Практическое занятие № 6. Устройство и работа контактных переключающих устройств автоматики
Во многих системах автоматического регулирования и управления систем теплогазоснабжения и вентиляции (ТГВ) переключение отдельных цепей, их замыкание и размыкание выполняется с помощью электромеханических устройств: реле, контакторов, магнитных пускателей, автоматических воздушных выключателей. Автоматическое управление с применением реле, контакторов, магнитных пускателей, а также различных механических переключающих устройств называют релейно-контактным управлением. Замыкание или размыкание электрических цепей происходит в этом случае механическими контактами, которые приводятся в движение теми или иными способами.
Основу аппаратуры релейно-контактного управления составляют реле и контакторы. Применяются также магнитные пускатели – разновидности контакторов, а также автоматические воздушные выключатели – электромеханические устройства для нечастых включений и отключений электрических цепей и защиты их при коротких замыканиях и длительных перегрузках.
Электромагнитное реле – электромеханическое устройство, замыкающее или размыкающее электрические контакты под воздействием управляющего сигнала. Отечественной промышленностью выпускаются различные типы электромагнитных реле, отличающихся по конструкции, назначению и принципу действия.
Электромагнитное реле состоит из сердечника 1 (рис. 1), катушки 2, якоря 3, кронштейна 4, замыкающих и размыкающих контактов 5 и 6 и возвратной пружины 7. Выводы 8 катушки реле и контактов 9 и 10 подсоединяются к соответствующим цепям управления. При протекании тока через обмотку 2 сердечник 1 намагничивается и притягивает якорь 3. Механическое движение якоря приводит к замыканию контакта 5 и размыканию контакта 6. В результате происходит замыкание или размыкание электрической цепи. Контакты реле замыкают или размыкают преимущественно цепи управления, где ток не превышает нескольких ампер. На схеме 11 – амортизирующие пружины.
Рис. 1. Конструкция электромагнитного реле |
В зависимости от времени срабатывания контактов различают реле мгновенного действия и реле с выдержкой времени. В реле мгновенного действия контакты замыкаются (или размыкаются) практически сразу после поступления напряжения на катушку реле (или после исчезновения напряжения на катушке).
В реле с выдержкой времени контакты замыкаются или размыкаются не сразу после поступления на реле сигнала управления, а с некоторой выдержкой времени. Применение контактов реле с выдержкой времени вызвано практической необходимостью. Реле с выдержкой времени используются, например, при автоматическом управлении пуском асинхронных двигателей с фазным ротором в крановых механизмах, конвейерах и других случаях, где требуется создать выдержку времени, необходимую для работы того или иного механизма.
Наиболее простым способом выдержка времени (до 10-12 с) при отпускании реле может быть создана, например введением медной гильзы между обмоткой реле и сердечником. Выдержку времени можно создать и другими способами, например вводя часовой механизм в конструкцию реле. Такие реле называются маятниковыми реле времени.
В некоторых типах реле времени имеется кулачковый распределительный валик, который приводится во вращение электродвигателем небольшой мощности. При вращении валика кулачковым механизмом замыкаются или размыкаются контакты в определённой последовательности через соответствующие промежутки времени. В таких реле выдержка времени может исчисляться от нескольких секунд до нескольких часов. Примером такой конструкции может быть электрический прибор КЭП-12, применяющийся при автоматизации, например вентиляционных установок.
В отдельных случаях электромагнитные реле могут выполнять функцию защиты электроустановок.
Такую функцию выполняют реле максимального тока. Эти реле срабатывают при коротких замыканиях в электрических цепях и настраиваются на ток в обмотке реле, превышающий номинальный в 2-2,5…11 раз.
Для защиты электроустановок при длительных перегрузках применяются реле тепловые. Эти реле, в отличие от электромагнитных, катушек не имеют. В конструкцию теплового реле (рис. 2) входит нагревательный элемент (нихромовая пластина или отрезок нихромовой проволоки) 4, включаемый в цепь главного тока, биметаллическая пластина 1, представляющая продольный спай инваровой и стальной пластин, защёлка 2, контактная система 3, основание 6. Если в цепи нагревательного элемента ток длительно превышает номинальный на 20-25 %, то происходит нагревание этого элемента, биметаллическая пластина нагревается и за счёт различного коэффициента линейного расширения инвара и стали изгибается, освобождая защёлку. Контакты 3 под действием пружины 7 размыкаются, в результате происходит отключение электроустановки от питающей сети. После остывания нагревательного элемента и биметаллической пластины контакт теплового реле может быть возвращён в исходное рабочее состояние кнопкой возврата 5.
Рис. 2. Конструкция теплового реле: а – схема реле | б – условное обозначение контакта теплового реле в электрических схемах |
Контактор – электромагнитный аппарат, предназначенный для замыкания и размыкания силовых цепей под нагрузкой. Под силовыми цепями, или цепями главного тока, понимаются цепи силовых потребителей. В таких цепях наблюдаются токи порядка десятков – сотен ампер. Контакторы не имеют принципиальных отличий при сравнении с электромагнитными реле. Контакторы имеют устройства дугогашения и более массивны по сравнению с электромагнитными реле.
Магнитный пускатель– это контактор с встроенными тепловыми реле, применяется для включения силовых цепей (главными контактами) и цепей управления (вспомогательными контактами), а также для автоматической защиты электрических цепей при длительных перегрузках.
Автоматический воздушный выключатель (автомат) – это электромагнитный аппарат не дистанционного действия со встроенными реле максимального тока или тепловыми реле, применяется для включения и отключения электрических цепей и автоматической защиты их при коротких замыканиях и длительных перегрузках.
Контрольные вопросы
1. Каковы основные свойства реле?
2. Как устроено и как работает нейтральное электромагнитное реле постоянного тока?
3. Какие существуют основные этапы работы реле?
4. В чем состоят особенности конструкции реле переменного тока?
5. Как устроено, как работает и для чего предназначено поляризованное электромагнитное реле?
Какие существуют основные этапы работы реле
Основные определения, термины
и понятия по военно-технической подготовке
- Военно-техническая подготовка
- Тактитка зенитных ракетных войск
- Боевое применение зенитного ракетного комплекса
1.11. Элементы коммутации
1.11.1. Переключательные элементы.
Реле — электрическое или электронное устройство (ключ), предназначенное для замыкания или размыкания электрической цепи при заданных изменениях электрических или неэлектрических входных воздействий.
Обычно под этим термином подразумевается электромагнитное реле — электромеханическое устройство, замыкающее и/или размыкающее механические электрические контакты при подаче в обмотку реле электрического тока, порождающего магнитное поле, которое вызывает перемещения ферромагнитного якоря реле, связанного механически с контактами и последующее перемещение контактов коммутирует внешнюю электрическую цепь.
Основные части электромагнитного реле: электромагнит, якорь и переключатель. Электромагнит представляет собой электрический провод, намотанный на катушку с ярмом из ферромагнитного магнитомягкого материала. Якорь это обычно пластина из магнитного материала, через толкатели воздействующая на контакты.
Рис 1. Принцип действия реле, сверху — нормальное (обесточенное) состояние реле, снизу — включённое состояние реле.
1 — электромагнит (обмотка с ферромагнитным сердечником); 2 — подвижный якорь; 3 — контактная система (переключатель).
1.11.2. Электромагнитное реле постоянного тока.
Электромагнитные реле являются наиболее распространенными из группы электромеханических реле и получили широкое применение в устройствах автоматики, телемеханики и в вычислительной технике.
Если реле используются для переключения мощных цепей тока, то они называются контакторами. Реле и контакторы являются устройствами прерывистого действия. Электромагнитные реле по роду используемого тока делятся:
- на реле постоянного тока;
- реле переменного тока.
Реле постоянного тока подразделяются:
- на нейтральные;
- поляризованные.
Нейтральные реле одинаково реагируют на постоянный ток обоих направлений, протекающий по его обмотке (т. е. положение якоря не зависит от направления тока в обмотке реле). Поляризованное реле реагирует на полярность сигнала. По характеру движения якоря нейтральные электромагнитные реле подразделяются на два типа:
- с угловым движением якоря;
- с втяжным якорем.
На рисунке изображены реле с угловым перемещением якоря (а) и с втягивающим якорем (б).
Рис 2. Разновидности конструктивных схем реле:
1 – каркас с обмоткой; 2 – ярмо; 3 – выводы обмотки; 4 – колодка; 5 – контактные пружины;
6 – замыкающий контакт ЗК; 7 – подвижный контакт; 8 – размыкающий контакт РК; 9 – якорь; 10 – штифт отлипания; 11 – сердечник
При отсутствии управляющего сигнала якорь удален от сердечника на максимальное расстояние за счет возвратной пружины. В этом случае одна пара контактов замкнута (размыкающие контакты РК), а другая пара разомкнута (замыкающие контакты ЗК).
Принцип действия реле, изображенного на рисунке основан на следующем: при подаче тока в обмотку (катушку) создается магнитный поток, который, проходя через сердечник, ярмо, якорь и воздушный зазор δН(0), создает магнитное усилие, притягивающее якорь к сердечнику. При этом якорь, воздействуя на колодку, перемещает ее таким образом, что контакты ЗК замыкаются, а РК размыкаются. В некоторых конструкциях реле якорь при выключении тока под действием собственного веса возвращается в исходное положение. Таким образом, электромагнитное реле состоит из трех основных частей:
- контактной системы (контактные пружины выполнены из материала нейзильбера);
- магнитопровода (ярмо, сердечник, якорь, выполненные из мягкой стали);
- обмотки (катушки).
Магнитную цепь составляют сердечник, якорь, ярмо и воздушный зазор между якорем и сердечником.
При детальном рассмотрении работы реле в процессе срабатывания и отпускания наблюдаются четыре этапа.
Этап 1 — срабатывание реле . Длительность этого этапа — время полного срабатывания tcp , т, е. от момента подачи напряжения на катушку реле до момента надежного замыкания контактов; Iтр — величина тока, при котором начинается движение якоря; tтр — время, за которое ток достигает это значение, т. е, промежуток, соответствующий началу движения якоря; Iср — ток, при котором срабатывает реле; tдв — время движения якоря при срабатывании. Таким образом, время полного срабатывания, отвечающее окончанию движения якоря.
Этап 2 — работа реле ( tраб — время работы реле). После того, как реле сработает, ток в обмотке продолжит увеличиваться, пока не достигнет установившегося значения. Впоследствии величина тока в обмотке реле остается неизменной. Отношение установившегося тока Iуст к величине тока срабатывания Iср называется коэффициентом запаса реле по срабатыванию Кзап (т. е. Кзап показывает надежность работы реле).
Этап 3 — отпускание реле . Этот период начинается от момента прекращения подачи сигнала до момента, когда ток в обмотке реле уменьшится до значения Iот . Отношение тока отпускания к току срабатывания называется коэффициентом возврата.
Этап 4 — покой реле . Это отрезок времени от момента размыкания контактов реле до момента поступления нового сигнала на обмотку реле. При быстром следовании управляющего сигнала друг за другом работа реле характеризуется максимальной частотой срабатывания (количество срабатываний реле в единицу времени).
1.11.3. Поляризованное реле.
В отличие от рассмотренных ранее нейтральных электромагнитных реле, у поляризованного реле направление электромагнитного усилия зависит от полярности сигнала постоянного тока в обмотке. Поляризация таких реле осуществляется при помощи постоянного магнита.
Существует много конструктивных разновидностей поляризованных реле, которые классифицируются по ряду признаков. По конструктивной схеме магнитной цепи различают реле с последовательной, параллельной (дифференциальной) и мостовой магнитными цепями, по числу обмоток управления – одно- и многообмоточные, по способу настройки контактов (по числу устойчивых положений якоря) различают двух- и трехпозиционные.
Поляризованные реле получили большое распространение в маломощной автоматике, особенно в следящих системах при управлении реверсивными двигателями.
К числу достоинств поляризованных реле относятся:
- высокая чувствительность, которая характеризуется мощностью срабатывания и составляет 10-5 Вт;
- большой коэффициент управления;
- малое время срабатывания (единицы миллисекунд).
К недостаткам по сравнению с нейтральными электромагнитными реле относятся:
- сложность конструкции;
- большие габариты, вес и стоимость.
В поляризованных реле, как было отмечено, используют дифференциальные и мостовые схемы магнитных цепей, которые имеют много разновидностей (название цепей связано с типом электрической схемы замещения электромагнитной системы). На рисунке изображено поляризованное реле с дифференциальной схемой магнитной цепи.
Рис 3. Поляризованное реле ( а ) и способы настройки контактов ( б, в ) : 1, 1’ – намагничивающие катушки; 2 – ярмо; 3 – постоянный магнит; 4 – якорь; 5, 5’ – контакты
На якорь реле действуют два не зависимых друг от друга потока: поток Фо(п) постоянного магнита, не зависящий от рабочего состояния схемы, в которую включено реле, и рабочий (управляющий) поток Фэ(р), определяемый намагничивающей силой катушки, т. е. величиной протекающего по обмотке тока. Электромагнитное усилие, действующее на якорь, определяется, таким образом, в зависимости от суммарного действия обоих потоков — Фэ(р) и Фо(п) . Изменение направления электромагнитного усилия при изменении полярности тока в рабочей обмотке происходит вследствие того, что изменяется направление рабочего потока относительно поляризующего Ф0(п).
Поляризующий поток Фо(п) проходит по якорю и разветвляется на две части — Ф01 и Ф02 — в соответствии с проводимостями воздушных зазоров слева и справа от якоря ( δл и δпр ). В зависимости от полярности управляющего сигнала рабочий поток Фэ(р) вычитается из потока Ф01 в зазоре слева от якоря и прибавляется к потоку Ф02 справа от якоря (как показано на рисунке а ), или наоборот.
В данном случае якорь перекинется из левого положения в правое. При выключении сигнала якорь будет находиться в том положении, которое он занимал до выключения сигнала. Таким образом, результирующее электромагнитное усилие, действующее на якорь, будет направлено в сторону того зазора, где магнитные потоки суммируются.
Если теперь в обмотке 1 и 1′ (см рисунок а ) подать управляющий сигнал Iср такой величины, чтобы Фэ=∆Ф ( ), то при незначительном возрастании тока якорь перебросится в правое положение, так как, очевидно, правое усилие будет больше левого.
Магнитные потоки до момента переброски якоря будут соответственно равны:
После переброски якоря в правое положение знаки ∆ Ф в указанных выражениях изменятся: если Фэ=∆Ф , то получим выражения для потоков при правом положении якоря:
После перехода якоря за нейтральную линию перераспределяющийся поток Ф0(п) создает дополнительное усилие, необходимое для перемещения якоря. Этим и объясняется, что поляризованные реле имеют незначительное время срабатывания, не превышающее нескольких миллисекунд. Кроме того, дополнительное усилие, сжимая контакты, позволяет при очень малой величине управляющего сигнала управлять относительно мощными электрическими цепями, т. е. коэффициент управления имеет значительную величину (до 5000), чего не достигает ни одно нейтральное реле.
Обычно отклонение якоря от нейтрали составляет 0,05–0,1 мм.
В поляризованном реле с мостовой схемой магнитной цепи силы притяжения якоря, включенного в одну из диагоналей мостовой схемы, действуют так же, как и в дифференциальной схеме, т. е. в воздушном зазоре с одной стороны якоря рабочий поток Фэ(р) направлен согласно с поляризующим потоком Ф0(п) , а с другой — встречно. Мостовые схемы поляризованных реле имеют более высокую стабильность параметров и устойчивость к внешним механическим воздействиям.
Рис 4. Поляризованное реле с мостовой схемой магнитной цепи.
Поляризованные реле выпускаются трех видов настройки. Реле, изображенное на рис. а , является двухпозиционным. Если неподвижные контакты 5 и 5′ симметрично расположены относительно нейтральной линии (якорь отрегулирован симметрично), то при выключении управляющего сигнала якорь реле остается в том же положении, которое он занимал при наличии управляющего сигнала. Повторное включение управляющего сигнала прежней полярности не вызовет изменения положения якоря. Если изменить полярность управляющего сигнала, то якорь перебросится в другое положение, например в положение 5′ , и останется в нем после снятия сигнала. Такая настройка называется нейтральной или двухпозиционной.
Если один из контактных винтов, 5 или 5′ , выдвинут за нейтральную линию (рис. б ), то реле является двухпозиционным с преобладанием к одному из контактов. При выключенном реле якорь всегда прижат к левому контакту 5 (или к правому контакту 5′ , если за нейтральную линию выдвинут левый контакт) и перебрасывается вправо лишь на время протекания в управляющей обмотке тока соответствующей полярности.
Трехпозиционное реле имеет симметрично расположенные от нейтральной линии неподвижные контакты (рис. в ). Якорь при отсутствии управляющего сигнала удерживается в среднем положении с помощью специальных пружин (с двух сторон) или закрепляется на плоской пружине, упругость которой, создает устойчивое положение равновесия в среднем положении. При подаче сигнала в управляющую обмотку контакт на якоре замыкается с левым или правым контактом (в зависимости от полярности сигнала) и возвращается в нейтральное положение после снятия сигнала.
Поляризованные реле находят широкое применение в схемах автоматики благодаря своим характерным особенностям. Наличие нескольких обмоток позволяет использовать их в качестве логических элементов, небольшая мощность срабатывания – в качестве элементов контроля небольших электрических сигналов, малое время срабатывания и чувствительность к полярности входных сигналов – в качестве амплитудных модуляторов и демодуляторов. Благодаря высокой чувствительности поляризованные реле часто используют в маломощных цепях переменного тока с включением через выпрямитель.
1.11.4. Электромагнитное реле переменного тока.
В тех случаях, когда основным источником энергии является сеть переменного тока, желательно применять реле, обмотки которых питаются переменным током. При подаче в обмотку реле переменного тока якорь будет притягиваться к сердечнику так же, как и при постоянном токе. При одинаковых конструктивных размерах реле и равных значениях максимальной индукции среднее значение электромагнитного усилия у реле переменного тока вдвое меньше, чем у реле постоянного тока.
Электромагнитное усилие меняется (пульсирует) с удвоенной частотой 2ω, обращаясь в нуль дважды за период питающего напряжения. Следовательно, якорь реле может вибрировать, периодически оттягиваться от сердечника возвратной пружиной, что вызывает дрожание якоря и, как следствие, износ оси якоря.
Реле переменного тока имеют худшие параметры, чем реле постоянного тока, так как при одинаковых размерах имеют меньшее электромагнитное усилие и менее чувствительны. Кроме того, они сложнее и дороже, поскольку необходимо иметь шихтованный магнитопровод (набранный из отдельных листов, а также применять специальные меры для устранения вибрации якоря – явление, которое нежелательно, так как может привести к обгоранию контактов, прерыванию электрической цепи и др. поэтому для ослабления вибрации принимают специальные конструктивные меры.
Рис 5. Двухфазное реле переменного тока: 1 – магнитопровод; 2 – катушка; 3 – якорь
Рис 6. Реле переменного тока с короткозамкнутым витком.
Принцип работы реле заключается в следующем. Переменный магнитный поток Фосн основной обмотки ωосн , проходя через разрезанную часть сердечника, делится на две части. Часть потока Ф2 проходит через экранированную половину полюса сечением Sδ2 , в которой размещается короткозамкнутая обмотка, а другая часть потока Ф1 проходит через неэкранированную половину полюса сечением Sδ 1. Поток Ф2 наводит в короткозамкнутом витке ЭДС( екз ), которая создает ток iкз . При этом возникает еще один магнитный поток Фкз, который воздействует на магнитный поток Ф2 и вызывает отставание этого потока по фазе относительно потока Ф1 на угол φ =60–80 0С. Благодаря этому результирующее тяговое усилие Fэ никогда не доходит до нуля, так как оба потока проходят через нуль в разные моменты времени.
1.11.5. Тепловое реле.
Тепловые реле — это электрические аппараты, предназначенные для защиты электродвигателей от токовой перегрузки. Наиболее распространенные типы тепловых реле — ТРП, ТРН, РТЛ и РТТ.
Принцип действия тепловых реле
Долговечность энергетического оборудования в значительной степени зависит от перегрузок, которым оно подвергается во время работы. Для любого объекта можно найти зависимость длительности протекания тока от его величины, при которых обеспечивается надежная и длительная эксплуатация оборудования. При номинальном токе допустимая длительность его протекания равна бесконечности. Протекание тока, большего, чем номинальный, приводит к дополнительному повышению температуры и дополнительному старению изоляции. Поэтому чем больше перегрузка, тем кратковременнее она допустима. Кривая 1 на рисунке устанавливается исходя из требуемой продолжительности жизни оборудования. Чем короче его жизнь, тем большие перегрузки допустимы.
При идеальной защите объекта зависимость tср (I) для теплового реле должна идти немного ни-же кривой для объекта.
Для защиты от перегрузок, наиболее широкое распространение получили тепловые реле с биметаллической пластиной.
Время-токовые характеристики теплового реле и защищаемого объекта.
Биметаллическая пластина теплового реле состоит из двух пластин, одна из которых имеет больший температурный коэффициент расширения, другая — меньший. В месте прилегания друг к другу пластины жестко скреплены либо за счет проката в горячем состоянии, либо за счет сварки. Если закрепить неподвижно такую пластину и нагреть, то произойдет изгиб пластины в сторону материала с меньшим. Именно это явление используется в тепловых реле.
Широкое распространение в тепловых реле получили материалы инвар и немагнитная или хромоникелевая сталь.
Нагрев биметаллического элемента теплового реле может производиться за счет тепла, выделяемого в пластине током нагрузки. Очень часто нагрев биметалла производится от специального нагревателя, по которому протекает ток нагрузки. Лучшие характеристики получаются при комбинированном нагреве, когда пластина нагревается и за счет тепла, выделяемого током, проходящим через биметалл, и за счет тепла, выделяемого специальным нагревателем, также обтекаемым током нагрузки.
Прогибаясь, биметаллическая пластина своим свободным концом воздействует на контактную систему теплового реле.
Рис 7. Устройство теплового реле: а — чувствительный элемент, б — прыгающий контакт,
1 — контакты, 2 — пружина, 3 — биметаллическая пластина, 4 — кнопка, 5 — мостик
Время-токовые характеристики теплового реле.
Основной характеристикой теплового реле является зависимость времени срабатывания от тока нагрузки (времятоковая характеристика). В общем случае до начала перегрузки через реле протекает ток Iо, который нагревает пластину до температуры qо.
При проверке времятоковых характеристик тепловых реле следует учитывать, из какого состояния (холодного или перегретого) происходит срабатывание реле.
При проверке тепловых реле надо иметь в виду, что нагревательные элементы тепловых реле термически неустойчивы при токах короткого замыкания.
Влияние температуры окружающей среды на работу теплового реле.
Нагрев биметаллической пластинки теплового реле зависит от температуры окружающей среды, поэтому с ростом температуры окружающей среды ток срабатывания реле уменьшается.
При температуре, сильно отличающейся от номинальной, необходимо либо проводить дополнительную (плавную) регулировку теплового реле, либо подбирать нагревательный элемент с учетом реальной температуры окружающей среды.
Для того чтобы температура окружающей среды меньше влияла на ток срабатывания теплового реле, необходимо, чтобы температура срабатывания выбиралась возможно больше.
Для правильной работы тепловой защиты реле желательно располагать в том же помещении, что и защищаемый объект. Нельзя располагать реле вблизи концентрированных источников тепла — нагревательных печей, систем отопления и т. д. В настоящее время выпускаются реле с температурной компенсацией (серии ТРН).
Конструкция тепловых реле.
Прогиб биметаллической пластины происходит медленно. Если с пластиной непосредственно связать подвижный контакт, то малая скорость его движения, не сможет обеспечить гашение дуги, возникающей при отключении цепи. Поэтому пластина действует на контакт через ускоряющее устройство. Наиболее совершенным является «прыгающий» контакт.
В обесточенном состоянии пружина создает момент относительно точки 0, замыкающий контакты 2. Биметаллическая пластина 3 при нагреве изгибается вправо, положение пружины изменяется. Она создает момент, размыкающий контакты 2 за время, обеспечивающее надежное гашение дуги. Современные контакторы и пускатели комплектуются с тепловыми реле ТРП (одно-фазное) и ТРН (двухфазное).
Тепловые реле ТРП.
Тепловые токовые однополюсные реле серии ТРП с номинальными токами тепловых элементов от 1 до 600 А предназначены главным образом для защиты от недопустимых перегрузок трехфазных асинхронных электродвигателей, работающих от сети с номинальным напряжением до 500 В при частоте 50 и 60 Гц. Тепловые реле ТРП на токи до 150 А применяют в сетях постоянного тока с номинальным напряжением до 440 В.
Биметаллическая пластина теплового реле ТРП имеет комбинированную систему нагрева. Пластина нагревается как за счет нагревателя , так и за счет прохождения тока через саму пластину. При прогибе конец биметаллической пластины воздействует на прыгающий контактный мостик .
Тепловые реле РТЛ.
Тепловые реле РТТ Реле тепловое РТЛ предназначено для обеспечения защиты электродвигателей от токовых перегрузок недопустимой продолжительности. Они также обеспечивают защиту от не симметрии токов в фазах и от выпадения одной из фаз. Выпускаются электротепловые реле РТЛ с диапазоном тока от 0.1 до 86 А.
Тепловые реле РТТ.
Реле тепловые РТТ предназначены для защиты трехфазных асинхронных электродвигателей с короткозамкнутым ротором от перегрузок недопустимой продолжительности, в том числе возникающих при выпадении одной из фаз, а также от не симметрии в фазах.
Реле РТТ предназначены для применения в качестве комплектующих изделий в схемах управления электроприводами, а также для встройки в магнитные пускатели серии ПМА в целях переменного тока напряжением 660В частотой 50 или 60Гц, в целях постоянного тока напряжением 440В.
Автомобильные реле: как устроены, как их выбирать и проверять
Машины год от года становятся все умнее – они уже самостоятельно вращают рулем, меняют жесткость подвески, делают водителю массаж пятой точки и многое другое… Однако конечный исполнительный механизм большинства электрических цепей автомобиля, скромная «рабочая лошадка» – это реле, практически не изменившее свою конструкцию аж с 1831 года, когда впервые было изобретено… Что обычному автовладельцу полезно знать о реле?
Как устроено и применяется реле
К ак известно, габариты и мощность выключателя, коммутирующего мощную нагрузку, должны этой нагрузке соответствовать. Нельзя включить такие серьезные потребители тока в автомобиле, как, скажем, вентилятор радиатора или обогрев стекла крошечной кнопочкой – её контакты просто сгорят от одного-двух нажатий. Соответственно, кнопка должна быть крупной, мощной, тугой, с четкой фиксацией положений on/off. К ней должны подходить длинные толстые провода, рассчитанные на полный ток нагрузки.
Но в современном автомобиле с его изящным дизайном интерьера места таким кнопкам нет, да и толстые провода с дорогостоящей медью стараются применять экономно. Поэтому в качестве дистанционного силового коммутатора чаще всего применяется реле – оно устанавливается рядом с нагрузкой или в релейном боксе, а управляем мы им с помощью крошечной маломощной кнопочки с подведенными к ней тоненькими проводками, дизайн которой легко вписать в салон современной машины.
Внутри простейшего типичного реле располагается электромагнит, на который подается слабый управляющий сигнал, а уже подвижное коромысло, которое притягивает к себе сработавший электромагнит, в свою очередь замыкает два силовых контакта, которые и включают мощную электрическую цепь.
В автомобилях чаще всего используются два типа реле: с парой замыкающих контактов и с тройкой переключающих. В последнем при срабатывании реле один контакт замыкается на общий, а второй в это время отключается от него. Существуют, конечно же, и более сложные реле, с несколькими группами контактов в одном корпусе – замыкающими, размыкающими, переключающими. Но встречаются они существенно реже.
Обратите внимание, что на нижеприведенной картинке у реле с переключающей контактной тройкой рабочие контакты пронумерованы. Пара контактов 1 и 2 называется «нормально замкнутые». Пара 2 и 3 – «нормально разомкнутые». Состоянием «нормально» считается состояние, когда на обмотку реле НЕ подано напряжение.
Наиболее распространенные универсальные автомобильные реле и их контактные выводы со стандартным расположением ножек для установки в блок предохранителей или в выносную колодку выглядят так:
Герметичное реле из комплекта нештатного ксенона выглядит иначе. Залитый компаундом корпус позволяет ему надежно работать при установке вблизи фар, где водяной и грязевой туман проникают под капот через решетку радиатора. Цоколевка выводов – нестандартная, поэтому реле комплектуется собственным разъемом.
Для коммутации больших токов, в десятки и сотни ампер, используют реле иной конструкции, нежели описанные выше. Технически суть неизменна – обмотка примагничивает к себе подвижный сердечник, который замыкает контакты, но контакты имеют значительную площадь, крепление проводов – под болт от М6 и толще, обмотка – повышенной мощности. Конструктивно эти реле сходны со втягивающим реле стартера. Применяются они на грузовых машинах в качестве выключателей массы и пусковых реле того же стартера, на разной спецтехнике для включения особо мощных потребителей. Нештатно их используют для аварийной коммутации джиперских лебедок, создания систем пневмоподвески, в качестве главного реле системы самодельных электромобилей и т.п.
К слову, само слово «реле» переводится с французского как «перепряжка лошадей», и появился сей термин в эпоху развития первых телеграфных линий связи. Малая мощность гальванических батарей того времени не позволяла передавать точки и тире на дальние расстояния – все электричество «гасло» на длинных проводах, и доходившие до корреспондента остатки тока были неспособны шевельнуть головку печатающего аппарата. В результате линии связи стали делать «с пересадочными станциями» – на промежуточном пункте ослабевшим током активировали не печатающий аппарат, а слабенькое реле, которое уже, в свою очередь, открывало путь току из свежей батареи – и далее, и далее…
Что нужно знать о работе реле?
Напряжение, которое обозначено на корпусе реле, – это усредненное оптимальное напряжение. На автомобильных реле пропечатано «12V», но срабатывают они и при напряжении 10 вольт, сработают и при 7-8 вольтах. Аналогично и 14,5-14,8 вольт, до которых поднимается напряжение в бортсети при запущенном двигателе, им не вредит. Так что 12 вольт – это условный номинал. Хотя реле от 24-вольтовой грузовой машины в 12-вольтовой сети не заработает – тут уж разница слишком велика…
Второй главный параметр реле после рабочего напряжения обмотки – максимальный ток, который может пропустить через себя контактная группа без перегрева и пригорания. Указывается он обычно на корпусе – в амперах. В принципе, контакты всех автомобильных реле достаточно мощные, «слабаков» тут не водится. Даже самое миниатюрное коммутирует 15-20 ампер, реле стандартных размеров – 20-40 ампер. Если ток указывается двойной (например, 30/40 А), то это означает кратковременный и долговременный режимы. Собственно, запас по току никогда не мешает – но это касается в основном какого-то нештатного электрооборудования автомобиля, подключаемого самостоятельно.
Выводы автомобильных реле маркируются в соответствии с международным электротехническим стандартом для автопрома. Два вывода обмотки пронумерованы цифрами «85» и «86». Выводы контактной «двойки» или «тройки» (замыкающие или переключающие) обозначаются как «30», «87» и «87а».
Впрочем, гарантии маркировка, увы, не дает. Российские производители порой маркируют нормально замкнутый контакт как «88», а иностранные – как «87а». Неожиданные вариации стандартной нумерации встречаются и у безымянных «брендов», и у компаний уровня Bosch. А иногда контакты и вовсе маркируются цифрами от 1 до 5. Так что если тип контактов не подписан на корпусе, что нередко случается, лучше всего проверить распиновку неизвестного реле при помощи тестера и источника питания 12 вольт – подробнее об этом ниже.
Контактные выводы реле, к которым подключается электропроводка, могут быть «ножевого» типа (для установки реле в разъем колодки), а также под винтовую клемму (обычно у особо мощных реле или реле устаревших типов). Контакты бывают «белыми» или «желтыми». Желтые и красные – латунь и медь, матовые белые – луженая медь или латунь, блестящие белые – сталь, покрытая никелем. Луженые латунь и медь не окисляются, но голая латунь и медь – лучше, хотя и склонны темнеть, ухудшая контакт. Никелированная сталь также не окисляется, но сопротивление её высоковато. Неплохо, когда силовые выводы – медные, а выводы обмотки – никелированные стальные.
Чтобы реле сработало, на его обмотку подается питающее напряжение. Полярность его – безразлична для реле. Плюс на «85» и минус на «86», или наоборот – без разницы. Один контакт обмотки реле, как правило, постоянно подсоединен к плюсу или минусу, а на второй приходит управляющее напряжение с кнопки или какого-либо электронного модуля.
В прежние годы чаще использовалось постоянное подключение реле к минусу и плюсовой управляющий сигнал, сейчас более распространен обратный вариант. Хотя это не догма – бывает по-всякому, в том числе и в рамках одного автомобиля. Единственный вариант исключения из правил – реле, в котором параллельно обмотке подключен диод – тут уже полярность важна.
Если напряжение на обмотку реле подает не кнопка, а электронный модуль (штатный или нештатный – например, охранное оборудование), то при отключении обмотка дает индуктивный всплеск напряжения, который способен повредить управляющую электронику. Чтобы погасить всплеск, параллельно обмотке реле включается защитный диод.
Как правило, внутри электронных узлов эти диоды уже есть, но иногда (в особенности в случае различного допоборудования) требуется реле со встроенным внутри диодом (в этом случае его символ маркирован на корпусе), а изредка применяется выносная колодка с диодом, припаянным со стороны проводов. И если вы устанавливаете какое-то нештатное электрооборудование, нуждающееся, согласно инструкции, в таком реле, требуется строго соблюдать полярность при подключении обмотки.
Обмотка реле потребляет мощность около 2-2,5 ватт, из-за чего его корпус во время работы может достаточно сильно греться – это не криминально. Но нагрев допускается у обмотки, а не у контактов. Перегрев же контактов для реле губителен: они обугливаются, разрушаются и деформируются. Такое случается чаще всего в неудачных экземплярах реле российского и китайского производства, у которых плоскости контактов порой не параллельны друг другу, контактная поверхность из-за перекоса недостаточна, и при работе идет точечный токовый разогрев.
Реле не выходит из строя мгновенно, но рано или поздно перестает включать нагрузку, или наоборот – контакты привариваются друг к другу, и реле перестает размыкаться. К сожалению, выявить и предупредить такую проблему не совсем реально.
Проверка реле
При ремонте неисправное реле обычно временно подменяют исправным, а затем заменяют на аналогичное, и дело с концом. Однако мало ли какие задачи могут возникнуть, к примеру, при установке дополнительного оборудования. А значит, полезно будет знать элементарный алгоритм проверки реле с целью диагностики или уточнения цоколевки – вдруг попалось нестандартное? Для этого нам понадобятся источник питания с напряжением 12 вольт (блок питания или два провода от аккумулятора) и тестер, включенный в режиме измерения сопротивления.
Предположим, что у нас реле с 4 выводами – то есть, с парой нормально разомкнутых контактов, работающих на замыкание (реле с переключающей контактной «тройкой», проверяется аналогичным образом). Сперва касаемся щупами тестера поочередно всех пар контактов. В нашем случае это 6 комбинаций (изображение условное, чисто для понимания).
На одной из комбинаций выводов омметр должен показать сопротивление около 80 ом – это обмотка, запомним или пометим её контакты (у автомобильных 12-вольтовых реле наиболее распространенных типоразмеров это сопротивление бывает в диапазоне от 70 до 120 ом). Подадим на обмотку напряжение 12 вольт от блока питания или АКБ – реле должно отчетливо щелкнуть.
Соответственно, два других вывода должны показывать бесконечное сопротивление – это наши нормально разомкнутые рабочие контакты. Подключаем к ним тестер в режиме прозвонки, а на обмотку одновременно подаем 12 вольт. Реле щелкнуло, тестер запищал – все в порядке, реле работает.
Если же вдруг на рабочих выводах прибор показывает замыкание даже без подачи напряжения на обмотку, значит, нам попалось редкое реле с НОРМАЛЬНО ЗАМКНУТЫМИ контактами (размыкающимися при подаче напряжения на обмотку), либо, что более вероятно, контакты от перегрузки оплавились и сварились, замкнувшись накоротко. В последнем случае реле отправляется в утиль.
Что такое реле: виды, принцип действия и устройство
Реле – одно из наиболее распространенных устройств, применяемых для автоматизации процессов в электротехнике. По факту, это автоматический выключатель, который соединяет или разъединяет электроцепи при достижении установленных значений или под внешним воздействием. Реле применяются в промышленности для автоматизации технологических процессов, в бытовой технике, которая есть в каждом доме, например в холодильниках и стиральных машинках, для защиты сети от слишком высоких или слишком низких параметров тока. Выбор нужного устройства упрощает классификация реле по различным признакам.
Содержание статьи
Общее описание конструкции
Понятие «реле» объединяет целое семейство устройств разной конструкции. Но в общем случае реле состоит из трех основных функциональных элементов:
- Воспринимающий. Это первичный элемент, который воспринимает контролируемую величину и преобразует ее в другую физическую величину.
- Промежуточный. Сравнивает полученное значение с заданным параметром. Если это значение выше или ниже заданного параметра, то на исполнительный элемент передается первичное воздействие.
- Исполнительный. Этот элемент передает воздействие в цепи, управляемые реле. В результате такого воздействия может произойти: размыкание или соединение управляемой цепи, переключение параметров тока.
Исполнение и принцип действия первичного элемента зависят от того, какое назначение имеет реле и на какую физическую величину (сила тока, напряжение, свет, тепло и т.п.) оно настроено.
Основные характеристики реле
Независимо от вида и принципа действия реле, выделяют несколько параметров, на которые обращают внимание при выборе этого прибора:
- Время срабатывания – промежуток времени между поступлением управляющего сигнала и воздействием на управляемые цепи.
- Коммутируемая мощность – допустимая мощность электроцепи или электроустановки, которой будет управлять реле.
- Уставка – обычно это регулируемый параметр, который определяет величину поступающего параметра (тока, напряжения, частоты, давления, температуры), при которой происходит срабатывание реле.
Виды реле: контактные и бесконтактные
По устройству исполнительного компонента реле делят на контактные и бесконтактные.
Контактные
Воздействуют на управляемую цепь с помощью электрических контактов. Их размыкание или замыкание полностью разъединяет или замыкает электроцепь. Для изготовления контактов используются: медь, серебро, вольфрам. Количество контактов – до 10 штук. Четырех- и пятиконтактные реле используются в электрических схемах автомобилей для включения и переключения цепей.
Бесконтактные
Такие реле воздействуют на управляемую цепь способом изменения электрических параметров выходных электроцепей – емкости, сопротивления, индуктивности, величины тока или напряжения.
Классификация реле по способу включения
Первичные
Эти устройства включаются непосредственно в цепь элемента, для защиты которого они предназначены. Их преимущества – не требуются измерительные трансформаторы, источники оперативного тока, контрольные кабели.
Вторичные
Подключаются в цепь с использованием вторичных трансформаторов. Это наиболее распространенный вид реле. Их преимущества – изоляция от высокого напряжения, возможность расположить устройство в месте, удобном для обслуживания. Вторичные реле выпускаются стандартными. Они рассчитаны на ток 5 (1) А и напряжение 100 В и могут устанавливаться в любые электроцепи, независимо от их тока и напряжения.
Виды реле по назначению
По назначению эти устройства бывают трех типов – управления, защиты, сигнализации.
Реле управления
Эти реле являются первичными. Монтируются непосредственно в электроцепь. Их роль – включение и выключение отдельных элементов схемы. Могут использоваться самостоятельно или в качестве комплектующих низковольтных комплектных устройств – ящиков, панелей, шкафов.
Реле защиты
Выполняют функции включения, отключения и защиты устройств, имеющих термические контакты – электродвигателей, вентиляторов. При превышении температуры термические контакты размыкаются. Оборудование может восстановить работу только после остывания термоконтактов до установленной температуры.
Сигнализации
Такие реле устанавливают в охранных системах автотранспорта, предприятий, придомовых территорий. Служат для формирования сигнала при достижении установленной величины параметра, который находится под контролем (ток, напряжение, частота, давление, температура, акустические параметры и другие).
Разновидности электромеханических реле
Наиболее распространенный вид электрических реле – электромеханические. К ним относятся: электромагнитные, индукционные, электротепловые устройства.
Электромагнитные
Один из видов электрических реле электромагнитное. В конструкции этого устройства имеются: обмотка со стальным сердечником, группа подвижных контактов, замыкающих и размыкающих управляемую электроцепь. Рассмотрим принцип их действия:
- На катушку сердечника подается управляющий ток.
- В сердечнике под воздействием электрического тока создается магнитное поле, притягивающее контактную группу.
- В зависимости от типа реле, контакты замыкают или размыкают электрическую цепь.
Разновидность электромагнитных реле – поляризованные, которые отличаются от нейтральных способностью реагировать на полярность управляющего сигнала. Размыкание или замыкание контактов зависит от полярности подключения электромагнита. Обладают более высокой чувствительностью, по сравнению с нейтральными реле. Такие устройства могут использоваться только в цепях постоянного тока.
Электротепловые (термические)
Тепловые реле представляют собой комплекс биметаллических пластин, для изготовления которых используются металлы с разным коэффициентом расширения при нагреве. Такие реле могут использоваться в качестве защитных устройств: при превышении температуры, установленной регулятором, контакты разъединяются, и поступление тока на потребителя прекращается.
Обычно тепловые реле используются в бытовых одно- и трехфазных сетях при подключении электрических двигателей. При увеличении нагрузки на двигатель выше установленной величины происходит нагрев биметаллического реле, которое при достижении определенной температуры размыкает электрическую цепь. Двигатель прекращает работу. После остывания биметаллических пластин цепь замыкается и двигатель возобновляет работу. Термические устройства могут оснащаться колесиком, с помощью которого регулируется температура отключения двигателя, и кнопкой принудительного запуска.
Существует разновидность термических реле, в которых биметаллические пластины заменены легкоплавящимся сплавом. Они срабатывают практически мгновенно – при достижении определенной температуры металл расплавляется и цепь размыкается. Принцип действия таких устройств похож на принцип действия предохранителей. После срабатывания такое реле, установленное непосредственно на оборудовании в качестве последней защиты от перегорания, подлежит замене.
Индукционные
Принцип действия этих устройств основан на взаимодействии между переменными магнитными потоками и токами, которые формируют переменные магнитные потоки. Индукционные приборы рассчитаны только на использование в цепях переменного тока. Существуют три типа индукционных реле – с рамкой, диском, цилиндрическим ротором («стаканом»). Эти устройства широко востребованы в системах релейной защиты и автоматики.
Другие виды электрических реле
Твердотельные
Эти электронные устройства компактны и долговечны, благодаря отсутствию трущихся механических частей. Работу механики здесь выполняют полупроводниковые элементы – биполярные и МОП-транзисторы, тиристоры, симисторы. По сравнению с твердотельными, они имеют следующие преимущества:
- Низкий уровень шума при работе.
- Очень высокая наработка на отказ, которая в 100 раз и более превышает ресурс электромагнитных устройств.
- Быстродействие, составляющее доли миллисекунд, у электромагнитных 50 мс – 1с.
- Электропотребление ниже на 95 %.
Однако твердотельные реле имеют не только достоинства, но и недостатки. Одним из них является слабая устойчивость к импульсным перенапряжениям, которые электромагнитным реле практически не страшны. При использовании твердотельных реле необходимо предусмотреть схемотехническое решение, которое ограничивает эти импульсы. Есть и еще минусы – нагрев при работе, наличие токов утечки, приводящих к наличию напряжения на фазном проводе даже при отключенном реле.
Твердотельные реле применяют в системах регулирования температуры, в которых в качестве нагревателей используются ТЭНы, в промышленной автоматике, телеметрии, механизмах оборудования, используемого в металлургической и химической индустрии, в медоборудовании, военной электронике.
Герконовые
Реле этого типа представляют собой герконовую катушку. Это баллон, заполненный инертным газом, или внутри которого создан вакуум. Внутри баллона располагают соединительные элементы из пермаллоя – прецизионного сплава (сплава с точно заданным химическим составом), включающего железо и никель. Эти соединительные элементы имеют вид проволоки с контактами. Их покрывают серебряным или золотым напылением. Геркон размещают в середине электрического магнита или в пределах действия его поля. При подаче тока на обмотку электромагнита образуется магнитный поток, который запирает контакты. Герконовые реле могут выполнять функции: замыкающие, переключающие, размыкающие. Преимущества этих устройств – компактные габариты, доступная цена, отсутствие трущихся частей, что продлевает срок службы. Тот факт, что контактная группа располагается в инертном газе или вакууме и надежно защищена от влаги, повышает надежность реле.
При использовании герконовых реле следует избегать:
- близкого присутствия источника ультразвука, который будет негативно влиять на работоспособность;
- воздействия постороннего магнитного поля;
- механических повреждений.
Колба изготавливается обычно из стекла, поэтому ее нужно всячески оберегать от механических воздействий. При разбитой колбе контактная группа срабатывать не будет. Герконовые реле можно использовать только в системах, в которых параметры электропитания находятся в пределах, установленных в технической документации. При подаче слишком высоких токов произойдет размыкание контактов. Нарушения в работе герконовых реле наблюдаются и в случаях подачи тока слишком низкой частоты.
Фотоэлектронные (фотореле)
Основой фотоэлектронного реле является полупроводниковый элемент – фоторезистор, сопротивление которого изменяется в зависимости от изменения освещенности. Фотореле – прибор, широко применяемый коммунальными службами. Он надежен в работе и обеспечивает существенную экономию электроэнергии и безопасность на улицах. При повышении освещенности все осветительное оборудование отключается, а при наступлении темноты – включается. Большинство таких приборов оснащено регулятором порога срабатывания и механическим выключателем.
Виды реле по типу поступающего параметра
По этому параметру разделяют реле: тока, мощности, частоты, напряжения, давления, акустических величин, количества газа. Устройства могут быть максимальными и минимальными. Реле, которые срабатывают при превышении заданной величины, называют «максимальными», а при ее падении ниже заданного уровня – «минимальными».
Реле тока
Реле тока реагируют на резкие перепады тока и при необходимости отключают отдельную нагрузку или всю систему электроснабжения. Величина максимального тока, при которой необходимо отключить потребителей, устанавливается регулятором.
Реле напряжения
Реле напряжения реагируют на величину напряжения и включаются через трансформаторы напряжения. Используются для контроля фаз напряжения в электросетях и защиты электроприборов. Основой такого реле является контроллер быстрого реагирования, отслеживающий отклонения напряжения за установленные пределы. Общепринятый стандарт срабатывания таких реле – ниже 170 В и выше 250 В.
Реле частоты
Служат для контроля частоты переменного тока, которая должна быть равна 50 или 60 Гц в одно- и трехфазных сетях. Обычно имеют фиксированные задержки срабатывания. Пороги размыкания цепи, которая находится под контролем, можно регулировать. Режим работы этого устройства может предусматривать наличие «памяти» аварии.
Реле мощности
Устройство, ограничивающее мощность, действует аналогично ограничителю тока нагрузки. При превышении установленного порога мощности происходит отключение потребителя. Реле ограничения мощности часто оснащаются функцией автоматического повторного включения. То есть, после снижения нагрузки работа оборудования возобновляется автоматически.
Реле давления
Реле давления – важнейший прибор, используемый в насосном оборудовании для контроля перепадов давления воды, масла, нефти, воздуха. Различают два основных типа таких приборов – электромеханические и электронные.
Электромеханические реле имеют в конструкции особый элемент, реагирующий на изменение давления в системе, – гибкую мембрану, которая изгибается под напором жидкости (воздуха) в системе. Она соединяется с двумя пружинами, одна из которых настраивается на минимально допустимый напор, а вторая – на разницу между верхней и нижней границами давления в системе. При снижении давления в системе ниже минимального порога реле включает насосное оборудование, при превышении верхнего порога – отключает. Это простые и надежные устройства, но не очень удобные в эксплуатации. Оператору приходится регулярно проверять настройки и при необходимости их корректировать.
Электронные устройства имеют более сложную конструкцию. Пределы можно устанавливать очень точно и при эксплуатации контролировать их не требуется. Электронные приборы чувствительны к гидроударам, поэтому их оснащают небольшими гидробаками (объем – примерно 400 мл). Электронное реле давления устанавливается между насосным оборудованием и первой точкой водоразбора.
Реле акустические
Акустические реле реагируют на изменение акустических величин – частоты звуковой волны, ее давления или акустических характеристик материалов – коэффициентов поглощения и отражения. Принцип действия может быть механическим или электрическим. В акустических приборах механического действия предусмотрена мембрана, которая прогибается под давлением звуковых волн, и при достижении определенной величины давления происходит замыкание контакта. В состав электрических акустических приборов входят: воспринимающий орган (микрофон, фильтр), усилитель, выходное электрическое реле.
Устройства, срабатывающие на любой шум, часто используются совместно с системой освещения. Они реагируют на любой возникающий шум в помещении и дают сигнал на включение света. Обычно их устанавливают в коридорах и на лестничных площадках. Также акустические реле широко используются в охранных системах, «интеллектуальных» игрушках.
Газовые реле
Эти приборы применяются для обеспечения газовой защиты. Они представляют собой металлический корпус, врезанный в маслопровод. Реле в нормальном состоянии заполнено маслом, а его контакты находятся в разомкнутом состоянии. При повышении содержания газов они заполняют верхнюю часть реле с одновременным вытеснением масла. Поплавок, имеющийся в конструкции, с понижением уровня масла опускается, поворачивается вокруг своей оси и вызывает замыкание контактов в сигнальной цепи. Сформированный сигнал предупреждает о высокой загазованности среды.
Промежуточные реле
Часто функции промежуточных выполняют электромагнитные реле, в которых в зависимости от конструкции и области применения имеются контакты следующих типов:
- Нормально разомкнутые (замыкающие). При отсутствии электропитания находятся в разомкнутом состоянии. При подаче напряжения происходит их замыкание.
- Нормально замкнутые (размыкающие). В нормальном состоянии такие контакты находятся в замкнутом состоянии, а при поступлении электропитания контакты размыкаются.
- Перекидные. В таких реле при отсутствии напряжения имеется средний контакт, замкнутый с одним из неподвижных контактов. При подаче тока средний контакт разрывает связь с первым неподвижным контактом и замыкается со вторым неподвижным контактом.
Обозначение реле на схеме
Обозначение реле на принципиальной схеме
На электрических схемах реле обозначается прямоугольником, от наибольших сторон которого показаны выводы питания. Функциональное назначение реле указывается на схеме буквами: