Как сделать двигатель для самолета
Перейти к содержимому

Как сделать двигатель для самолета

Как сделать реактивный мини двигатель своими руками в домашних условиях – самодельная схема устройства

Я собираю модель, имитирующую настоящий реактивный мини двигатель, даже если мой вариант электрический. На самом деле всё просто и каждый может построить реактивный двигатель своими руками в домашних условиях.

То, как я спроектировал и построил самодельный реактивный двигатель — не лучший способ сделать это. Я могу представить миллион способов и схем, как создать лучшую модель, более реалистичную, более надежную и более простую в изготовлении. Но сейчас я собрал такую.

Основные части реактивного модельного двигателя:

  • Двигатель постоянного тока достаточно сильный и минимум на 12 вольт
  • Источник постоянного тока не менее 12 вольт (в зависимости от того, какой у вас двигатель постоянного тока).
  • Реостат, такой же какой продаётся для настройки яркости лампочек.
  • Коробка передач с маховиком, встречается во многих автомобильных игрушках. Лучше всего, если корпус редуктора сделан из металла, потому что пластик может плавиться на таких высоких скоростях.
  • Металлический лист, который можно разрезать, чтобы сделать лопасти вентилятора.
  • Амперметр или вольтметр.
  • Потенциометр примерно на 50К.
  • Катушка электромагнита из соленоида или любого другого источника.
  • 4 диода.
  • 2 или 4 постоянных магнита.
  • Картон, чтобы собрать корпус, похожий на корпус реактивного двигателя.
  • Наполнитель кузовов для авто, для создания экстерьера.
  • Жесткий провод, чтобы поддерживать все. Обычно я использую провода из дешевых вешалок. Они достаточно сильны и достаточно гибки, чтобы придать им нужную форму.
  • Клей. Для большинства деталей я предпочитаю горячий клей, но сейчас подойдёт практически любой клей.
  • Белая, серебряная и черная краска.

Шаг 1: Присоедините двигатель постоянного тока к маховику коробки передач

Основа модели моего реактивного двигателя очень проста. Присоедините двигатель постоянного тока к коробке передач. Идея заключается в том, что мотор приводит в движение ту часть коробки передач, которая была прикреплена к колесам игрушечной машинки. Поместите пластиковый рычаг, чтобы он ударялся о маленькую шестерню маховика, и она издавала шум. Некоторые коробки передач уже оснащены этим устройством, а некоторые нет.

Шаг 2: Соедините магниты и катушку для датчика

Поместите 2 или 4 постоянных магнита на главный вал таким образом, чтобы катушка могла находиться рядом с ними, когда они вращаются. Поместите их так, чтобы шаблон полярности был — + — +. Идея состоит в том, что магниты будут проходить близко к катушке и генерировать небольшое количество тока, которое мы будем использовать для перемещения датчика. Но чтобы это сработало, вам нужно поместить 4 диода в мостовую конфигурацию, чтобы преобразовать переменный ток, который мы генерируем, в постоянный.

Загуглите «диодный мост», чтобы найти об этом больше информации. Также для калибровки датчика до нужной чувствительности, вам необходимо поместить потенциометр между катушкой и датчиком.

Шаг 3: Реостат для управления скоростью

Нам нужно контролировать скорость двигателя. Для этого поместите реостат между розеткой и источником питания. Если вы не знаете, как это сделать, загуглите, как подключить реостат к лампочкам. Но вместо лампочки мы поставим блок питания.

Не пытайтесь сделать это, если вы не уверены на 100%. Мы имеем дело с большим током и использование неподходящего источника питания может вывести его и строя. Чем проще блок питания, тем лучше. Альтернатива — найти реостат постоянного тока, чтобы мы могли контролировать напряжение после подачи питания. Я не смог найти такой ни в одном магазине, поэтому использую реостат для лампочек. Но если вы сможете найти такой, который будет работать с двигателем постоянного тока, то возьмите его. Идея состоит в том, чтобы просто контролировать, какой ток поступает на двигатель, так что это будет нашим дросселем.

Шаг 4: Вентилятор

Вентилятор вы можете сделать так, как захотите. Я вырезал каждое лезвие из тонкого металлического листа и склеил их. Вы можете сделать их из картона и затем покрасить. Или, если у вас есть доступ к 3D принтеру, вы можете напечатать 3d-вентилятор. На www.thingiverse.com есть отличные трёхмерные модели вентиляторов.

Шаг 5: Корпус

Вы можете сделать корпус из картона, а затем, чтобы придать форму, добавить внешний заполнитель. Вам придется много шлифовать, так что это тяжелая и грязная работа. Когда вы всё сгладите, закрасьте корпус глянцевой белой краской.

Внутренняя часть двигателя должна быть окрашена в черный цвет. Передняя часть двигателя обычно имеет серебристый край, который вы, по желанию, можете нарисовать.

Шаг 6: Механизм стартера

Стартер и ручки подачи топлива связаны механически. Стартер имеет выключатель, который подключает двигатель к источнику питания. Этот переключатель также может быть активирован рычагом управления подачей топлива, когда он находится в рабочем положении.

Пружина стартера должна быть нагружена таким образом, чтобы она хотела вернуться в нормальное положение, и блокировала стартовое положение только в том случае, если рычаг управления подачей топлива находится в отключенном положении.

Идея состоит в том, чтобы стартер оставался в исходном положении, пока вы не переместите рычаг подачи топлива в рабочее положение, и теперь рычаг управления подачей топлива будет держать переключатель включенным. Также топливный рычаг является частью основания реостата. Реостат должен быть установлен таким образом, чтобы можно было вращать не только часть ручки, которая должна вращаться, но и всю основу реостата. Эта база — то, что контроль топлива двигает для увеличения скорости, когда он находится в рабочем положении. Это сложно объяснить и поэтому, чтобы лучше понять концепцию, вы должны посмотреть третью часть видео.

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

Как сделать авиамодельный двигатель типа ВЕТЕРОК 0,8

Для советского человека не секрет, что микродвигатели можно сделать своими руками а не только купить готовый. В былые времена многие авиамоделисты сами себе изготавливали микродвигатели а та так же дорабатывали уже существующие. Ниже изложенная статья поможет узнать некоторые моменты самостоятельного изготовления микродвигателя маленького объема. На примере двигателя ветерок с рабочим объемом 0,8 см 3

Технические данные «Ветерка»

Диаметр цилиндра 10 мм

Ход поршня 10 мм

Рабочий объем 0,8 см 3

Рабочие обороты на винте 150х70 мм 12 800 об/мин

Мощность двигателя на валу 0,06 л. с.

Степень сжатия 9 атм

Состав горючего:

75% метилового спирта (метанол);

25% касторового масла.

Авиамодельный двигатель малого объема — около 1 см 3 — давняя мечта наших авиамоделистов. В первую очередь такой двигатель необходим моделистам-школьникам. Чем меньше объем двигателя, тем меньше усилий требуется для того, чтобы его завести. Поэтому двигатель в 1 см 3 наверняка найдет широкое распространение среди юных авиамоделистов. Кроме того, надо учесть, что в последнее время у авиамоделистов-спортсменов во всем мире значительно возрос общий уровень летных достижений моделей свободного полета и намечается стремление через год два уменьшить максимально допустимый рабочий объем двигателя для всех таймерных моделей чемпионатного класса с 2,5 м 3 до 1,5 или даже до 1 см 3 .

Наконец, микролитражные модельные двигатели малых кубатур (до 0,8 см 3 ) могут с успехом применяться и для моделей автомобилей, лодок, глиссеров.

Двигатель «Ветерок» был нами построен и испытан, причем выполнялись одновременно три экземпляра двигателя. Об одном из них мы и хотим вам рассказать.

Изготовление микролитражного двигателя «Ветерок» под силу любой станции юных техников, где есть простейшие токарные и фрезерные станки. Однако надо заметить, что только при аккуратном и точном выполнении всех советов по изготовлению детален и сборке двигателя можно получить желаемые результаты.

Двигатель «Ветерок» двухтактный, калильного типа, может работать на любом спиртовом горючем в смеси с касторкой.

Авиамодельный двигатель своими руками. ВЕТЕРОК-0,8

Как же изготовить «Ветерок»?

Начинать изготовление двигателя надо с самой главной детали — цилиндра. Цилиндр состоит из головки, втулки, болта, слюдяных прокладок, калильной нити, гайки и клиньев.

Сама головка изготовляется из материала Д16Т диаметром 20 мм. Пруток зажимается в кулачковый патрон, и производится полная обработка по чертежу той стороны прутка, где должна быть сферическая выемка. Далее сверлятся отверстия диаметром 4 и 22 мм. Сферическая выемка полируется пастой ГОИ. Затем деталь отрезается от заготовки. Обратная сторона детали обрабатывается в специальной оправке, которая зажимается в кулачковый патрон станка. Затем размечаются и сверлятся отверстия под винты крепления к цилиндру.

Болт точится из стали У5 по чертежу. В головке болта высверливается глухое отверстие диаметром 0,6 мм под медный клин для заделки калильной нити.

Это отверстие сверлится под углом к телу болта. Гайка и втулка точатся соответственно из латуни и дюралюминия Д16Т по чертежу.

Калильные нити можно делать из платиновой, родиевой или иридиевой проволоки. Возможно использование проволоки от старых термопар нагревательных термических печей, причем их необходимо калибровать фильерами.

Фильер представляет собой пластинку из нержавеющей нагартованной стали (или из стали У8) толщиной 0,3 мм. В этой пластинке нужно пробить отверстие обломанной иглой с помощью молотка. Иглу держите плоскогубцами. Протяжка проволоки для нити показана на рисунке 3 в.

Нить наматывается в спираль на оправке диаметром 1 мм. Шаг намотки 0,6-0,7 мм.

Особенно хорошо работают спирали, свитые из двойной или тройной проволочки платины толщиной 0,05 мм

Порядок сборки головки цилиндра следующий.

Конец спирали закрепляется медным клином в болте ударами по бородке молоточком. На болт надеваются слюдяные прокладки толщиной 0,3 мм. Со стороны полусферы в головку вставляется болт. В выточку головки закладываются слюдяные прокладки общей толщиной 0,5 мм. За-тем навертывается латунная гайка» которая затягивается круглогубцами до полной герметичности головки. Необходимо проверить, изолирован ли болт от головки. При этом запрессовывается втулка, закрепляется по месту второй конец калильной спирали. Это производится при помощи медного клина. Теперь можно приступить к проверке исправности калильного элемента. Проверка производится под напряжением от одной аккумуляторной банки, дающей напряжение 1,2 — 1,4 в. Из холоднокатаной медной фольги разных толщин изготовляется несколько прокладок соответственно 0,1, 0,2, 0,3 мм. При доводке двигателя выбирается лучшая.

Заготовка цилиндра делается из прутка диаметром 20 мм (рис. 2). Эта заготовка обтачивается на станке до диаметра 18 мм, сверлится сверлом диаметром 9,5 мм. и затем у нее протачиваются наружные размеры. При нарезке ребер желательно подпереть цилиндр задней бабкой и прорезать на обратном ходу. После этого у него протачивается внутренний диаметр до размера 9,8 мм. Отрезанный от заготовка, цилиндр проходит слесарную обработку: опиливается фланец крепления (можно на наждачном круге), засверливаются отверстия в головке и фланце, нарезается резьба для крепления головки цилиндра, распиливаются выхлопные окна и фрезеруются перепускные каналы. Головка цилиндра подвергается термообработке до R 45 — 47, Желательно шлифовать зеркало цилиндра до размера диаметра 10 ± 0,02 мм. Окончательно доводится размер диаметра чугунным притиром с пастой ГОИ (рис. 3, б).

Особое внимание нужно уделить обеспечению герметичности, для чего на плите следует притереть верхний фланец цилиндра. Прокладка под цилиндр вырезается из ватмана (рис. 2).

Ветерок 08

Поршень точится на токарном станке из стали У10 или У12 диаметром 12 мм. Заготовка обтачивается до диаметра 11 мм и просверливается до диаметра 7 мм, глубиной 10,5 мм. Поршень растачивается внутри по размерам, приведенным на чертеже. Затем протачивается наружный размер до диаметра 10,2 или 10,3 мм, после чего поршень отрезается от заготовки. После этого сверлится отверстие под поршневой палец сверлом диаметром 2,9 мм и зачищается хорошей разверткой ЗА на малом ходу, с маслом. Калится поршень до Rс 60—62, шлифуется снаружи до размера 10 ± 0,02 мм и притирается по цилиндру чугунным притиром (рис. 3, а). Необходимо также притереть отверстие под поршневой палец медной проволокой толщиной 3 мм.

Поршневой палец делается из заготовки стали У8 или У10 диаметром 4 или 5 мм. Заготовка торцуется и засверливается сверлом диаметром 1,9 мм, а затем протачивается снаружи до диаметра 3,2 мм и отрезается от заготовки. После этого деталь следует закалить до Rс = 60-62. Наконец она шлифуется и притирается по отверстию в поршне.

Контур шатуна размечается вдоль проката на прессованном дюралюминиевом профиле Д16Т. Затем засверливаются два отверстия сверлом диаметром 2,9 мм на расстоянии 18 мм. Производится слесарная обработка по чертежу, после чего отверстия разворачиваются разверткой ЗА3 (с маслом), а затем зачищаются. Необходимо следить, чтобы в них не попал абразив, вызывающий сильный износ поршневого пальца. Поверхность шатуна полируется гладким стальным каленым стержнем.

Для коленчатого вала вытачивается заготовка из стали 12XH3A или из 18ХНВА диаметром 14 мм, длиной 43 мм. В ней засверливаются центровые углубления: два — по оси заготовки и два — смещенные от оси на 5 мм. Сначала обрабатывается палец кривошипа в смещенных центрах, после чего в центрах на оси протачивается шейка и носок коленчатого вала. Затем нарезается резьба М4. После этого производится слесарная обработка. Деталь цементируется на глубину 0,5 мм, калится до Rc — 42- 45 и, наконец, шлифуется с притиркой трущихся поверхностей.

На заготовке, зажатой в кулачковый патрон диаметром 50 — 55 мм из Д16Т, протачивается носок картера и кривошипная камера с нарезанием резьбы под крышку, после чего носок картера отрезается от заготовки по размеру, указанному на чертеже. В картер запрессовывается бронзовая втулка, выточенная заранее по чертежу (рис. 5). После этого производится разметка расположения цилиндра и засверливаются центровые углубления по оси цилиндра для обработки места его крепления.

Зажав заготовку картера в центрах, обрабатываете прилив диаметром 10 мм для захвата цангой (рис. 5, г). Зажав заготовку в цанге, обрабатываете место крепления цилиндра по чертежу.

Затем производится фрезерная и слесарная обработка картера. Задняя крышка картера (рис. 5) с карбюратором вытачивается из заготовки Д16Т за два приема. Сначала производится торцевание, затем обработка по внешним размерам и разделка отверстия под ось. На длине 18 мм отрезается крышка от заготовки и производится разметка отверстия карбюратора, которое засверливается сверлом диаметром 3,9 мм и разделывается разверткой 4А3. Деталь зажимается в центре, и производится токарная обработка корпуса карбюратора. После этого происходит слесарная обработка детали по чертежу (рис. 3).

Жиклер и гайка иглы вытачиваются из латуни Л59 или Л62 по чертежу (рис. 3).

Игла карбюратора изготовляется на токарном станке из проволоки ОВС, предварительно нормализованной (прогревается до 200 — 240°С в течение 20 — 30 мин.). Упорная шайба и кок (рис. 3) вытачиваются из Д16Т по чертежу. Крепежные винты подбираются по месту и диаметрам, указанным на чертежах. Размеры и материалы прокладок и шайб указаны на чертежах.

Ось изготовляется из проволоки ОВС диаметром 2,5 мм и шлифуется до чертежных размеров.

Золотниковая шайба (рис. 3) делается из 1,5 мм текстолита или гетинакса. На токарном станке вытачивается круглая заготовка, затем производится ее слесарная обработка по размер рам, указанным на чертеже, и притирается рабочая поверхность.

Сборка двигателя

микродвигатель

Сборка двигателя производится в следующей последовательности:

  • 1) запрессовывается ось золотника;
  • 2) надевается золотник, смазанный маслом;
  • 3) вставляется в картер коленчатый вал, смазанный маслом;
  • 4) соединяется шатун с поршнем поршневым пальцем, нижняя головка надевается на палец кривошипа коленчатого вала;
  • 5) ввертывается в картер крышка с прокладкой и золотником;
  • 6) прокладывается прокладка под цилиндр, смазываются поршень и цилиндр маслом, надевается цилиндр на поршень;
  • 7) завертываются крепежные винты М2 длиной 5 мм;
  • 8) проверяется легкость вращения коленчатого вала;
  • 9) надевается упорная прокладка, упорная шайба, винт и кок, снова проверяется легкость вращения коленчатого вала;
  • 10) устанавливается жиклер и гайка с иглой на карбюратор;
  • 11) ставится на место головка с прокладками, и двигатель устанавливается на стенд; подсоединяется резиновой трубкой бачок с горючим;
  • 12) подсоединив аккумулятор на массу и гайку головки цилиндра, проверните за винт вал двигателя; закрыв карбюратор пальцем, попытайтесь запустить двигатель, резко нажимая указательным пальцем на винт.

Применяется аккумулятор кадмиево-никелевый, марки КН-10 — 2 банки на 2,4 в.

Регулировка оборотов производится иглой карбюратора. Как только режим двигателя станет устойчивым, отсоедините провода от мотора. Необходимо перед эксплуатацией двигатель обкатать в течение 30 -35 мин.

Е. СУХОВ, В. НОСКОВ

для журнала Моделист Конструктор

Может быть вам будет интересно посмотреть и другие статьи о доработке авиамодельных двигателей

Обзоры пилотажных и не только авиамодельных двигателей можно посмотреть тут

Кордовые модели F2B | Control line stunt | Aerobatics

  • Назад
  • Вперед
  • Вы здесь:  
  • Главная
  • Двигатели
  • Калильные ДВС
  • Микродвигатель МК-17 в калильном варианте

САМОЛЕТ МОЖЕТ СДЕЛАТЬ КАЖДЫЙ!

(Окончание. Начало см. в №3 — 2020) Сердце любого самолета — двигатель, и тут я очень консервативен, заявляя, что главное для авиационного мотора -это надежность. Все же остальное -мощность, вес, шумность, экономичность — это тоже важно, но вторично.

В авиации почти с самого ее рождения прочно утвердился четырехтактный мотор с винтом на коленвале. Причем от редуктора я отказался, на что есть ряд причин. Во-первых, уверен, что силами самодельщика невозможно изготовить надежный редуктор в принципе. К тому же, в авиационном моторостроении считается, что редуктор с длительным ресурсом можно получить лишь на двигателе с числом цилиндров не менее шести. Во-вторых, редуктор — это дополнительный вес, да и вопрос компоновки и капотирования тоже не последний. В-третьих, обычно редуктор используют для получения максимальной мощности двигателя путем форсировки по оборотам. Однако это негативно сказывается и на ресурсе, и на надежности. Да и в обслуживании и эксплуатации мотор без редуктора проще.

САМОЛЕТ МОЖЕТ СДЕЛАТЬ КАЖДЫЙ!

Габаритный чертеж самолета

Традиционно большинство самодеятельных конструкторов использует либо отечественные двухтактные моторы РМЗ, либо импортные «Ротаксы», также работающие на смеси бензина с маслом. Еще на заре своего приобщения к сверхлегкой авиации, я имел негативный опыт эксплуатации РМЗ-640, поэтому этот двигатель я твердо решил больше не применять. «Ротаксы» же для меня оказались слишком дорогими. К тому же, в последнее время появился довольно большой выбор других моторов.

Проанализировав множество различных вариантов от мотоциклов, снегоходов и прочей техники, я пришел к выводу, что индустриальный двухцилиндровый V-образный двигатель, который применяется на электростанциях, садовых косилках и т.п., мне идеально подходит. Китайский четырехтактный Lifan 2V78F-2А мощностью 24 л.с. при 3600 об/мин представляет собой копию «Хонды» и вполне доступен по цене. У него довольно большой крутящий момент, смазка осуществляется под давлением, есть масляный радиатор, зажигание у каждого цилиндра от собственного магнето, а также без маховика его удельный вес почти как у «двухтактника». Двигатель поступает в продажу готовым агрегатом, что делает его установку несложной задачей, почти не требующей доработки. Перед его монтажом на самолет надо выполнить стандартные операции, такие как: удаление регулятора оборотов, шлифовка и полировка каналов, подбор диаметра отверстия в главном жиклере карбюратора, поскольку изначально мотор искусственно «задушен». Также был отлит колокол упорного подшипника и изготовлены выхлопные патрубки. На мой взгляд, этот мотор наиболее близок по своей конструкции к понятию «авиационный». У четырехтактного «движка», в отличие от двухтактного, шире диапазон мощностей, меньше тепловая нагрузка и чувствительность к качеству топливовоздушной смеси, он более экономичный и менее шумный. Все это в целом добавляет надежности. Да и звук-то какой!

Рама фюзеляжа (трубы, сталь 20, толщина стенки 1 мм, если не указано другое)

Рама фюзеляжа (трубы, сталь 20, толщина стенки 1 мм, если не указано другое)

Мне не очень нравятся самодеятельные разработки, в которых используются узлы и детали от редкой, малораспространенной техники. Это заметно сужает круг людей, способных такой проект повторить. Но особенно остро данная проблема проявляется в любительском авиационном техническом творчестве. Использование узлов и агрегатов от «больших» самолетов делает работу практически эксклюзивной. То же можно сказать о редких или дорогих материалах и сложных технологиях, которые трудно применить в обычной практике. Например, для постройки металлического самолета нужны дорогие материалы, специальные приспособления и владение технологией, но все это потом, в повседневности, вряд ли пригодится. И напротив, создание деревянного крыла требует таких навыков и инструментов, которые не будут лишними в жизни. Та же ситуация со сваркой или пайкой.

На валу установлена «мулинетка» для проверки мощности мотора

На валу установлена «мулинетка» для проверки мощности мотора

«Хит Супер Парасоль» в аэродинамическом и технологическом плане настолько классический самолет, что на его примере можно студентов обучать! Крыло — деревянное, двухлонжеронное. Лонжероны представляют собой, по сути, доску, установленную на ребро. Коробка лонжеронов расчалена проволокой ОВС. Дуга законцовки крыла и задняя кромка элерона — стальная оцинкованная трубка (подойдет тормозная трубка от КАМАЗа, продающаяся в любом магазине запчастей для грузовиков этой марки). Нервюры — ферменные, с фанерными кницами. Фанера у меня осталась еще с авиамодельных времен. При ее отсутствии (а она, как я отмечал ранее, нынче в большом дефиците) смело порекомендовал бы кницы из текстолита толщиной 0,8 мм. Больше тонкой авиационной фанеры нигде на нашем самолете не используется.

Каркас крылаКаркас крыла Лонжероны крыла (сосна авиационного качества)Лонжероны крыла (сосна авиационного качества) Корневая часть заднего лонжеронаКорневая часть заднего лонжерона (узел поз. 47 на чертеже каркаса крыла, увеличено):
1 — обойма (сталь 1 мм); 2 — соединительная пластина 25x65x3 мм; 3 — шпилька М6; 4 — фанера 1,5 мм; 5 — болт и шпилька М5; 6 — шпилька М4 Лонжероны элерона (сосна авиационного качества)Лонжероны элерона (сосна авиационного качества) Корневая часть переднего лонжеронаКорневая часть переднего лонжерона (узел поз. 46 на чертеже каркаса крыла, увеличено):
1 — соединительная пластина 25x65x3 мм: 2 — шпилька М6; 3 — заполнитель; 4 — фанера 3 мм; 5,6 — болт М5; 7 — обойма (сталь 1 мм) Узел крепления роликовУзел крепления роликов (сечение А — А на чертеже каркаса крыла, увеличено):
1 — заполнитель; 2 — скоба (сталь 2 мм); 3 — шуруп Ø3 мм: 4 — болт М5х140; 5 — брусок (сосна 16×16 мм)

Каркас и лонжероны крыла:

1 — фальшлобик; 2 — усилитель лонжеронов 18×18 мм (2 шт); 3 — болт М4; 4 — обод (труба 08 мм, сталь); 5 — картер бака; 6-топливный бак (только на правом крыле, оц. сталь 0,6 мм); 7 — заливна я горловина; 8 — дренажный кран; 9 — шуруп Ø3,5 мм; 10 — ролик 050 мм (дюраль, 2 шт); 11 — планка 10х10 мм; 12 — световое окно (акрил 0,8 мм); 13 — распорная втулка 05 мм (сталь, паять к расчалкам); 14 — расчалка (проволока ОВС Ø1,6 мм, 2 шт — над и под баком); 15 — усилитель 16×5.6 мм (по 2 шт); 17-укосина 8×8 мм (2 шт); 17 — расчалка (проволока ОВС Ø2,0 мм); 18 — серьга (сталь 1 мм); 19 — стойки коробки лонжеронов 16×13 мм; 20 — расчалка (проволока ОВС Ø1,5 мм); 21 — косынка (фанера 3 мм); 22 — распорка 16×16 мм; 23 — трос управления (КСАН Ø3,2 мм); 24 — расчалка (проволока ОВС Ø1,5 мм); 25 — болт М4; 26 — рейка 10×10 мм; 27 — нервюра законцовки крыла; 28 — заполнитель 5,6×5,6 мм; 29 — рейка 8×8 мм; 30 — обойма крепления обода (латунь); 31 — задняя кромка элерона (труба 08 мм, сталь); 32 — рейка 8×8 мм; 33 — рейка 8×8 (2 шт); 34 — рейка 8×8 мм; 35-усилитель 16×5,6 мм (2 шт); 36-усилитель 16×5,6 мм (2 шт); 37 — рейка 8×8 мм (2 шт); 38 — болт М5х80; 39 — рейка 8×8 мм (2 шт); 40 — усиливающая рейка 16×5.6 мм по контуру нервюры; 41 — обоймы крепления задней кромки; 42 — заполнитель; 43 — кронштейны тросов (сталь 2 мм); 44 — обоймы (сталь 2 мм); 45 — серьга (сталь 1,5 мм); 46 — корневая часть переднего лонжерона: 47 — корневая часть заднею лонжерона

НервюрыНервюры (а — типовая; б — силовая; в — концевая):
1 — лобовой стрингер (сосна 50х 18 мм); 2,3,7 — полка нервюры (сосна 5,6×5,6 мм. кницы — фанера 1 мм); 4 — стойки коробки лонжеронов (сосна 16×13 мм); 5 — шайба 5x12x1 мм (паять латунью); 6 — рычаг элерона (сталь 1,5 мм, усилен накладками из фанеры 3 мм с двух сторон) Петля элеронаПетля элерона (увеличено):
1 — сухарь (сосна 19×50 мм); 2 — заполнитель (фанера 6×50 мм); 3 — болт «откидной» М6; 4 — проставка (трубка 8×1 мм); 5 — опорная пластина 13x25x1 мм; 6 — заполнитель (фанера 6×25 мм) Петля навески элеронаПетля навески элерона

Топливный бак находится в крыле. Это позволяет иметь резервное питание двигателя самотеком в случае отказа топливного насоса. Бак — одна из больших проблем для самодельщика. Я решил изготовить его из обычной тонкой оцинкованной стали. Соорудил маленький листогиб, согнул детали бака и спаял их припоем ПОС60. Заливная горловина — латунная заглушка из магазина сантехники, подобранная по диаметру. Штуцер трубки питания двигателя — опять-таки из магазина «КАМАЗ». Получился очень простой, недорогой и достаточно легкий бак. Кстати, на самолетах По-2 баки тоже были из «оцинковки». Возникла небольшая сложность с топливным краном: все подходящие из магазинов автозапчастей подтекали. В итоге, нашел нужную деталь среди сантехнических изделий. Доработал ее для соединения с медными трубками, и получился надежный и очень даже «авиационный» кран.

Предварительная сборка крыла. Хорошо виден топливный бак

Предварительная сборка крыла. Хорошо виден топливный бак

Стабилизатор и рули высоты

Стабилизатор и рули высотыСтабилизатор и рули высоты Крепление расчалок крылаКрепление расчалок крыла Крепление ролика троса элероновКрепление ролика троса элеронов Узел крепления торсионной трубы РУСаУзел крепления торсионной трубы РУСа

Фюзеляж и хвостовое оперение -сварные, из тонкостенных бесшовных труб Ст-20. Фюзеляж — ферменный, с диагональными раскосами. Мне так было проще. Эдвард Хит предлагал делать фюзеляж без использования сварки, благодаря чему его изготовление было доступно большинству людей. Однако в оригинальной конструкции используется большое количество тандеров (талрепов) для натяжки проволочных расчалок. Подходящие в наши дни либо практически невозможно достать, либо их покупка (и уж тем более изготовление) делает стоимость фюзеляжа настолько дорогой, что применение этой, простой, в сущности, технологии теряет всякий смысл. Тандеры — это проблема для самодельщика. Они используются в проводке управления и расчалках крыла. Я их изготовил из ушкового болта (в магазинах крепежа именуется как «болт откидной») и стальной полосы, соединенных между собой выточенной ниппельной гайкой. Этот же болт я использовал для петель навески элеронов и рулей хвостового оперения, что решило вопрос петель очень просто.

Шасси — пирамидальное, из стальных тонкостенных труб Ст-20, собранное без сварки на болтах. Хвостовая рессора изготовлена из рессоры кабины КАМАЗа.

Две полуоси шасси — из стальных толстостенных труб 25×3 мм (также Ст-20). Трубы эти калиброваны, поэтому их не нужно протачивать для установки колес. Амортизация шасси — резиношнуровая. Сами шнуры приобрел в магазине спорттоваров.

Колеса — это еще одна наша «изюминка» — они тоже самодельные! Дело в том, что колеса — это очередная головная боль для самодельщика-авиастроителя. Пригодные готовые найти очень сложно. Мне это не удалось. Те, что продаются, тяжелые или дорогие, либо у меня есть сомнения в их прочности. Я долго думал и пришел к выводу, что опять-таки «все уже придумано до нас». Ведь в начале своего существования авиация вполне успешно довольствовалась спицованными колесами. Так я и решил поступить. Заказал токарю втулки, на моторазборке купил стальные колеса от скутера по 300 рублей за штуку, а в веломагазине — усиленные спицы диаметром 3 мм. Рассчитал и приступил к изготовлению. «Болгаркой» удалил диски — получилось два отличных обода. Поскольку у меня не было станка для накатки резьбы на спицах, пришлось их укоротить со стороны головки и сделать маленький пресс из домкрата для формования новых головок. Этим же прессом выдавил лунки для ниппелей в ободьях. В качестве подшипников использовал подходящие бронзовые втулки из «ГАЗовского» магазина. В целом получились легкие и очень прочные колеса, идеально подходящие для нашего самолета.

РУС с установленными тросамиРУС с установленными тросами Узел шасси без амортизатораУзел шасси без амортизатора Рессора хвостовой опорыРессора хвостовой опоры

Летательный аппарат покрыт тканью, натянутой пропиткой «эмалитом» (лак НЦ-551) в два слоя. Еще два слоя -«эмалит» с алюминиевой пудрой, служат для защиты ткани от воздействия ультрафиолетового излучения. А потом нанесена раскраска автомобильной «акрилкой». Такое небольшое количество слоев «эмалита» и ограниченная по площади схема позволили уменьшить «вредный» вес. Ткань — обычный лавсан плотностью около 60 г/м2, тоже для облегчения, продается в любом магазине тканей и называется по-разному: полиэстеровая, полиэфирная. Мы провели разрывные испытания и решили, что нам такая подойдет. Полотно пришито к каркасу крыльев и хвостового оперения лавсановыми нитками, а к раме фюзеляжа — приклеено. Все швы заклеены лентами, нарезанными из той же ткани специальными ножницами, дающими зубчатый край (ножницы купили в магазине «Икея»), Пришивка к крылу требует длинных игл, которыми можно проткнуть крыло на всю толщину. Я такие не нашел, пришлось сделать самому из проволоки ОВС диаметром 2 мм. Лак НЦ-551 продается в 50-литровых бочках. Сначала казалось, что этого количества будет более чем достаточно, но в итоге у нас осталось всего литров пять. Так что бочка на небольшой самолет — это нормально.

Отдельно хочу остановиться на приборах. Это очень дорогая статья расходов в бюджете постройки любого самолета. Плюс настоящие приборы еще и довольно тяжелые. Все это побудило искать альтернативные решения. Главная сложность — указатель скорости. Тем не менее, его я сделал за час из куска проволоки ОВС диаметром 2 мм и двух дюралевых пластинок. Получился указатель скорости флажкового типа, который широко применялся в 20-х годах прошлого века.

На роль высотомера подошел туристический анероидный барометр со шкалой указателя высоты. Механический указатель давления масла — от автобуса ПАЗ. Указатель температуры масла УТ-200 (он тоже механический!) приобрел в магазине «Агрозапчасти». Тахометр — очень распространенный, электронный, индукционного типа. Указатель топлива — прозрачная трубка на топливном баке. А указатель скольжения мне подарили, хотя и его можно было сделать самому.

Самолет летает классно! Разбег около 50 метров. В воздухе машина устойчива и послушна. В турбулентной атмосфере эффективность рулей достаточна. Садится, при полностью выбранной на себя ручке, точно на три точки. Во время посадки тенденций к сваливанию на крыло нет. При разбеге и пробеге на грунте даже устойчивее, чем на асфальте, но это особенность всех аппаратов с хвостовой опорой. В целом, по моим субъективным оценкам, самолет дружелюбен и приятен в управлении, полностью удовлетворяет мои потребности в «радости полета», однако требует от пилота предварительной подготовки. Из недостатков могу отметить ограничения на вес пилота (до 90 кг) и его рост (до190 см), а также зависимость от погодных условий, но это характерно для всех СЛА. Возможно, кто-то скажет, что скороподъемность 1,5 м/с — это мало, однако мне этого достаточно, особенно учитывая поставленную задачу. Ведь мы хотели получить самый доступный самодельный самолет, который может построить каждый, и считаю, что это у нас получилось.

ПЕРВЫЙ В РОССИИ «ХИТ СУПЕР ПАРАСОЛЬ»

ПЕРВЫЙ В РОССИИ «ХИТ СУПЕР ПАРАСОЛЬ»

ПЕРВЫЙ В РОССИИ «ХИТ СУПЕР ПАРАСОЛЬ»

В заключение хочу привести слова В.П. Кондратьева из книги «Самолет — своими руками». Вот что он пишет: «Деятельность СМИ превратила самолет, в общем-то простую и понятную машину, в глазах неспециалистов в невероятно сложный аппарат, над расчетом которого трудятся десятки и сотни ученых и инженеров, опирающихся на помощь научных институтов и современную вычислительную технику. Куда уж там самодельщикам с их доморощенными методиками и полукустарными самолетами. Эта деятельность СМИ нанесла немалый ущерб любительскому самолетостроению в нашей стране. В итоге все это отрицательно сказалось и на авиационном спорте, и на планеризме, и даже на авиамоделизме. Резко снизился приток в авиационную промышленность энтузиастов. В результате на свет появляются вполне правильные машины, сработанные «без души», «без изюминки». Такая техника успешно эксплуатируется, но конкурировать с лучшими зарубежными образцами, конечно, не может.

Накопленный на сегодняшний день опыт показывает, что самолет в наше время может построить любой грамотный человек. Однако, чтобы полеты приносили радость, а не огорчения, в работе необходимо соблюдать множество правил и условий. Эти правила выработаны за много лет развития авиации».

От соблюдения этих правил зависит результат постройки самодельного самолета, и наш пример это отлично продемонстрировал.

Самодельный самолет из Смоленска -участник МАКС-2019

Этот самолет широко известен в США. Его придумал энтузиаст сверхлегкой авиации, пилот, конструктор и бизнесмен Эдвард Хит в 20-х годах прошлого века. Андрей Яковлев из Смоленска с группой единомышленников впервые в нашей стране решили построить эту удачную модель. Самолет создавался в течение двух с половиной лет. Была задача сделать маленький легкий самолет, максимально доступный по материалам и технологиям, чтобы любой желающий мог повторить его. Ведь Эдд Хит говорил: «Heath Super Parasol -самолет, который может построить каждый!»

Как построить свой самолет со своим двигателем на сверхпроводниках и жидким азотом

Всем привет. По образованию я инженер по эксплуатации летательных аппаратов и авиационных двигателей, но в данной статье я опишу как сделал небольшой электродвигатель на сверх проводниках, и поэтому мое вступление прошу принять как оправдание тому, что в разработке и изготовлении электродвигателей, я не обладаю достаточной компетенцией и опытом, но все-же я его сделал. А посему, уважаемые эксперты, специалисты, профессионалы и аналитики прошу сделайте поблажки для дилетанта, а всю критику и доказательства вашей правоты прошу предоставить в виде решений, изготовленных собственными руками.

Начало

Так получилось, что весной 2019 я начал работать инженером в компании СуперОкс. Я принимал участие в разработке электродвигателя на сверхпроводниках (Фото). Работа по началу была интересная и иногда пыльная в перемешку со стружкой из различных материалов. Столько проблем удалось решить :). Спустя полгода я понял, что путь до полноценного самолета с двигателем на сверхпроводниках будет долгим и сложным. Тогда родилась идея сделать свой двигатель, поставить его на маленький беспилотник или радиоуправляемый самолет и совершить хотя бы один полет.

Для справки. Когда я только узнал об этой компании, то я знал что такое сверхпроводник, но не предполагал, что производство такого продукта существует в РФ. Реально было приятно, что такие производства существуют и развиваются.

В процессе работы и общения с коллегами узнавал всякие тонкости и особенности применения сверхпроводников. По мере приобретения знаний менялась и адаптировалась конструкция двигателя.

Где-то в январе 2021 года появилось чувство, что если ничего не начать делать, то момент может быть упущен навсегда (пока семь раз отмеришь, другие уже давно отрежут). На этот момент я считал, что накопил достаточное количество знаний для реализации всего проекта и начал параллельно с основной работой заниматься своим двигателем.

Изначально идея была разработать двигатель на базе какого-либо доступного бесколлекторного электродвигателя для радиомоделей, с внешним ротором на постоянных магнитах (аутранер).

Пример бесколлекторного двигателя, который можно найти во многих радиоуправляемых моделях.

Пример бесколлекторного двигателя, который можно найти во многих радиоуправляемых моделях.

Но на этом пути были такие явные сложности как:

трудоемкость намотки обмоток на статор. (Дело в том, что провод из сверхпроводника представляет собой металлическую ленту с несколькими слоями напыления. Сам по себе сверхпроводник — это тонкий слой керамики. Если ленту сильно гнуть, то можно повредить слой сверхпроводника (https://kokos-asi-production-hot.hb.bizmrg.com/blockeditor/cfd/cfd21b82899873e22f77f08b0916d74b/5_2_1x.jpg );

статорное железо (магнитопровод) будет в жидком азоте. На его охлаждение требуется потратить дополнительный объем азота. Также статорное железо при работе электродвигателя будет греться и поэтому азот будет испаряться интенсивнее;

сложность вывода вала воздушного винта. Нужно обеспечить теплоизоляцию между ротором и криостатором. Так же необходимо защитить полость ротора от намерзания льда и конденсации кислорода;

сложность при коммутации обмоток. Лента проводника тонкая и гнется с некоторыми ограничениями, паять 24 контакта, пытаясь уложить в малый объем, должно быть сложно.

Было непонятно как изолировать термостат, как избежать намерзания влаги на выходной вал и подшипники, и как выводить вал воздушного винта.

Дальнейшие размышления были о возможности перейти к бесщеточным электродвигателям с внутренним ротором на постоянных магнитах (инранер). Эта идея выглядела более привлекательнее. Важное изменение — это решение продувать испаряющимся азотом полость ротора. Благодаря этому при постоянном потоке испаряющегося азота внутрь не должен проникать воздух вместе с влагой и кислородом. и поэтому не должны замерзать подшипники. Если бы внутрь начал проникать воздух, то влага из него стала бы конденсироваться на поверхности внутренней части корпуса ротора. Образовавшийся лёд мог легко прихватить как подшипники, так и сам ротор к внутренней стенке. Но не меньшую опасность мог представлять кислород. Дело в том, что он конденсируется при температуре порядка -183 градусов Цельсия (для сравнения азот кипит при -196,5 градусах Цельсия). Это приводит к более интенсивному испарению азота при поглощении энергии конденсации кислорода и его охлаждении, через тонкую стенку. И сам факт наличия жидкости в полости, где должен вращаться ротор, отрицательно влияет на работоспособность двигателя.

Схема электродвигателя вертикальной компоновки с внутренним ротором

Схема электродвигателя вертикальной компоновки с внутренним ротором

У этой конструкции плюсов было больше чем у предыдущего решения. Однако наличие магнитопровода статора также грозило существенным увеличением трудоемкости. Самый простой выход из этой ситуации это избавиться от магнитопровода. Так пришла идея сделать двигатель без магнитопровода статора (статорного железа).

Но ещё оставался вопрос как увеличить взаимодействие магнитного потока между катушками статора и постоянными магнитами ротора. Магнитопровод нужен для того чтобы передавать магнитный поток, но если катушку поднести максимально близко к магниту (ещё лучше чтобы магнит находился внутри катушки), то возможно, это позволит компенсировать отсутствие магнитопровода.

И тогда постепенно выкристализовалась идея конструкции с шестью распределенными катушками через один полюс и ротором с двумя полюсами.

План «А»

На виде сверху это выглядело так:

Схема электродвигателя с шестью катушками и двухполюсным ротором.

Схема электродвигателя с шестью катушками и двухполюсным ротором.

Далее я начал прорисовку идеи в 3d-cad T-Flex. К этому времени удалось раздобыть несколько постоянных магнитов, геометрия которых определила габариты ротора и, как следствие габариты всего двигателя в последующем.

Так появилась примерно такая конструкция:

Первый разработанный вариант магнитной системы с катушками из сверхпроводника.

Первый разработанный вариант магнитной системы с катушками из сверхпроводника.

Пришлось потратить кучу времени на разработку рамки для катушки. Основная проблема заключалась в том, лента ВТСП фактически гнется только в одной плоскости, но допускает некоторое кручение. Сочетание этих двух факторов ограничивают траекторию по которой эта лента может быть уложена. Но в конце концов удалось начертить и напечатать на 3д принтере первый прототип рамки, на который удалось успешно закрепить ленту сверхпроводника.

Первая напечатанная рамка для намотки ленты из сверхпроводника

Первая напечатанная рамка для намотки ленты из сверхпроводника

Помимо рамки также был напечатан корпус ротора, для размещения магнитов, опоры и цилиндр внутренней трубы. Добыты подшипники и ось ротора.

Для отладки двигателя, на рамки вместо ленты ВТСП была намотана обмоточная медная проволока. На каждую рамку уместилось 4 витка (по рекомендации человека, который занимался расчетами двигателя, необходимо было 5 витков).

Медный аналог двигателя для проверки работоспособности двигателя.

Медный аналог двигателя для проверки работоспособности двигателя.

Все было собрано, спаяно и подключено к регулятору скорости ESC Castle Talon 90.

Первая попытка запуска медного аналога показала очевидное — низкий крутящий момент. В первоначальный момент контроллер начинает принудительно вращать ротор без обратной связи. После того как начинает работать обратная связь, контроллер может нормально управлять двигателем. Но из-за отсутствия магнитопровода обратная связь по обратной ЭДС была затруднена, а низкий крутящий момент и момент инерции ротора приводили к тому, что ротор не успевал раскручиваться и совершал колебательные повороты около некоторого равновесного положения.

Но после принудительной раскрутки ротора двигатель запустился. И начал вращаться так лихо, что у меня возникло опасение, что напечатанный ротор разлетится на сегменты и магниты как шрапнель полетят в стороны. Тогда удалось намерять 14 тыс.об./мин и замечена ещё одна особенность: на больших оборотах момент был больше чем на малых. В следующем эксперименте я поднял входное напряжение с 12 В до 24 В и тогда двигатель начал самостоятельно запускаться.

Этот предварительный успех окрылил меня. Полагая, что при больших токах и оборотах порядка 10 тыс. об/мин, мощности двигателя будет достаточно для вращения воздушного винта небольшого диаметра и малого шага, я решил сделать двигатель горизонтальной компоновки, с прямым приводом на воздушный винт.

Но предстоял ещё один неприятный момент. Дело в том, что в вертикальной компоновке катушки должны были быть в термозащитном контейнере (термокружка из икеи? :)), а в центре должен находится тонкостенный цилиндр из пластика. Сверху должна быть крышка которая направляет испаряющийся азот в цилиндрическую полость ротора откуда выбрасывается в атмосферу. Этот газообразный азот, при своем истечении, не дает проникать в полость ротора атмосферному воздуху. Решение этой проблемы нашлось довольно изящное на мой взгляд. В верхней части сосуда где размещается азот была спроектирована трубка с отверстиями. Эта трубка отводила испарения азота вниз, вдоль передней стенки двигателя (двигатель с толкающим винтом) и выходила в районе передней опоры. Далее газообразный азот проходил через передний подшипник, в зазор между ротором и статором и выходил через задний подшипник.

Разрез двигателя в вертикальной плоскости. Стрелками показано направление движения газообразного азота. (Термоизоляция корпуса не показана)

Разрез двигателя в вертикальной плоскости. Стрелками показано направление движения газообразного азота. (Термоизоляция корпуса не показана)

Итоговый рецепт получился такой: корпус статора представлял собой емкость с центральной трубой для размещения ротора с опорами. Вокруг центральной трубы были размещены шесть катушек. Катушки у задней стенки коммутировались между собой и тремя токовыводами, к которым подсоединялись клеммы медных проводов. Там же на задней стенке крепилась горловина заправки азотом с крышкой. Для удобства заливки жидкого азота крышка заливной горловины заменялась на воронку.

Ротор состоял из вала 8 мм из нержавеющей стали (вал от сломанного струйного принтера), на который был напрессован пластиковый корпус ротора, напечатанный на 3Д-принтере, с запрессованными в него магнитами. На конце вала крепилась цапфа воздушного винта.

Передняя опора ротора была напечатана из PLA-пластика на 3д принтере и в неё вставлялся керамический подшипник. Задняя опора также напечатана 3Д принтере и также с подшипником.

Комплект рамок с намотаным сверхпроводником и латунные токовыводы токарно-ручной работы.Комплект рамок с намотаным сверхпроводником и латунные токовыводы токарно-ручной работы.

Все было напечатано, склеено на суперклей, спаяно, собрано, замотано в криогель, красивый блестящий скотч и размещено на стенд.

Двигатель в сборе и готовый к первым испытаниям с заморозками

Двигатель в сборе и готовый к первым испытаниям с заморозками

Первые запуски показали несовершенство конструкции. В принципе двигатель начинал вращаться, но из-за температурных деформаций клинили подшипники и ротор останавливался. А учитывая низкий крутящий момент двигателя, запустить его спустя 5 минут после заливки азотом не представлялось возможным. В какой-то момент показалось что двигатель все же начал крутиться, но вал оставался неподвижным. Как оказалось, из-за низкой температуры сжался пластиковый корпус ротора и, как следствие он развалился в тонких местах.

Корпус ротора в развале :(

Корпус ротора в развале 🙁

Корпус ротора был напечатан заново. После установки корпуса ротора на вал и запрессовки магнитов, корпус был обклеен стеклонитью на циакрине.

Далее была борьба с опорами и подшипниками, чтобы они не клинили сразу (это ещё половина недели исследований, доработок и испытаний). В итоге, с новым корпусом ротора и новыми опорами, двигатель начал стабильно запускаться и мог продолжительное время выдавать тягу достаточную для полета самолета массой примерно 3 кг (время непрерывной работы около 1 мин).

Было решено ставить на самолет и лететь.

На тот момент у меня был пустой планер китайского самолета Hunter с размахом крыла 1.8 м. Я его немного адаптировал для установки двигателя. В частности задняя часть фюзеляжа была обрезана до точек крепления крыла для того чтобы сместить двигатель вперед и тем самым легче сбалансировать самолет.

Ещё решил не заморачиваться с автопилотом, а ставить радиоуправление. Итоговый вес самолета оказался в районе 3,6 кг.

У меня уже был опыт использования аппарата такой массы и на обычном бесколлекторном электрическом двигателе с резиновой катапультой этот самолет взлетал и летал продолжительное время и поэтому я решил что полет возможен (https://youtu.be/XcgAAbhTyxM).

Договорился с пилотом, выехал в поле и в итоге полет не получился.

Этому провалу сопутствовало несколько факторов:

Большой вес самолета при низкой мощности двигателя. Резино-катапульта разогнала самолет до начальной скорости, но низкая мощность двигателя и резкий набор высоты сразу после взлета привел к снижению скорости и, как следствие к сваливанию и падению самолета.

Некачественная аэродинамика. Стандартный фюзеляж планера был весьма «пухлый». Также аэродинамичности не прибавляет торчащий кусок силового шпангоута, к которому крепился двигатель, и две вертикальные плоскости в задней части фюзеляжа образованные срезом фюзеляжа и задней стенкой двигателя.

Есть ещё один фактор который по своему мог влиять на работу двигателя. Дело в том, что с наружи двигатель был покрыт алюминиевой лентой на самоклеящейся основе. А учитывая небольшое расстояние между ротором и стенкой переменные магнитные поля при вращении ротора создают противо ЭДС в тонком слое фольги. И при увеличении оборотов этот эффект только усиливается (демонстрация данного эффекта на примере колебания постоянного магнита над алюминиевой плитой).

Решения были следующие:

Чтобы снизить массу самолета, все детали были взвешены, измерены и создана весовая модель самолета. В итоге было решено переставить двигатель ещё ближе к передней части самолета. Убрать две АКБ общей массой 1000 г. Вместо неё будет установлена одна батарея массой примерно 300 г. Для соблюдения балансировки батарею должна быть выдвинута ещё вперед на 150 мм и для этого требовался новый фюзеляж.

Весовая модель самолета. Сверху старая модель, снизу модель с новым фюзеляжем и новой АКБ

Весовая модель самолета. Сверху старая модель, снизу модель с новым фюзеляжем и новой АКБ

Новый фюзеляж также должен улучшить аэродинамику самолета.

Потратив ещё несколько дней. Фюзеляж был спроектирован, вырезан на станке ЧПУ. Обклеен стеклотканью и покрашен.

Изготовление нового планера на фрезерном станке с ЧПУИзготовление нового планера на фрезерном станке с ЧПУ Примерка нового фюзеляжа. Примерка нового фюзеляжа.

Предварительная сборка самолета

Предварительная сборка самолета

Алюминиевый скотч с поверхности двигателя был удален.

Помимо фюзеляжа были вырезаны силовые шпангоуты для усиления и подставка под самолет с новым фюзеляжем.

Подставка под самолет

Подставка под самолет

Все было собрано и снова готово к полету.

В поле, перед самым взлетом произошел отказ двигателя. После нескольких попыток запустить двигатель я прозвонил обмотки двигателя и выявил обрыв одной фазы.

После разбора двигателя выяснилось, что во внутренней трубе напечатанной из пластика появилась трещина. В результате уровень азота был намного ниже необходимого и верхние проводники не охлаждались. Как результат, при подаче большого тока, самый верхний проводник, идущий к токовыводу, перегорел.

Но самое важно что корпус из напечатанного пластика уже не подлежал восстановлению.

На этот момент доступа к 3Д принтеру у меня не было, но был фрезерный станок ЧПУ. И так настала очередь плана Б.

План «Б»

Было решено сделать корпус двигателя из пеноплекса на фрезерном станке с ЧПУ. В двигателе, напечатанном на 3Д принтере, пластик выступал как прочная оболочка, обеспечивающая прочность и герметичность емкости, а поверхность теплоизолировалась криогелем толщиной 5 мм.

В новой конструкции внешний корпус статора изготовлен из пеноплекса. Он же должен обеспечивать герметичность,теплоизоляцию и частичную прочность (прямо-таки ТРИЗ). Для повышения прочности корпуса, снаружи пеноплекс обклеивался стеклотканью на эпоксидной смоле. В передней части двигателя также крепился силовой шпангоут из 2 мм стеклотекстолита. Внутри проходила труба для ротора и в верхней части емкости трубка для отвода газообразного азота. Обе трубки изготовлены из стеклоткани на эпоксидной смоле ЭТАЛ-Карбон Light.

Также заливная горловина была перенесена на боковую поверхность, так как при расположении на задней стенке, воронка для заливки мешала вращению воздушного винта и после заливки, перед запуском, приходилось её снимать. Это не принципиально при полетах, но при отработке и испытаниях постоянно менять воронку на крышку и обратно неудобно.

Разрез двигателя с корпусом из пеноплекса

Разрез двигателя с корпусом из пеноплекса

Переднюю опору пришлось доработать, так как в новой конструкции она вставлялась со стороны винта.

Криостат с корпусом из пеноплекса в процессе изготовления.

Криостат с корпусом из пеноплекса в процессе изготовления.

Полученная конструкция была собрана и готова к проверке.

В этот раз я решил сделать предварительное опробование на стенде без выезда в поле. И в процессе проверок двигатель сгорел опять.

Катушка перегорела полностью.

Катушка перегорела полностью.

Спустя два дня, моря разочарования, литра пива и 4 литров отборного чая решил предпринять последнюю попытку создать двигатель на сверх проводниках. Настала очередь плана В.

План «В»

Доработанная конструкция двигателя

Доработанная конструкция двигателя

У меня оставался второй комплект катушек намотанный на рамки. Также было ещё несколько рамок, из которых восстановил медный аналог.

За неделю восстановлен медный аналог для предварительной проверки, отработки и настроек контроллера.

Двигатель ВТСП, который я до этого собирал и испытывал, обозначен как №1. Он был разобран на отдельные элементы. Перегоревшие две катушки были заменены. Обмотки были заново скоммутированы. Была внедрена новая конструкция токовыводов.

Статоры в процессе изготовления. По порядку слева медный аналог, по центру новые катушки статора для двигателя №2, справа восстановленные катушки для двигателя №1Статоры в процессе изготовления. По порядку слева медный аналог, по центру новые катушки статора для двигателя №2, справа восстановленные катушки для двигателя №1 Готовый статор для двигателя №2. Немного видная конструкция токовыводов.Готовый статор для двигателя №2. Немного видная конструкция токовыводов.

Для медного аналога были выпилены стенки спереди и сзади, чтобы двигатель можно было крепить аналогично криогенному. Два криогенных двигателя собирались параллельно с таким расчетом, чтобы большую часть настроек и испытаний сделать на №1, а окончательную настройку и полет выполнить на №2.

Обклеивание криостатов стеклотканью с эпоксидной смолой

Обклеивание криостатов стеклотканью с эпоксидной смолой

Ротор для всех трех двигателей был один.

Готовые статоры всех двигателей и единый ротор для них.

Готовые статоры всех двигателей и единый ротор для них.

Также на станке ЧПУ сделал простой стенд для измерения тяги и проверил его работу на обычном бесколлекторном электродвигателе.

Стенд для проверки двигателя и отработки параметров электронного контроллера управления частотой вращения двигателя.

Стенд для проверки двигателя и отработки параметров электронного контроллера управления частотой вращения двигателя.

После склейки и сборки ещё два дня занимался настройкой различных контроллеров. Довольно неплохо подходил контроллер Marcus SL110, но после нескольких испытаний все же он сгорел. Есть особенность таких контроллеров. При запуске двигателя они могут давать длительные серии импульсов. При запуске обычного медного бесколлекторного двигателя, ток ограничен сопротивлением подводящих проводов и обмоток, но в случает с двигателем ВТСП, ток ограничивается сопротивлением одних подводящих проводов. По этой причине предположительно и сгорел данный контроллер.

В итоге трех дней настроек удалось получить рабочую схему из батареи литий-полимерных аккумуляторов напряжением 24 В и ёмкостью 3.5 А*ч, контроллера Castle Fenix Edge Lite, и двигателя на сверхпроводниках №2.

Все было проверено на стенде со штатной батарей и приемником радиоуправления, установлено на самолет и проверено ещё раз в сборе.

Испарения азота истекающие из-под задней опоры двигателя.

Испарения азота истекающие из-под задней опоры двигателя.

Итак настал май.

2 мая я с готовым самолетом, жидким азотом и другой сопутствующей «хурмой» выехал на летное поле. Сам я рулить радиоуправляемым самолетом умею плохо, поэтому пришлось уговаривать местных пилотов. На мои просьбы отозвался Василий, хотя и предупредил, что возможно самолет разобьется. Но по сути, разбить самолет у меня было намного больше шансов.

Самолет с электродвигателем на сверхпроводниках готовый к полетам.

Самолет с электродвигателем на сверхпроводниках готовый к полетам.

И первый полет закончился аварийной посадкой.

Быстрый осмотр показал, что внешне все целое и было принято решение сделать вторую попытку, но на меньшей мощности.

Перед второй попыткой мы провели небольшую проверку как работает двигатель на некоторых режимах и после определения решили взлетать.

На это раз полет оказался успешным.

На волне этого успеха хотели совершить ещё один полет, но видать подшипники снова начали подклинивать и двигатель не выдавал необходимой мощности, а в некоторые моменты он останавливался. И так мы решили, что одного полета хватит и можно заканчивать эту эпопею.

Самолет взлетел, совершил короткий полет и пусть он был недолгим, но тем не менее я считаю его можно рассматривать как первый полет летательного аппарата с тягой от силовой установки на сверхпроводниках.

Что дальше? Можно улучшить конструкцию ротора для увеличения крутящего момента. Есть идея, как сделать опоры в которых не будут замерзать и клинить подшипники. Сделать безрамочные катушки для улучшения охлаждения. Все это приведет к увеличению надежности, мощности и времени работы двигателя. А после этого прикрепить шасси, поставить на него автопилот, для сбора информации об эффективности двигателя и сделать ещё несколько полетов. но это уже будет второй или очередной полет — первый полет уже состоялся.

Для этого проекта продолжения не будет. Основная задача была сделать хотя бы один полет (см. начало статьи) и эта задача выполнена.

П.С. Хочу выразить благодарность сотрудникам компании «СуперОкс» за помощь, консультации и поддержку, а также за то что не пытались ограничить моё творческое безумие. Успехов Вам, и хорошего финансирования, на вашем долгом пути внедрения ВТСП в повседневную жизнь. Отдельная благодарность компании «SuperCam» г.Ижевск за предоставленный планер. Также спасибо компании «ЭНПЦ Эпитал» за консультации по эпоксидной смоле для жидкого азота.

И главная благодарность пилоту Василию, за то что не побоялся взять на себя ответственность за первый полет летательного аппарата с моим электрическим двигателем на сверхпроводниках и жидким азотом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *