Большая Энциклопедия Нефти и Газа
Тепловой ток iT, определяющийся образованием дырок и электронов при тепловом движении, остается неизменным для данной температуры. Поэтому счростом приложенного напряжения увеличивается ток / if-ij стремясь по величине к тепловому току ( рис. 18 — 4), который относительно мал. [2]
Тепловой ток , при прочих равных условиях, обратно пропорционален ширине запрещенной зоны полупроводникового материала. [3]
Тепловой ток в схеме с ОЭ имеет также другое значение, нежели в схеме ОБ. Это объясняется влиянием эмиттерного перехода на рост теплового тока в схеме с ОЭ. [5]
Тепловые токи 1 э0 и Гк0 в справочниках на параметры транзисторов не приводятся, но даются сведения о токе / К. [6]
Тепловой ток для этих решений очень мал. Возмущение, связанное с заменой / 0 на /, спадает с уменьшением температуры. [7]
Тепловой ток образуется неосновными носителями, которые генерируются в прилегающих к пространственному заряду объемах полупроводника, с толщиной порядка диффузионной длины L, приходят в область действия пространственного заряда и, подхватываясь его полем, переносятся беспрепятственно в соседнюю область. [8]
Тепловой ток сильно изменяет входные ( рис. 87, а) и выходные ( рис. 87, б) характеристики транзистора, что можно объяснить следующим. [10]
Тепловой ток резко снижается с ростом ширины запрещенной зоны. Тепловой ток уменьшается с ростом концентрации примесей вследствие снижения концентрации неосновных носителей. [11]
Меньший тепловой ток у кремниевых триодов является их заметным преимуществом, поскольку температурное влияние на режим их работы сказывается значительно слабее. [12]
Тепловой ток ISK является своеобразной характеристикой качества данного образца. В схемах с полупроводниковыми триодами ток ISK является важным параметром, используемым при расчетах. [13]
Предельный тепловой ток / Тепл — это действующее значение тока, который за время своего действия в течение 1 сек нагревает проводники до предельной температуры. [14]
Тепловые токи закрытого транзистора / со, / ко малы, и в данном случае мы ими пренебрегаем. [15]
Тепловое действие тока, плотность тока и их влияние на нагрев проводников
Под тепловым действием электрического тока понимают выделение тепловой энергии в процессе прохождения тока по проводнику. Когда через проводник проходит ток, образующие ток свободные электроны сталкиваются с ионами и атомами проводника, нагревая его.
Выделяемое при этом количество теплоты можно определить с помощью закона Джоуля-Ленца, который формулируется так: количество теплоты, выделяемое при прохождении электрического тока через проводник, равно произведению квадрата тока, сопротивления данного проводника и времени прохождения тока через проводник.
Приняв ток в амперах, сопротивление в омах, а время в секундах, получим количество теплоты в джоулях. А учитывая что произведение тока на сопротивление — есть напряжение, а произведение напряжения на ток — мощность, в результате оказывается, что количество выделенной теплоты в данном случае равно количеству электрической энергии, переданной данному проводнику во время прохождения по нему тока. То есть электрическая энергия преобразуется в тепловую.
Получение тепловой энергии из электрической широко применяется с давних времен в различной технике. Электронагревательные приборы, такие как обогреватели, водонагреватели, электрические плиты, паяльники, электропечи и т. д., а также электросварка, лампы накаливания и многое другое используют именно этот принцип для получения тепла.
Но в большом количестве электрических устройств нагрев, вызываемый током, вреден: электродвигатели, трансформаторы, провода, электромагниты и т. д. — в данных устройствах, не предназначенных для получения тепла, нагрев снижает их КПД, мешает эффективной работе, и даже может привести к аварийным ситуациям.
Для любого проводника, в зависимости от параметров окружающей среды, характерно определенное допустимое значение величины тока, при котором проводник заметно не нагревается.
Так, например, для нахождения допустимой токовой нагрузки на провода, используют параметр «плотность тока», характеризующий ток, приходящийся на 1 кв.мм площади поперечного сечения данного проводника.
Допустимая плотность тока для каждого проводящего материала в определенных условиях своя, она зависит от многих факторов: от вида изоляции, интенсивности охлаждения, температуры окружающей среды, площади поперечного сечения и т. д.
К примеру для электрических машин, где обмотки изготавливают, как правило, из меди, величина предельно допустимой плотности тока не должна превышать 3-6 ампер на кв.мм. Для лампы накаливания, а точнее для ее вольфрамовой нити, — не более 15 ампер на кв.мм.
Для проводов осветительных и силовых сетей предельно допустимая плотность тока принимается исходя из вида их изоляции и площади поперечного сечения.
Если материалом проводника служит медь, а изоляция резиновая, то при площади сечения, например, в 4 кв.мм допускается плотность тока не более 10,2 ампер на кв.мм, а если сечение 50 кв.мм, то допустимая плотность тока будет всего 4,3 ампера на кв.мм. Если же проводники указанной площади не имеют изоляции, то допустимые плотности тока будут соответственно 12,5 и 5,6 ампер на кв.мм.
С чем же связано понижение допустимой плотности тока для проводников большего сечения? Дело в том, что проводники с существенной площадью поперечного сечения, в отличие от проводников малого сечения, имеют больший объем проводящего материала расположенного внутри, и получается что внутренние слои проводника сами окружены нагревающимися слоями, которые мешают отводу тепла изнутри.
Чем больше площадь поверхности проводника по отношению к его объему, — тем большую плотность тока способен выдержать проводник не перегреваясь. Неизолированные проводники допускают нагрев до более высокой температуры, так как от них тепло отводится прямо в окружающую среду, изоляция этому не препятствует, и охлаждение происходит быстрее, поэтому для них допускается более высокая плотность тока чем для проводников в изоляции.
Если превысить допустимый для проводника ток, он начнет перегреваться, и в какой-то момент его температура окажется чрезмерной. Изоляция обмотки электродвигателя, генератора или просто проводки, может в таких условиях обуглиться или загореться, что приведет к короткому замыканию и пожару. Если же говорить о неизолированном проводе, то он при высокой температуре может просто расплавиться и разорвать цепь, в которой служит проводником.
Превышение допустимого тока принято предотвращать. Поэтому в электрических установках обычно принимают специальные меры с целью автоматического отключения от источника питания той части цепи или того электроприемника, в котором случилась перегрузка по току или короткое замыкание. Для этого служат автоматические выключатели, плавкие предохранители и другие устройства, несущие аналогичную функцию — разорвать цепь при перегрузке.
Из закона Джоуля-Ленца следует, что перегрев проводника может произойти не только из-за превышения тока через его поперечное сечение, но и из-за более высокого сопротивления проводника. По этой причине для полноценной и надежной работы любой электрической установки крайне важно сопротивление, особенно в местах соединения друг с другом отдельных проводников.
Если проводники соединены не плотно, если их контакт друг с другом не качественный, то сопротивление в месте соединения (так называемое переходное сопротивление в месте контакта) окажется выше чем для цельного участка проводника той же длины.
В результате прохождения тока через такое некачественное, не достаточно плотное соединение, место данного соединения будет перегреваться, что чревато возгоранием, выгоранием проводников или даже пожаром.
Чтобы этого избежать, концы соединяемых проводников надежно зачищают, облуживают и оснащают кабельными наконечниками (впаивают или прессуют) или гильзами, которые обеспечивают запас на переходное сопротивление в месте контакта. Такие наконечники можно плотно закрепить на клеммах электрической машины при помощи болтов.
К электрическим аппаратам, предназначенным для включения и выключения тока, также применяют меры по уменьшению переходного сопротивления между контактами.
Тепловой ток
Из ВАХ идеального диода при обратном включении при следует, что
, т. е. не зависит от напряжения.
– обратный ток диода. У реальных диодов обратный ток состоит из трех токов: теплового, термогенерации и тока утечки.
Этот ток обусловлен генерацией неосновных носителей в слоях и
, примыкающих к переходу. После генерации носители подхватываются электрическим полем и уносятся в другой слой: дырки из
-базы вытягиваются отрицательным полюсом источника
в эмиттер, а электроны эмиттера положительным полюсом базы притягиваются в базу. Так как в соответствии с законом действия масс в базе генерируется больше дырок, чем электронов в эмиттере, то экстракция носит односторонний характер. Чем больше удельное сопротивление базы, тем больше тепловой ток. Носители, возникающие вдали от перехода, рекомбинируют с основными и вклада в тепловой ток не дают. Толщина области возникновения носителей составляющих
равна диффузионной длине неосновных носителей.
Тепловой ток зависит от напряжения лишь в области малых . С ростом напряжения
и
. Поэтому тепловой ток также называют обратным током насыщения.
Зависимость обратного тока от температуры аппроксимируется выражением . Здесь
,
– ток
, например, при комнатной температуре
, а
– температура удвоения. Если
, то тепловой ток удваивается. Для германиевых диодов
= 10 °С, а для кремниевых – 5 °С. Сравнение обратных токов по величине дает:
.То есть, тепловой ток кремниевых диодов пренебрежимо мал по сравнению с германиевыми диодами.
Тепловое действие тока: закон Джоуля-Ленца, примеры
Двигаясь в любом проводнике, электрический ток передает ему какую-то энергию, из-за чего проводник нагревается. Энергетическая передача осуществляется на уровне молекул: в результате взаимодействия электронов тока с ионами или атомами проводника часть энергии остается у последнего.
Тепловое действие тока приводит к более быстрому движению частиц проводника. Тогда его внутренняя энергия возрастает и трансформируется в тепловую.
Формула расчета и ее элементы
Тепловое действие тока может быть подтверждено разными опытами, где работа тока переходит во внутреннюю проводниковую энергию. При этом последняя возрастает. Затем проводник отдает ее окружающим телам, то есть осуществляется теплопередача с нагреванием проводника.
Формула для расчета в этом случае следующая: A=U*I*t.
Количество теплоты можно обозначить через Q. Тогда Q=A или Q=U*I*t. Зная, что U=IR, получается Q=I 2 *R*t, что и было сформулировано в законе Джоуля-Ленца.
Закон теплового действия тока — закон Джоуля-Ленца
Проводник, где протекает электрический ток, изучали многие ученые. Однако, самых заметных результатов удалось добиться Джеймсу Джоулю из Англии и Эмилию Христиановичу Ленцу из России. Оба ученых работали отдельно и выводы по результатам экспериментов делали независимо один от другого.
Они вывели закон, позволяющий оценить тепло, получаемое в результате действия тока на проводник. Его назвали законом Джоуля-Ленца.
Рассмотрим на практике тепловое действие тока. Примеры возьмем следующие:
- Обычную лампочку.
- Нагревательные приборы.
- Предохранитель в квартире.
- Электрическую дугу.
Лампочка накаливания
Тепловое действие тока и открытие закона способствовали развитию электротехники и увеличению возможностей для использования электричества. То, как применяются результаты исследований, можно рассмотреть на примере обычной лампочки накаливания.
Она устроена таким образом, что внутри протягивается нить, изготовленная из вольфрамовой проволоки. Этот металл является тугоплавким с высоким удельным сопротивлением. При проходе через лампочку осуществляется тепловое действие электрического тока.
Энергия проводника трансформируется в тепловую, спираль нагревается и начинает светиться. Недостаток лампочки заключается в больших энергетических потерях, так как лишь за счет незначительной части энергии она начинает светиться. Основная же часть просто нагревается.
Чтобы лучше это понять, вводится коэффициент полезного действия, который демонстрирует эффективность работы и преобразования в электроэнергию. КПД и тепловое действие тока используются в разных областях, так как имеется множество устройств, изготовленных на основании этого принципа. В большей степени это нагревательные приборы, электрические плиты, кипятильники и другие подобные аппараты.
Устройство обогревательных приборов
Обычно в конструкции всех приборов для нагревания есть металлическая спираль, в функцию которой и входит нагрев. Если нагревается вода, то спираль устанавливается изолированно, и в таких приборах предусматривается соблюдение баланса между энергией из сети и тепловым обменом.
Перед учеными постоянно ставится задача по снижению энергетических потерь и поиску лучших путей и наиболее эффективных схем их внедрения, чтобы уменьшить тепловое действие тока. Используется, например, способ повышения напряжения во время передачи энергии, благодаря чему сокращается сила тока. Но такой способ, в то же время, понижает безопасность функционирования линий электропередач.
Другим исследовательским направлением является выбор проводов. Ведь именно от их свойств зависят потери тепла и другие показатели. Кроме того, при работе нагревательных приборов происходит большое выделение энергии. Поэтому спирали изготавливаются из специально предназначенных для этих целей, способных выдержать высокие нагрузки, материалов.
Квартирные предохранители
Чтобы улучшить защиту и обезопасить электрические цепи, используются особые предохранители. В роли главной части выступает проволока из легкоплавкого металла. Она проходит в пробке из фарфора, имеет винтовую нарезку и контакт в центре. Пробку вставляют в патрон, расположенный в фарфоровой коробке.
Свинцовая проволока является частью общей цепи. Если тепловое действие электрического тока резко возрастет, сечение проводника не выдержит, и он начнет плавиться. В результате этого сеть разомкнется, и не случится токовых перегрузок.
Электрическая дуга
Электрическая дуга является довольно эффективным преобразователем электрической энергии. Она используется при сварке металлических конструкций, а также служит мощным световым источником.
В основу устройства входит следующее. Берут два угольных стержня, подсоединяют провода и прикрепляют их в изолирующих держателях. После этого стержни подключают к источнику тока, который дает малое напряжение, но рассчитан на большую силу тока. Подключают реостат. Угли в городскую сеть включать запрещается, так как это может стать причиной пожара. Если коснуться одним углем о другой, то можно заметить, как сильно они раскалятся. Лучше не смотреть на это пламя, потому что оно вредно для зрения. Электрическую дугу используют в печах для плавки металла, а также в таких мощных осветительных приборах, как прожекторы, кинопроекторы и прочее.