Блок питания стабилизированный и нестабилизированный в чем разница
Перейти к содержимому

Блок питания стабилизированный и нестабилизированный в чем разница

Схемы источников питания

Существует три основных типа источников питания: нестабилизированные источники питания, источники питания с линейными стабилизаторами и импульсные источники питания. Четвертый тип схем источников питания называется источник питания с импульсным стабилизатором, представляет собой гибрид между нестабилизированной и импульсной схемами и заслуживает отдельного подраздела сам по себе.

Нестабилизированные источники питания

Нестабилизированный источник питания – это самый простой тип, состоящий из трансформатора, выпрямителя и фильтра нижних частот. Эти источники питания обычно имеют большие пульсации напряжения (то есть быстро изменяющуюся нестабильность) и другой «шум» переменного напряжения, накладываемые на выходное постоянное напряжение питания. Если входное напряжение меняется, выходное напряжение будет меняться пропорционально. Преимущество нестабилизированного источника питания заключается в том, что он дешевый, простой и эффективный.

Источники питания с линейными стабилизаторами

Источник питания с линейным стабилизатором – это просто нестабилизированный источник питания, за которым следует транзисторная схема, работающая в своем «активном», или «линейном» режиме, отсюда и название линейный стабилизатор. Типовой линейный стабилизатор предназначен для вывода фиксированного напряжения для широкого диапазона входных напряжений, и на нем просто падает любое избыточное напряжение, чтобы обеспечить максимальное выходное напряжение на нагрузке. Это падение избыточного напряжения приводит к значительному рассеиванию мощности в виде тепла. Если входное напряжение станет слишком низким, схема утратит стабилизацию, что означает, что она не сможет поддерживать неизменное напряжение. Она может только отбрасывать избыточное напряжение, но не может восполнять недостаток напряжения в секции нестабилизированного источника. Поэтому необходимо поддерживать входное напряжение выше требуемого выходного напряжения как минимум на 1–3 вольта в зависимости от типа стабилизатора. Это означает, что мощность, эквивалентная, по крайней мере, 1–3 вольтам, умноженным на полный ток нагрузки, будет рассеиваться схемой стабилизатора, выделяя много тепла. Это делает источники питания с линейными стабилизаторами довольно неэффективными. Кроме того, чтобы избавиться от всего этого тепла, они должны использовать большие радиаторы, которые делают их большими, тяжелыми и дорогими.

Импульсные источники питания

Импульсный источник питания («импульсник») – это попытка реализовать преимущества как нестабилизированной, так и линейной стабилизированной конструкций источников питания (небольшой, эффективный и дешевый, но при этом с «чистым», стабильным выходным напряжением). Импульсные источники питания работают по принципу выпрямления входного переменного напряжения в постоянное напряжение, повторного преобразования его в высокочастотное прямоугольное переменное напряжение с помощью транзисторов, работающих как ключи (открыт/закрыт), затем понижения или повышения этого переменного напряжения с помощью небольшого трансформатора, а затем выпрямления выходного переменного напряжения трансформатора в постоянное напряжение и фильтрации до конечного выходного напряжения. Стабилизация напряжения достигается путем изменения скважности («коэффициента заполнения») преобразования постоянного напряжения в переменное на первичной обмотке трансформатора. В дополнение к меньшему весу трансформатора из-за меньшего сердечника, «ипульсники» имеют еще одно огромное преимущество по сравнению с предыдущими двумя конструкциями: этот тип источника питания может быть сделан настолько независимым от входного напряжения, что он может работать в любой системе электроснабжения в мире; эти источники питания называются «универсальными».

Недостатком импульсных источников питания является то, что они являются более сложными, и из-за своего принципа действия они имеют тенденцию генерировать много высокочастотного «шума» на линии питания. Большинство «импульсников» также имеет на выходе значительные пульсации напряжения. У более дешевых типов эти шум и пульсации могут быть такими же плохими, как и у нестабилизированного источника питания; такие низкобюджетные «импульсники» не бесполезны, потому что они по-прежнему обеспечивают стабильное среднее выходное напряжение и обладают возможностями «универсального» входа.

На выходе дорогих импульсных источников питания пульсаций нет, а шум почти такой же низкий, как у некоторых линейных стабилизаторов; эти «импульсники», как правило, стоят также дорого, как и источники питания с линейными стабилизаторами. Причиной использования дорогого «импульсника» вместо хорошего источника с линейным стабилизатором является необходимость универсальной совместимости с системами электроснабжения или высокая эффективность. Высокая эффективность, малый вес и малые размеры – вот причины, по которым импульсные источники питания практически повсеместно используются для питания цифровых компьютерных схем.

Источники питания с импульсными стабилизаторами

Источник питания с импульсным стабилизатором – это альтернатива схеме с линейным стабилизатором: нестабилизированный источник питания (трансформатор, выпрямитель, фильтр) представляет собой «начало» схемы, а транзистор, работающий строго в режимах открыт/закрыт (насыщение/отсечка), передает питание постоянным напряжением на большой конденсатор так, чтобы поддерживать выходное напряжение между верхним и нижним установленными значениями. Как и в импульсных источниках питания, транзистор в импульсном стабилизаторе никогда не пропускает ток, находясь в своем «активном», или «линейном», режиме в течение какого-либо существенного промежутка времени, что означает, что в таком стабилизаторе будет теряться очень мало энергии в виде тепла. Однако самым большим недостатком этой схемы стабилизации является вынужденное наличие некоторых пульсаций напряжения на выходе, так как постоянное напряжение изменяется между двумя контрольными значениями напряжения. Кроме того, эти пульсации напряжения изменяются по частоте в зависимости от тока нагрузки, что затрудняет окончательную фильтрацию выходного напряжения питания.

Схемы импульсных стабилизаторов, как правило, немного проще схем импульсных источников питания, и им не нужно работать с большими мощностями.

Блок питания стабилизированный и нестабилизированный в чем разница

Maneki Neko

НЕСТАБИЛИЗИРОВАННЫЕ блоки питания — самые распространенные трансформаторные блоки питания. Обеспечивают выходное напряжение ПОСТОЯННОГО ТОКА. Такой блок питания содержит сетевой трансформатор и выпрямитель. В нестабилизированных блоках питания выходное напряжение соответствует номинальному только при номинальном сетевом напряжении (220V) и номинальном токе нагрузки.

Эти блоки пригодны для питания осветительных и нагревательных приборов, электромоторов и любых устройств со встроенным стабилизатором напряжения (например, большинство радиотелефонов и автоответчиков).

Такие блоки питания как правило имеют значительный уровень пульсаций сетевого напряжения и не пригодны для питания звуковой техники (радиоприемников, плееров, музыкальных синтезаторов). Для этих устройств следует применять стабилизированные блоки питания.

СТАБИЛИЗИРОВАННЫЕ блоки питания. Обеспечивают СТАБИЛИЗИРОВАННОЕ выходное напряжение ПОСТОЯННОГО ТОКА. Такой блок питания содержит сетевой трансформатор, выпрямитель и стабилизатор. СТАБИЛИЗИРОВАННЫЙ — означает, что выходное напряжение не зависит (или почти не зависит) от изменения сетевого напряжения (в разумных пределах) и от изменения тока нагрузки. В отличие от нестабилизированных блоков питания в стабилизированных выходное напряжение будет одинаковым как на холостом ходу так и при номинальной нагрузке. Кроме того, в таких блоках питания как правило достаточно малы пульсации напряжения переменного тока на выходе.

Стабилизированный блок питания практически всегда может заменить нестабилизированный (но разумеется не наоборот). Поэтому, если Вы не знаете, какой блок питания постоянного тока нужен для Вашей бытовой аппаратуры — стабилизированный или нестабилизированный, то используйте СТАБИЛИЗИРОВАННЫЙ или ИМПУЛЬСНЫЙ блок питания.

  • Большой КПД
  • Незначительный нагрев
  • Малый вес и габариты
  • Как правило бОльший допустимый диапазон сетевого напряжения
  • Как правило имеют встроенную защиту от перегрузки и замыканий на выходе

ИМПУЛЬСНЫЕ блоки питания получают все большее распространение т.к. сейчас затраты на изготовление даже сложной электронной начинки ниже чем на массивный сетевой трансформатор из меди и железа. Стоимость импульсных блоков питания даже малой мощности (около 5Вт) для такой бытовой техники как, например, радиотелефоны и автоответчики, вплотную приближается к стоимости трансформаторных. Следует также учитывать экономию на транспортных расходах при доставке — импульсные блоки питания легче трансформаторных.

Некоторые люди имет предубеждение против применения импульсных блоков питания. С чем оно может быть связано?

  1. Импульсные блоки питания схемотехнически сложнее трансформаторных. Самостоятельный ремонт их пользователем вряд ли возможен;
  2. Блоки питания самодельщиков и мелких кооперативов 90-х годов прошлого века отличались малой надежностью. Сейчас это не так — по нашему опыту процент отказов (по различным причинам, в т.ч и из-за перегрузок и перепадов сетевого напряжения) у импульсных блоков питания не превышает этого показателя у трансформаторных .

Современные ИМПУЛЬСНЫЕ блоки питания достаточно надежны. Например, на все блоки питания Robiton® дается гарантия 1 год.

Таким образом, будем относить к ЗАРЯДНЫМ УСТРОЙСТВАМ, например, устройство заряда аккумуляторов для фотоаппарата, если аккумуляторы при этом вынимаются из него и вставляются в зарядное устройство. А сетевой адаптер, подключаемый к фотоаппарату (и при этом также обеспечивающий заряд аккумуляторов, но уже внутри него) отнесем к БЛОКАМ ПИТАНИЯ.

Памятка продавца — блоки питания

Памятка продавца - блоки питания

1. Нестабилизированные блоки питания – выходное напряжение зависит от тока нагрузки.

Плюсы:

Минусы:

  • невысокая цена
  • Используются только с приборами, для которых некритично наличие стабилизатора или он встроен в само устройство
  • Трансформаторный блок питания*(большой вес и низкий КПД -25-50%)
  • Чувствительны к внешним помехам

2. Стабилизированные блоки питания – выходное напряжение не зависит от тока нагрузки.

Плюсы:

Минусы:

  • невысокая цена
  • стабилизированный
  • используются с любыми приборами
  • трансформаторный блок питания* (большой вес и низкий КПД 25-50%)

* КПД существенно меньше, чем у импульсных блоков питания, трансформаторные БП греются, имеют большой размер и вес.

3. Импульсные блоки питания — выходное напряжение не зависит от тока нагрузки.

Плюсы:

Минусы:

  • Стабилизированный
  • Высокий КПД (> 90%)
  • Небольшие габариты и вес
  • Лучшее соотношение цена /качество
  • Расширение сферы применения за счет высокий значений тока
  • Переносят скачки напряжения питающей сети вплоть до 20%
  • достаточно высокая цена**

** Ценовое преимущество импульсных блоков очевидно для достаточно мощных изделий, также благодаря высокому КПД и малым габаритам, у них лучше соотношение цена/качество

Импульсные блоки питания — легкие и компактные Пример: стабилизированный блок питания Robiton SN1000S (ток 1000мА) весит 570гр, импульсный блок IN1200S (ток1200мА)– 220 гр. Он в 2 раза легче!

Импульсного блока питания на 5000мА вполне достаточно чтобы закрыть все ваши потребности, он подойдет как для мощных устройств, так и для устройств, требующих ток в 300мА.

Тенденции: будущее за импульсными блоками питания. По мере удешевления компонентов импульсных блоков питания, они все больше и больше теснят и маломощные трансформаторные. Пример: зарядные устройства мобильных телефонов сейчас преимущественно импульсные, хотя еще несколько лет назад на таких небольших мощностях использовались трансформаторные блоки питания.

Класифікація блоків живлення

або AC.
Увага! При підборі блоку живлення для Вашої побутової апаратури (замість поламаного або втраченого) дотримуйте кілька простих правил: З’ясуйте, постійного (DC) або перемінний (AC) напруга потрібно Вашій приладу. Звертайте увагу на написи на корпусі приладу і вихідна напруга блоку живлення (OUTPUT).
З’ясуйте величину необхідного напруги, а також, стабілізовану або нестабілізована харчування потрібно Вашій приладу.
З’ясуйте споживаний приладом струм. Вибирайте блок живлення з струмом не менше, ніж споживає Ваш прилад.
При підключенні блоків живлення з постійним вихідним напругою (DC) і зарядних пристроїв завжди дотримуйте полярності! Підключення в неправильній полярності може призвести до виходу з ладу як Вашого побутового приладу так і самого блоку живлення! Уважно вивчіть маркування полярності на побутовому приладі і блоці живлення або в технічній документації на них. При відсутності інформації на блоці живлення для визначення полярності скористайтесь тестером.
Примітка! У багатьох випадках незначна різниця (в декілька десятих доль вольта) живлячої напруги не позначається негативно на роботі побутових приладів. Більшою мірою це стосується нестабілізованих блоків живлення і блоків з змінним вихідним напругою. Якщо Ви не можете знайти блок живлення з «екзотичними» параметрами, то спробуйте застосувати блок з дещо меншою напругою.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *