказывает негативного влияния на электрическую схему и не добавляет паразитные емкости. С другой стороны, если изделие эксплуатируется в роли диэлектрического конденсатора, то проницаемость должна быть максимально высокой (паразитные емкости в данном случае важны).
Параметры изоляции
К числу основных относятся:
- электропрочность;
- удельное электрическое сопротивление;
- относительная проницаемость;
- угол диэлектрических потерь.
Оценивая качество и эффективность диэлектриков, и сравнивая их свойства, нужно выявить зависимость перечисленных параметров от значений тока и напряжения. По сравнению с проводниками электроизоляционные компоненты имеют повышенную электрическую прочность. Учитывая сказанное выше, не менее важным является то, насколько хорошо изоляторы сохраняют свои полезные свойства и удельные величины при нагревании, увеличении напряжения и других воздействиях.
Классификация диэлектрических материалов
Выбор того или иного изоляционного материала зависит от мощности тока, протекающего по проводникам оборудования. Существует несколько критериев для классификации диэлектриков, но наиболее важными являются два – агрегатное состояние и происхождение. Для изоляции шнуров бытовых электроприборов используют твердые изоляторы, трансформаторов и прочего высокомощного оборудования – жидкие и газообразные.
Классификация по агрегатному состоянию
По агрегатному состоянию выделяют три типа диэлектрических материалов – твердые, жидкие и газообразные.
Твердые диэлектрики
Электроизоляционные материалы данного типа считаются наиболее распространенными и популярными, используются практически во всех сферах, где присутствует оборудование с токоведущими частями. Их качество зависит от некоторых химических свойств, при этом диэлектрическая проницаемость может быть совершенно разной – 10-50 000 (безразмерная величина).
Твердые изоляторы бывают полярными, неполярными и сегнетоэлектрическими. Главное отличие трех разновидностей – принцип поляризации. Основными свойствами данных материалов являются химическая стойкость, трекингостойкость и дендритостойкость. От химической стойкости зависят возможности диэлектрика противостоять воздействию агрессивной среды – кислотам, щелочам, активным жидкостям. Трекингостойкость влияет на защиту от электрической дуги, дендритостойкость – от появления дендритов.
Керамические изоляторы эксплуатируют как линейные и проходные диэлектрики в составе подстанций. Для защиты бытовых электрических приборов могут применяться текстолиты, полимеры и бумажные изделия, промышленного оборудования – лаки, картон и различные компаунды.
Сочетая несколько разных материалов, производителям диэлектриков удается получить особые свойства изделия. Благодаря этому повышается устойчивость к нагреву, воздействию влаги, экстремально низких температур и даже радиации.
Наличие нагревостойкости говорит о том, что изолятор способен выдерживать высокие температуры, но в каждом отдельном случае максимальная планка будет разной (она может достигать и 200, и 700 град. Цельсия). К числу таковых относятся стеклотекстолитовые, органосиликатные и некоторые полимерные материалы. Фторопластовые диэлектрики устойчивы к воздействию влаги, могут эксплуатироваться в тропиках. Вообще фторопласт не только гидрофобен, но еще и негигроскопичен.
Если в состав электротехнического оборудования включены атомные элементы, то важно использовать изоляцию, устойчивую к радиоактивному фону. На помощь приходят неорганические пленки, часть полимеров, стеклотекстолиты и различные слюдинитовые изделия.
К морозостойким диэлектрикам относятся компоненты, сохраняющие свои удельные свойства при температуре до -90 град. Цельсия. Наконец, в электроприборах, эксплуатируемых в космосе, применяются изоляционные материалы с повышенной вакуумной плотностью (например, керамика).
Жидкие диэлектрики
Диэлектрики в подобном агрегатном состоянии зачастую эксплуатируются в промышленном электрооборудовании. Наиболее ярким примером являются трансформаторы, для безопасной работы которых требуется специальное масло. К числу жидких диэлектриков можно отнести сжиженный газ, парафиновое или вазелиновое масло, спреи, дистиллированную воду, которая была очищена от солей и других примесей.
Жидкие электроизоляционные материалы описываются следующими технико-эксплуатационными характеристиками:
- диэлектрическая проницаемость;
- электропрочность;
- электропроводность.
Величина физических параметров жидких диэлектриков зависит от степени их чистоты (загрязнения). Наличие твердых примесей в воде или масле приводит к существенному повышению электрической проводимости, что связано с увеличением числа свободных электронов и ионов. Жидкости очищаются разными методами, начиная от дистилляции и заканчивая ионным обменом. После выполнения данного процесса повышается электропрочность материала и снижается его электропроводность.
Жидкие электроизоляторы можно разделить на три основные группы:
- Из нефти изготавливают трансформаторное, конденсаторное и кабельное масла.
- Синтетические жидкости активно применяются в промышленном приборостроении. К их числу можно отнести соединения на основе фтор- и кремнийорганики. Кремнийорганические материалы способны выдерживать сильные морозы, они относятся к числу гигроскопичных, поэтому могут применяться в малых трансформаторах. С другой стороны, стоимость таких соединений намного выше, чем у нефтяных масел.
- Растительные жидкости крайне редко используются при изготовлении электроизоляции. Речь идет о касторовом, льняном, конопляном и других маслах. Все перечисленные вещества считаются слабополярными диэлектриками, поэтому могут применяться только для пропитки бумажных конденсаторов или для образования пленки в электроизоляционных лаках и красках.
Газообразные диэлектрики
Самыми популярными газообразными диэлектриками считаются электротехнический газ, азот, водород и воздух. Все они могут быть разделены на две категории – естественные и искусственные. К первым относится воздух, который часто эксплуатируют в качестве диэлектрика для защиты токоведущих частей линий электрической передачи и машин.
Наряду с преимуществами, есть у воздуха недостатки, из-за чего он не подходит для эксплуатации в герметичном оборудовании. Поскольку в его состав входит большое содержание кислорода, то данный газ является окислителем, поэтому в неоднородном поле существенно снижается электрическая прочность.
Азот – отличный вариант для изоляции силовых трансформаторов и высоковольтных линий электропередач. Помимо хороших изоляционных свойств, водород способен принудительно охлаждать оборудование, поэтому зачастую применяется в высокомощных электромашинах. Для герметизированных установок подойдет электротехнический газ, при использовании которого снижается взрывоопасность любых агрегатов. Электротехнический газ часто эксплуатируется в высоковольтных выключателях, что обусловлено способностью к гашению электрической дуги.
Классификация по происхождению
По происхождению диэлектрики делятся на органические и неорганические.
Органические диэлектрики
Органические электроизоляционные изделия можно разделить на естественные и синтетические. Все материалы, относящиеся к первой категории, в последнее время практически не эксплуатируются, что связано с увеличением производственных мощностей синтетических диэлектриков, стоимость которых намного ниже.
Естественными диэлектриками являются растительные масла, парафин, целлюлоза и каучук. К синтетическим материалам можно отнести пластмассы и эластомеры разных типов, применяемые в бытовых приборах и другой электротехники.
Неорганические диэлектрики
Электроизоляционные материалы неорганического типа бывают естественные и искусственными. Из компонентов природного происхождения можно выделить слюду с большой устойчивостью к воздействию химически активных веществ и высоких температур. Не менее популярными являются мусковит и флогопит.
Искусственные диэлектрики – стекло в чистом или разбавленном видах, фарфор и керамика. Материалам данной категории зачастую придают особые свойства, добавляя в их состав различные компоненты. Если изолятор проходной, то нужно применять полевошпатовую керамику с большим тангенсом диэлектрических потерь.
Волокнистые электроизоляционные материалы
Волокнистые диэлектрики эксплуатируются для защиты различного оборудования. К числу таковых относятся каучук, целлюлоза, различные ткани, нейлоновые и капроновые изделия, полистирол и полиамид.
Органические волокнистые диэлектрики имеют высокую гигроскопичность, поэтому практически никогда не используются без специальной пропитки. В последние годы вместо органических изоляторов применяют синтетические волокнистые изделия с ярко выраженной нагревостойкостью.
В качестве примера можно выделить стеклянные волокна и асбест: первые пропитываются лаками и смолами, улучшающими гидрофобность, вторые характеризуются минимальной прочностью, поэтому в их состав добавляют хлопчатобумажные элементы. Речь идет о материалах, которые не плавятся при нагреве.
Классы нагревостойкости электроизоляционных материалов
Класс нагревостойкости диэлектриков указывается буквой латинского алфавита. Перечислим основные из них:
- Y – максимальная температура 90 град. Цельсия. К данной категории относятся различные волокнистые изделия из хлопка, натуральных тканей и целлюлоза. Они не пропитываются и не дополняются жидкими электроизоляторами.
- A – 105 град. Цельсия. Все материалы, перечисленные выше, и синтетический шелк, пропитываемые жидкими диэлектриками (погружаемые в них).
- E – 120 град. Цельсия. Синтетические изделия, включая волокна, пленки и компаунды.
- B – 130 град. Цельсия. Слюдинитовые диэлектрики, асбест и стекловолокно вкупе с органическим связующим и пропиткой.
- F – 155 град. Цельсия. Слюдинитовые материалы, в качестве связующего звена которых выступают синтетические компоненты.
- H – 180 град. Цельсия. Слюдинитовые диэлектрики с кремнийорганическими соединениями, выступающими в качестве связующего.
- C – более 180 град. Цельсия. Все перечисленные выше изделия, в которых не используется связующее или применяются неорганические адгезивы.
Выбор электроизоляционных материалов зависит не только от мощностей оборудования, но и от условий его эксплуатации. Например, для высоковольтных линий электропередач должны использоваться диэлектрики с повышенной морозостойкостью и защитой от воздействия ультрафиолетовых лучей.
Таким образом, информация выше может использоваться только в качестве ознакомительных целей, а окончательное решение должен принимать профессиональный, квалифицированный специалист.
Диэлектрики в электростатическом поле
В энергетике и электронике используются материалы с разной степенью электрической проводимости. Одни применяются в качестве проводников, а другие как изоляторы. В статье будет рассмотрено следующее — как диэлектрики ведут себя в электростатическом поле, структуру таких материалов, а так же их влияние на электростатическое поле.
Определение
Диэлектриком называют вещество или материал, которые при обычных условиях не проводят электрический ток. Объясняется это следующим образом — отсутствие в составе таких веществ или материалов свободных носителей тока, которые могли бы перемещаться под воздействием внешних магнитных или электрических полей.
Но несмотря на полное отсутствие проводимости, изоляторы способны взаимодействовать с электричеством. Само взаимодействие в физике называется поляризацией.
Поляризация — это процесс, который приводит к смещению зарядов материала, если на него воздействует какое-то электростатическое поле. Процессу свойственно образование собственного магнитного поля внутри вещества. Направленность этого поля прямо противоположна напряжённости внешнего электростатического поля.
Процесс поляризации известен всем и он достаточно прост. Всем мы помним опыт с пластиковой ручкой, кусочками бумаги и ткани. Если натереть пластик о шерстяную ткань, то за счет трения образуется слабый по величине ток, который начинает притягивать кусочек бумаги. Это притяжение и является взаимодействием с диэлектриком, которым в данном опыте выступает кусочек бумаги.
Виды поляризации
Поляризация является основным свойством изоляционных материалов. Существует два основных типа поляризации — быстрая (упругая) и медленная (неупругая, релаксационная).
В свою очередь быстрая поляризация может быть:
- Электронной. Такой вид присущ всем диэлектрикам. Он характеризуется полным отсутствием потерь энергии. Электронный тип негативно воздействует на неполярные структуры. При возрастании деформации в сильном поле может возникнуть эффект пробоя.
- Ионной. Наблюдается в ионных кристаллах с плотной упаковкой ионов (NaCl, LiF и так далее). Протекает так же без потерь энергии, но характеризуется заметным смещением кристаллических решеток. Данный тип используется при проектировании сложной электроники, основанной на проводимости кристаллических веществ.
- Ориентированная или дипольная. Характерна для твердых диэлектриков (полярных кристаллов), отличается потерей небольшой доли энергии. Так же дипольная диэлектрическая поляризация имеет связь с диполями внешнего электрического поля.
Получается, что быстрая поляризация отличается малым временем установления τ и не приводит к потерям энергии на промышленных частотах.
Медленная поляризация может быть:
- Ионно-релаксационной. Ее можно увидеть в ионных диэлектриках аморфного типа (стекло, керамика, так далее) и неорганических кристаллических диэлектриках, которым присуща неплотная упаковка ионов (рыхлое строение). Процесс такой поляризации основан на смещении слабосвязанных ионов из-за воздействия внешнего электростатического поля на расстояние, которые превышает амплитуду ангармонических тепловых колебаний. Кроме того из-за повышения температуры поляризация заметно возрастает из-за того, что межионное взаимодействие уменьшается.
- Дипольно-релаксационной — полярные газы, жидкости и некоторые твердые диэлектрики. Дипольные молекулы при таком процессе поворачиваются в сторону внешнего электростатического поля. Возникает в том случае, когда межмолекулярное взаимодействие не препятствуют диполям и последние могут ориентироваться вдоль направления поля. Повышение температуры не приводит к усилению такой поляризации из-за того, что увеличивается хаотическое тепловое движение молекул и благодаря этому уменьшается ориентирующее влияние внешних электростатических полей.
- Миграционной (междуслойной). Это диэлектрики, которые отличаются наличием проводящих и полупроводящих включений или слоев с различной проводимостью, а так же различные композиционные материалы. Время становления может быть как несколько секунд, так и несколько часов.
- Спонтанной. Она образуется даже тогда, когда внешнее электрическое поле не воздействует на активные диэлектрики в виде доменов (сегнетовая соль, титанат бария BaTiO3, нитрит натрия NaNO2 и другое)
Можно сделать следующее заключение — такие диэлектрики отличаются большим временем установления τ. При этом происходят потери энергии и нагрев таких диэлектриков.
Расчет поляризации
Заряд, который образуется при поляризации диэлектрика, распределен по всему объему поляризуемого вещества. Однако во время процесса на поверхности вещества возникает слабый электрический заряд, который имеет поверхностную плотность Q. Этот заряд может двигаться как в направлении внешней стороны поля, так и в обратную сторону от него. На данную направленность заряда оказывает влияние его потенциал.
Вектор поляризации зависим от направленности внешнего электрического поля. На него воздействует как напряженность, так и время ее изменения. Проследить эту зависимость можно с помощью такой формулы:
- P — поляризация.
- Χ — диэлектрическая восприимчивость.
- E — напряженность поля.
При этом напряженность поля внутри диэлектрика равна сумме «E0» и «Eʹ». «E0» —это напряженность поля, которое создается свободными зарядами, а «Eʹ» — напряженность поля, созданного связанными зарядами. То что было описано до этого можно довольно просто выразить такой формулой:
Обратное воздействие
До этого мы выяснили, что при нахождении непроводящего материала во внешнем электрическом поле происходит следующее:
- Атомная оболочка смещается относительно самого заряда.
- Образуется собственный электрический момент.
- Формируются поверхностные заряды, которые имеют противоположное направление внешнему полю.
- Возникает собственное поле, напряженность которого меньше напряженности внешнего поля.
Все эти процессы возникают из-за воздействия внешнего поля. Однако они же приводят к тому, что диэлектрик ослабляет воздействие на него напряженности внешнего поля. Происходит это за счет образования индуцированного внутреннего поля, которое формирует сама структура такого вещества. Оно воздействует на напряженность внешней нагрузки и понижает ее, в зависимости от величины такого образованного поля. Происходит это так же из-за того, что внутри структуры вещества появляются отрицательно заряженные частицы, которые направлены в противоположную от внешнего поля сторону. Часть энергии, затраченная на поляризацию вещества, отводится в сторону и приводит к ослаблению внешнего воздействия на сам диэлектрик.
Разновидности диэлектриков
Изоляционные материалы имеют свойство к поляризации и обратному воздействию на электростатические поля. Но эти свойства не могут быть одинаковыми для всех материалов. Они зависят от разновидности самих материалов, которые подразделяются на:
- Сегнетоэлектрики. К этому типу относятся кристаллические вещества. Им свойственна высокая поляризация, которая увеличивается при возрастании температуры вещества. Кроме того такие кристаллы способны сохранять некоторую часть предыдущего заряда за счет того, что сегнетоэлектрики зависимы от внешнего воздействующего поля. К ним применимо понятие диэлектрического гистерезиса.
- Пьезоэлектрики. К ним также относятся кристаллические материалы. Основной особенностью является возникновение тока при механическом воздействии на материал или деформации его структуры.
- Пироэлектрики. Являются одной из разновидностей пьезоэлектриков. Отличительная особенность таких материалов заключается в возникновении поляризации при изменении температуры внешней поверхности. Такие вещества способны вырабатывать ток как при росте температуры, так и при ее снижении.
Свойства кристаллических диэлектриков сильно отличаются от свойств изоляторов из органических, неорганических веществ, используемых в повседневной жизни. Такие материалы применяются в чувствительных датчиках СВЧ, различных радиодеталях и генераторах тока.
Диэлектрические материалы не способны по своей природе проводить электрический ток. Благодаря этому становится понятно, почему они используются в качестве разнообразных изоляторов. Например, их используют в качестве рукояток для электромонтажных инструментов. Но под воздействием токов, в структуре диэлектриков могут возникать слабые электрические токи. Они не могут нанести вред человеку, но способны изменять в некоторой мере внешнее воздействующее поле.
Электрические заряды
Если потереть стеклянную палочку о лист бумаги, то палочка приобретёт способность притягивать к себе листочки «султана» (см. рис. 1.1), пушинки, тонкие струйки воды. При расчёсывании сухих волос пластиковой расчёской волосы притягиваются к расчёске. В этих простых примерах мы встречаемся с проявлением сил, которые получили название электрических.
Рис. 1.1. Притягивание листочков «султана» наэлектризованной стеклянной палочкой.
Тела или частицы, которые действуют на окружающие предметы электрическими силами, называют заряженными или наэлектризованными. Например, упомянутая выше стеклянная палочка после того, как её потереть о лист бумаги, становится наэлектризованной.
Частицы имеют электрический заряд, если они взаимодействуют друг с другом посредством электрических сил. Электрические силы уменьшаются с увеличением расстояния между частицами. Электрические силы во много раз превышают силы всемирного тяготения.
Электрический заряд – это физическая величина, которая определяет интенсивность электромагнитных взаимодействий. Электромагнитные взаимодействия – это взаимодействия между заряженными частицами или телами.
Электрические заряды делятся на положительные и отрицательные. Положительным зарядом обладают стабильные элементарные частицы – протоны и позитроны, а также ионы атомов металлов и т.д. Стабильными носителями отрицательного заряда являются электрон и антипротон.
Существуют электрически незаряженные частицы, то есть нейтральные: нейтрон, нейтрино. В электрических взаимодействиях эти частицы не участвуют, так как их электрический заряд равен нулю. Бывают частицы без электрического заряда, но электрический заряд не существует без частицы.
На стекле, потёртом о шёлк, возникают положительные заряды. На эбоните, потёртом о мех – отрицательные заряды. Частицы отталкиваются при зарядах одинаковых знаков (одноимённые заряды), а при разных знаках (разноимённые заряды) частицы притягиваются.
Все тела состоят из атомов. Атомы состоят из положительно заряженного атомного ядра и отрицательно заряженных электронов, которые движутся вокруг ядра атома. Атомное ядро состоит из положительно заряженных протонов и нейтральных частиц – нейтронов. Заряды в атоме распределены таким образом, что атом в целом является нейтральным, то есть сумма положительных и отрицательных зарядов в атоме равна нулю.
Электроны и протоны входят в состав любого вещества и являются наименьшими устойчивыми элементарными частицами. Эти частицы могут неограниченно долго существовать в свободном состоянии. Электрический заряд электрона и протона называется элементарным зарядом.
Элементарный заряд – это минимальный заряд, которым обладают все заряженные элементарные частицы. Электрический заряд протона равен по абсолютной величине заряду электрона:
Величина любого заряда кратна по абсолютной величине элементарному заряду, то есть заряду электрона. Электрон в переводе с греческого electron – янтарь, протон – от греческого protos – первый, нейтрон от латинского neutrum – ни то, ни другое.
Проводники и диэлектрики
Электрические заряды могут перемещаться. Вещества, в которых электрические заряды могут свободно перемещаться, называются проводниками. Хорошими проводниками являются все металлы (проводники I рода), водные растворы солей и кислот – электролиты (проводники II рода), а также раскалённые газы и другие вещества. Тело человека также является проводником. Проводники обладают высокой электропроводностью, то есть хорошо проводят электрический ток.
Вещества, в которых электрические заряды не могут свободно перемещаться, называются диэлектриками (от английского dielectric, от греческого dia – через, сквозь и английского electric – электрический). Эти вещества также называют изоляторами. Электропроводность диэлектриков очень мала по сравнению с металлами. Хорошими изоляторами являются фарфор, стекло, янтарь, эбонит, резина, шёлк, газы при комнатных температурах и другие вещества.
Разделение на проводники и изоляторы условно, так как проводимость зависит от различных факторов, в том числе от температуры. Например, стекло хорошо изолирует только в сухом воздухе и становится плохим изолятором при большой влажности воздуха.
Проводники и диэлектрики играют огромную роль в современном применении электричества.