Где применяются туннельные диоды
В.ЩЕРБАТЮК, Б.ЛИСЕНКОВ, г.Минск.
Туннельные диоды — это "экзотические" полупроводниковые приборы, про которые многие начинающие радиолюбители даже не слышали. Они по целому ряду причин не нашли широкого применения в радиоэлектронной аппаратуре, но, тем не менее, их использование в некоторых устройствах может оказаться весьма полезным. Для того чтобы знать, чего можно "потребовать" от этого диода, желательно хотя бы приблизительно представлять, как и откуда в нем все эти "туннельные чудеса"берутся.
Началось все это еще в прошлом веке, в 1928 году, когда Гейзенберг "придумал"принцип неопределенности. Смысл его заключается в том, что невозможно одновременно точно определить местонахождение частицы (например, электрона) и ее импульс (тот же импульс, который проходили в школе "под именем" mv, в квантовой механике обозначается буквой р). А выглядит это соотношение совсем не страшно и может быть записано следующим образом:
где D р — погрешность определения импульса;
D х — погрешность определения положения (координаты).
Справа в этом неравенстве стоит невообразимо маленькое число — постоянная Планка h. Это очень приблизительно равно 6,6*10 -34 Дж-с.
Теперь, для того чтобы хотя бы смутно понять, что означает в микромире этот самый принцип неопределенности Гейзенберга, придется мысленно совершить невообразимое кощунство. Предположим, что правая часть неравенства (1) равна, ну хотя бы, единице. Тогда, если бы это было так, то очень даже запросто могло бы получиться, что купленный вами 1 кг колбасы, будучи положенным в вашей кухне на стол (зафиксируем погрешность импульса колбасы Др с точностью 5% или 0,05), может быть съеден соседом (обратите внимание!) у себя на кухне. Ведь в нашем воображаемом случае колбаса может оказаться где угодно в пределах Дх, которое в данном случае окажется равно
Причем наличие стены между кухнями для колбасы совершенно несущественно. Конечно, это все-таки очень абстрактный пример, но приблизительное толкование принципа неопределенности дает (хозяин не знает, где "бродит" колбаса).
В туннельных диодах, изготовленных из полупроводников с высокой степенью легирования (вырожденных полупроводников), запорный слой настолько тонок (=5 нанометров, т.е. 5*10 -9 м), что электроны при определенном напряжении "просачиваются" на другую сторону запорного слоя (как в приведенном примере ваша колбаса — за стену, на кухню к соседу). Это и называется "туннельным эффектом".
На рис.1 показаны вольтамперные характеристики обычного (а) и туннельного (б) диодов. Обычный диод, надеюсь, всем известен, и поэтому разбираться с ним не будем.
Рис. 1
В данный момент нас больше интересует именно туннельный диод. Вольтамперная характеристика его весьма специфична. Конечно, с его помощью можно чего-нибудь и выпрямить, но "изюминку" представляет то место его вольтамперной характеристики, где имеется участок с так называемым "отрицательным сопротивлением" (зона Д1) на рис.1б). Этот "падающий" участок (напряжение растет, а ток уменьшается), находящийся в начале прямой ветви вольтамперной характеристики туннельного диода, прямо скажем, совсем небольшой. Поэтому у туннельного диода небольшие рабочее напряжение, ток и, соответственно, мощность.
Обычное "положительное" сопротивление, включенное в цепь сигнала, ослабляет этот сигнал. Графически (рис.1 а) получается, что с ростом напряжения растет ток, а сопротивление является коэффициентом пропорциональности между ними (как говорит закон Ома — I=U/R). Ну а если сопротивление отрицательное, то после порогового напряжения Uo с ростом напряжения ток начнет уменьшаться (рис.1б)!
В зоне отрицательного сопротивления состояние туннельного диода является неустойчивым. Обычно рабочая точка"перескакивает" через зону отрицательного сопротивления и устанавливается на следующем участке вольтамперной характеристики с "нормальным" сопротивлением.
Рис.2
Эти "неординарные" качества туннельного диода позволяют использовать его в самых различных устройствах. На одном туннельном диоде можно сделать даже супергетеродинный приемник, правда, в этом случае лучше не говорить о его характеристиках. Широкому использованию этого прибора мешает его малая мощность и не совсем удобные выходные напряжения (трудно согласовать с цифровыми микросхемами).
Тем не менее, на туннельном диоде можно делать достаточно простые устройства, обладающие рядом интересных свойств. Типовая схема включения туннельного диода показана на рис.2. Вольтамперная характеристика туннельного диода в виде, более удобном для детального рассмотрения, показана на рис.3. Здесь же показаны возможные нагрузочные характеристики, определяемые величиной R (прямые 1 и 2) для использования "туннельника" в триггерных режимах работы. Эти режимы отличаются порогами переключения (U1 и U2). В точках А и Б — устойчивые состояния рабочей точки.
Рис.3
Это позволяет создать генератор на "длинной" линии, активный элемент которого (туннельный диод) работает в триггерном режиме. Схема одного из вариантов такого генератора приведена на рис.4. Он построен на элементе очень быстродействующей эммитерно-связанной логики (ЭСЛ). С помощью резистора R1 выбирают режим работы туннельного диода VD1, Длинной линией L1 служит отрезок коаксиального (например, телевизионного) кабеля, на конце которого центральная жила соединяется с оплеткой. Частота генерируемых колебаний определяется длиной линии L1. Диод VD2 — кремниевый, например, КД522А, и предназначен для смещения напряжения на выходе генератора в область входных напряжений микросхемы ЭСЛ. Для уменьшения сопротивления переменному току, параллельно диоду можно включить керамический конденсатор небольшой емкости. Туннельный диод должен быть арсенид-галлиевым, например, ЗА201А.
Генератор работает следующим образом. При переключении туннельного диода, от него по линии L1 распространяется импульс в направлении закороченного конца. Отразившись там в противофазе и вернувшись к диоду, импульс переключает его и тем самым посылает в линию следующий импульс. Каждый пришедший импульс переключает триггер на диоде в противоположное состояние. Таким образом, на аноде туннельного диода VD1 возникает переменное напряжение прямоугольной формы с частотой
F=1/4t
где t — время прохождения импульсом линии L1.
Следует отметить, что стабильность частоты определяется стабильностью параметров линии.
Генератор самостоятельно не начинает работать после включения питания и требует внешнего запуска. Запустить генератор можно, касаясь пинцетом анода туннельного диода. Такой запуск годится только для наладки. Но эта схема приведена для пояснения принципа работы генератора на туннельном диоде.
Другой вариант схемы приведен на рис.5. Отличается он отсутствием емкости, включенной между линией L1 и диодом, а также закорачивающей перемычки на конце линии. Это устройство обладает одним интересным свойством. Изменение импеданса линии на открытом конце приводит к изменению частоты генерируемых колебаний. Фактически этот генератор может служить датчиком для самых различных устройств. Например, если сделать линию L1 участком трубопровода, то, дополнив такой генератор некоторыми элементами, можно будет по изменению частоты судить о качестве протекающих по трубопроводу нефтепродуктов. Открытый конец линии (кабеля) чувствителен к приближению к нему каких-либо предметов, что делает его пригодным для использования в качестве датчика перемещения или индикатора появления объекта в охранных системах.
РМ 12/2001, с.34-35.
Туннельный диод: оценка, отбор и практическое применение
Туннельным диодом называют полупроводниковый диод на основе вырожденного полупроводника, в котором туннельный эффект (при приложении к ТД напряжения в прямом направлении) приводит к появлению на вольтамперных характеристиках (ВАХ) участка с отрицательной дифференциальной проводимостью (ОДП) — рис.1. Туннельный эффект заключается в том, что электрон при определенных условиях может, не затрачивая энергии, пройти сквозь потенциальный барьер, как по туннелю.
Напряжение U(Uв Uп)/2 для ТД на основе германия лежит в пределах 60. 100 мВ, для ТД из арсенида галлия 280. 360 мВ.
Ток через ТД при приложении небольших напряжений растет достаточно резко (рис.1). Это связано с тем, что при туннельном переходе электрон не расходует своей энергии, поэтому может совершать его при температуре, близкой к абсолютному нулю. Именно этим обстоятельством объясняется способность ТД работать в более широком диапазоне температур, чем обычные диоды. В интервале напряжений от Uп до Uв ВАХ ТД имеет спадающий участок, что указывает на наличие ОДП. Этот участок ВАХ является наиболее ценным при практическом использовании ТД. ОДП позволяет скомпенсировать потери, вносимые положительным сопротивлением, и в зависимости от поставленной задачи осуществить схему усилителя, генератора или преобразователя колебаний. В точке перегиба ВАХ, соответствующей напряжению Uв, ОДП минимальна. Величина ОДП колеблется от сотых долей ома до сотен ом.
Мощность, потребляемая ТД в том или ином режиме от источника питания, примерно в десять раз меньше, чем при использовании для той же цели транзистора. Однако полностью реализовать это преимущество не удается, поскольку в реальных конструкциях для питания ТД чаще всего используют стандартные гальванические элементы напряжением 1,5 В, а остаток гасят резисторами.
Рис. 1. Вольтамперная характеристика (ВАХ) участка с отрицательной дифференциальной проводимостью.
Генераторы на туннельных диодах попоследовательной (рис.2), параллельной (рис.3) и последовательно-параллельной (рис.4) схемам.
Рис. 5. Конструкция корпуса и полярность ТД типа АИ101, АИ201, АИ301.
Рис. 6. Схема самого простого ГП со звуковой индикацией.
В схеме, показанной на рис.7, вместо электромагнитного телефона использован звонок пьезокерамический (ЗП) от звуковой открытки.
В схему, показанную на рис.8, введен двухполупериодный выпрямитель с удвоением выходного напряжения (удвоитель) VD1, VD2, C2, C3.
Рис.9. Усилитель на VT1.
Рис.10. Генераторный пробник (ГП) в авторском варианте.
Рис. 11. Включение генератора на ТД между анодами двух стабилитронов.
Рис. 12. Схема двухполюсника, выполненного на германиевых транзисторах с напряжением стабилизации 0,35 В. При использовании кремниевых транзисторов напряжение стабилизации увеличивается до 1. 1,2 В.
Рис. 13. Схема низковольтного стабилизатора с регулируемым выходным напряжением.
Рис. 14. Схема термокомпенсированного источника тока на биполярном транзисторе.
Изучаем туннельный диод на примере 3И306М
В современной электронике туннельные диоды вытеснены компонентами, более удобными для решения тех же задач. Но почему бы не поэкспериментировать с активным элементом, который когда-то считался одним из самых быстродействующих?
Туннельные диоды делятся на предназначенные для усилителей, импульсных генераторов и ключевых схем. Согласно даташиту, диоды серии 3И306 предназначены для применения в переключающих устройствах. На графике показана зависимость падения напряжения на диоде от тока через него на прямом участке ВАХ:
Характериограф у автора импровизированный, он состоит из сигнал-генератора, 10-омного резистора и осциллографа. При этом возникает ошибка: один канал осциллографа измеряет суммарное напряжение на всей последовательной цепи из диода и резистора, а другой — только на резисторе (по второму из этих напряжений можно косвенно определить ток). Рассчитать падение напряжения только на диоде можно, экспортировав кривые в CSV-файл, а затем сгенерировав графики в Python с matplotlib.
Пример ВАХ туннельного диода на экране осциллографа:
Вначале ток через диод возрастает приблизительно до 11 мА, пока напряжение не увеличивается до 150 мВ, затем резко уменьшается до 500 мкА и возрастает снова. Это — участок отрицательного дифференциального сопротивления, на котором ток падает с увеличением напряжения.
Для изучения работы диода в переключающем устройстве автор подключил его к двум BNC-разъёмам. Корпуса их соединены вместе, а между центральными контактами включён диод. Сигнал с генератора с выходным сопротивлением в 50 Ом поступает через диод на осциллограф с тем же входным сопротивлением:
Поведение диода не зависит от формы сигнала. Когда напряжение превышает пороговое, происходит переключение. Автор подавал сигнал треугольной формы с частотой порядка 100 кГц. Спадание тока происходит за 900 пикосекунд, а нарастание — за 1,1 наносекунды. Впечатляет, особенно если учитывать, что схема состоит из одной детали, не считая сигнал-генератора. У генератора прямоугольных импульсов на таймере 555 переключение длится примерно 100 наносекунд.
Но размах выходного сигнала невелик, поскольку туннельные диоды работают при малых напряжениях и токах.
Далее автор пробует применить переключательный диод не по назначению — в генераторе. Здесь он будет поддерживать в контуре незатухающие колебания:
Колебательный контур первоначально состоял из одного витка диаметром в 9 мм и конденсатора на 2 пФ. Конденсатор на 10 нФ замыкает генерируемые колебания на себя, не пропуская их в цепь питания. Напряжение питание составляет 700 мВ, после запуска генератор продолжает работать при снижении напряжения до 330 мВ.
Сначала генератор работал на частоте в 295 МГц. При замене конденсатора в контуре на другой, ёмкостью в пФ, частота возросла всего до 300 МГц, из чего следует, что собственная ёмкость диода и дальше занижала частоту. Рассчитав индуктивность витка, автор далее вычислил собственную ёмкость диода — 18 пФ. В даташите сказано, что она не превышает 30 пФ, и это оказалось так.
При наблюдении колебаний важно не внести в контур дополнительную ёмкость. У 10-кратного щупа осциллографа ёмкость составляет 10 пФ, чего достаточно, чтобы ещё уменьшить частоту. Поэтому автор замкнул вход осциллографа на корпус, получив ещё один виток — измерительный. Поднеся его к витку контура, можно получить трансформатор без сердечника. Амплитуду колебаний так не узнать, но можно посмотреть, как она зависит от напряжения питания.
Чтобы увеличить частоту генерации, автор укоротил выводы диода и подключил конденсатор с аксиальным расположением выводов прямо к ним. Виток больше не нужен, индуктивность обеспечивают выводы компонентов. После подачи на схему напряжения питания в 700 мВ началась генерация на частоте в 581 МГц. Как бы ещё увеличить её? Взять объёмный резонатор?
Вероятно, работать с туннельными диодами проектировщикам было непросто: правило «строим усилитель — получается генератор» здесь так и норовило соблюстись. Поэтому автор пока не пробовал делать на таком диоде усилитель.
Выходной сигнал автор снимал тем же способом, и хотя он выглядит как идеально синусоидальным, он может быть и искажённым, просто на частоте в 581 МГц у осциллографа на 1 ГГц для обнаружения искажений не хватает разрешающей способности. Так же, как и в предыдущем случае, точно измерить амплитуду, а значит, сравнить по ней этот генератор с предыдущим, не получится.
Туннельные диоды очень «нежны»: один из них вышел у автора из строя при снятии ВАХ из-за слишком большой амплитуды сигнала с генератора, другой — от перегрева при пайке. С оставшимися восемью автор обращался значительно деликатнее. Впаивать диод нужно при температуре не более 260 °C не дольше 3 секунд и с теплоотводом. Рекомендуемого для таких целей медного пинцета толщиной в 2 мм у автора нет, но подошёл алюминиевый зажим, изначально приобретённый для пайки германиевых компонентов:
Диоды также боятся статики, к тому же, «проверка диодов тестером не допускается». У автора после такого опыта диод выжил, но во время проверки не звонился ни в одну сторону. Определять полярность нужно по иллюстрации в даташите.
Если с туннельными диодами собираетесь экспериментировать и вы, приобретите их на всякий случай с запасом, но соблюдать эти несложные правила начинайте сразу. И тогда не потеряете ни один.
Как устроен туннельный диод
Туннельный диод обладает особыми характеристиками, отличающими его от обычных диодов и стабилитронов. Если диоды и стабилитроны хорошо пропускают ток только в одну сторону (в обратную – только в области пробоя), то туннельный диод способен хорошо проводить ток в обе стороны. Это свойство обеспечивают особенности устройства туннельного диода: очень узкий p-n переход и значительное количество присадок.
Содержание статьи
История создания туннельного диода
Эта деталь была предложена в 1956 году японским ученым Л. Есаки. Для ее изготовления использовался германий или арсенид галлия с большим количеством присадок, обладающих низким удельным сопротивлением.
Арсенид галлия оказался более перспективным материалом. При производстве туннельных диодов используются: доноры – олово, сера, теллур, свинец, селен, а также акцепторы – кадмий и цинк. Применяются германиевые полупроводники, в которых: доноры – мышьяк и фосфор, а акцепторы – алюминий и галлий. Примеси вводят в состав диода путем вплавления или диффузии.
Особенности и принцип действия туннельного диода
Туннельные диоды с чрезвычайно малым сопротивлением относят к группе вырожденных. Для них характерны:
- электронно-дырочный переход – в десятки раз тоньше, по сравнению с обычными диодными устройствами;
- потенциальный барьер – в 2 раза выше относительно стандартных полупроводниковых деталей;
- наличие напряженности поля даже при отключении питающего напряжения – 106 В/см.
Уникальные свойства туннельного диода проявляются в его вольтамперной характеристике (ВАХ) при прямом смещении в полупроводнике.
На схеме видно, что на отрезке А ток растет с увеличением напряжения. На участке В полупроводник проявляет отрицательное сопротивление (туннельный эффект), приводящее к тому, что при росте вольтовой характеристики ток снижается. На отрезке С прибор снова обеспечивает прямую зависимость между током и напряжением.
Туннельные диоды предназначены для работы как раз на отрезке, для которого характерно отрицательное сопротивление. Небольшое повышение напряжения выключает его, а снижение – включает.
Основные параметры туннельных диодов
При выборе этого полупроводника учитывают:
- ток пика – максимальный ток прямого направления;
- пиковое напряжение, характерное для тока пика;
- минимальный ток (ток впадины) и характерное для него напряжение;
- напряжение скачка – максимальный перепад напряжений;
- емкость – емкость между выводами полупроводника при определенной вольтовой характеристике смещения.
Маркировка туннельных диодов и их обозначение на схеме
В обозначении диодов присутствует несколько позиций (обычно 5). Первой идет буква или цифра. Цифры 1, 2, 3 обозначают, что диод предназначен для военного применения (имеет более широкий температурный рабочий интервал, по сравнению со стандартными полупроводниками). На первой позиции может стоять буква, указывающая на материал, используемый при изготовлении детали: Г – германий, А – арсенид галлия. Вторая позиция показывает класс полупроводника, Д – обозначает «диод». На третьей позиции отображают характеристики мощности или частоты. Четвертая – двух- или трехзначный серийный номер. В конце обозначения производитель предоставляет дополнительную информацию.
Цветовая маркировка диодов
Обозначение туннельного диода на схемах
Области применения
Параметры туннельного диода обеспечивают его использование в следующих областях:
- в качестве высокоскоростного выключателя;
- в роли усилителя, в котором повышение напряжения вызывает более значительный рост тока, по сравнению со стандартными диодными устройствами;
- для получения и усиления электромагнитных колебаний;
- в радиоэлектронных переключающих и импульсных устройствах различного назначения, для которых актуально высокое быстродействие.
Преимущества и недостатки
Плюсы туннельных диодов:
- особая вольтамперная характеристика в определенном интервале напряжений;
- уникальное быстродействие, малая инерционность;
- устойчивость к ионизирующему излучению;
- сниженное потребление электроэнергии от источника электропитания.
Все туннельные диоды имеют компактные размеры. Часто они представляют собой изделия в герметичных корпусах цилиндрической формы диаметром 3-4 мм, высотой 2 мм и массой менее 1 грамма.
Существенным недостатком полупроводников этого типа является значительное старение, которое приводит к изменению их свойств, а следовательно, к нарушению нормальной функциональности устройства. «Туннельники» могут утратить прежние параметры не только из-за превышенных рабочих режимов, но даже из-за длительного хранения, после чего они превращаются в «обращенные» полупроводники. Такое обстоятельство часто становится причиной некорректного функционирования промышленных осциллографов.
Существуют и «обращенные» полупроводники промышленного изготовления. От туннельных они отличаются меньшей концентрацией примесей, хотя общий принцип функционирования у них одинаковый.
Как проверить туннельный диод на работоспособность
О работоспособности туннельного диода можно судить по характеру изменения тока при повышении/понижении напряжения, прилагаемого к детали. Для этой цели собирают несложную схему.
Источником тока в этой схеме выступает гальванический элемент, имеющий ток разряда 50 мА. Для проведения измерений берем миллиамперметр, у которого ток полного отклонения должен быть не меньше, чем ток проверяемого туннельного диода. Движок переменного резистора R1 выставляют в крайнее правое положение. Диод присоединяют к зажимам З1 и З2.
Движком уменьшают сопротивление резистора. Если деталь работоспособна, то ток, показываемый миллиамперметром, быстро возрастает, а затем, достигнув максимального значения, идет на резкое снижение и достигает минимума. Дальнейшее снижение сопротивления приводит к росту тока до первого максимального значения. Доводить величину тока до значения превышающего первый максимум, не рекомендуется.